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Abstract: Semi-Arid Tropical (SAT) regions are influenced by climate change impacts affecting the
rainfed crops in their productivity and production. Water Footprint (WF) assessment for rainfed
crops on watershed scale is critical for water resource planning, development, efficient crop planning,
and, better water use efficiency. A semi-arid tropical watershed was selected in lower Krishna river
basin having a 4700 ha area in Telangana, India. Soil and Water Assessment Tool (SWAT) was used
to estimate the water balance components of watershed like runoff, potential evapotranspiration,
percolation, and effective rainfall for base period (1994 to 2013) and different climate change scenarios
of Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 for the time periods of 2020, 2050
and 2080. Green and blue WF of rainfed crops viz., maize, sorghum, groundnut, redgram and cotton
were performed by considering rainfed, and two critical irrigations (CI) of 30 mm and 50 mm. It
indicated that the effective rainfall (ER) is less than crop evapo-transpiration (ET) during crop growing
period under different RCPs, time periods, and base period. The green WF under rainfed condition
over different RCPs and time periods had decreasing trend for all crops. The study suggested that
in the rainfed agro-ecosystems, the blue WF can significantly reduce the total WF by enhancing
the productivity through critical irrigation management using on farm water resources developed
through rainwater harvesting structures. The maximum significant reduction in WF over the base
period was observed 13–16% under rainfed, 30–32% with 30 mm CI and 40–42% with 50 mm CI
by 2080. Development of crop varieties particularly in oilseeds and pulses which have less WF
and higher yields for unit of water consumed could be a solution for improving overall WF in the
watersheds of SAT regions.

Keywords: green and blue water footprint; crop evapotranspiration; effective rainfall; rainfed crops;
climate change; watershed

1. Introduction

Natural resources, particularly water and food supply, are at tremendous pressure due
to global population rise and dynamic changes in the consumption pattern of society, and
India, which is projected to be the world’s most populated country by 2027, will be one of
the most impacted countries [1]. This will have a direct impact on water and land resource
availability vis-à-vis agriculture. It is predicted that severe water scarcity is affecting one
billion population in India at least for one month of the year which stresses the need for
efficient water resource development and management [2]. Rainfed (green water) farming
systems in Semi-Arid Tropical (SAT) regions provide diverse food supplies from 51% of net
sown area (139.4 mha) in India [3]. SAT regions contribute 60% of nutritive food grains,
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although is suffering with 20 to 35% undernourished population [4]. As per IPCC report
(AR5), the climate change impacts would lead to global warming by increased temperature
from 2 to 5 ◦C by the end of the century with increased extreme weather events [5]. Indian
agriculture is also affected by changes in the rainfall pattern, high intense rainfall, floods,
and droughts contributing to the overall reduction in the crop productivity, soil quality, and
accelerated land degradation due to erosion, availability of both blue and green water, etc.,
in the SAT regions. The increase in extreme weather events can affect the crop productivity
in the SAT regions of India which contributes to the production of cereals, pulses, oil seeds,
cotton, etc., under rainfed farming [6]. Extreme weather events are the greatest global risk
in the present climate change [1]. The global requirement of cereals would increase by
55–80% by the year 2050 which can be accomplished through expansion of area under crop
or by increasing crop productivity since land and water resources are limited [7].

Agriculture is the highest consumer of global fresh water at 70%. However, India
accounts for 80% of fresh water consumption in agriculture [8]. Rainwater harvesting is
one of the best options considered in the SAT regions of India for improving the water
productivity in the diversified cropping system with improved benefits to the farmer [6].
The Lower Krishna river basin of Telangana, India is of 25.8 million ha, which contributes
to a major irrigation project of Nagarjuna Sagar dam. Integrated watershed management
programmes are implemented extensively in the region and have the scope for improve-
ment in the water resource development and efficient utilization to manage dry spells [9].
The crop water balance analysis for maize and cotton in the SAT regions indicated that
there was decrease in the seasonal rainfall in the normal sowing window and increase in
crop water requirements by 2050 for maize and cotton [10]. Water storage on farm provides
a mechanism for dealing with the variability in rainfall which, if planned and managed
efficiently, increases water security, agricultural productivity, and adaptive capacity to
climate change [11].

Water footprint (WF) within the agricultural sector has been extensively studied,
mainly focusing on the water footprint of crop production. The WF of domestic, indus-
trial, and agricultural sectors has been calculated and reported at the sub-national region
level [12,13] as well as at the national level [14–19] and the global level [20–23]. The green
and blue water footprint of crop production are estimated by using a grid-based dynamic
water balance model considering local climate and soil conditions after calculating the
effective rainfall (ER), potential evapotranspiration (PET), and crop water requirements.
Most of these studies pertain irrigated eco systems under major irrigation systems which
are different from SAT regions that are critically rainfall dependent. Due to weather aberra-
tions in the SAT region with long dry spells during crop growth stages, there is a need to
critically analyse the water supplies for rainwater harvesting on farms and its utilization
during dryspells at critical stages of crop growth and its impacts on water footprints for
rainfed crops in watersheds [24]. Therefore, a Water footprint assessment would help to
make a policy framework for the adaptation of climate-resilient technologies, particularly
rainwater harvesting through on-farm reservoirs and efficient use of water resources in the
rainfed region on a watershed basis [6,25–27].

The Soil and Water Assessment Tool (SWAT) was used for estimating the runoff,
potential evapotranspiration, and percolation apart from other components of groundwater
recharge. The rainfall effectiveness (green water use) was evaluated for different crops in
the Nagarjuna Sagar canal command area of Andhra Pradesh using SWAT [28]. The spatial
optimization of soil and water conservation practices was studied on a watershed scale
using SWAT and evolutionary algorithm [27]. The blue and green proportions of crop ET of
six important crops were quantified [29] and four major land-use types of Kothakunta sub
watershed in Andhra Pradesh for water footprint assessment on a basin scale. The water
footprint for 15 different crops was estimated at basin level in the Indo-Gangetic region [30].
The green, blue and grey Water footprint of 126 crops all over the world for the period
1996–2005 was estimated with a high spatial resolution [22]. Various studies on water
footprint for different climate change scenarios were reported using different downscaling
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models which are region-specific, particularly for irrigated rice [31,32]. Many studies have
been reported representing the impacts of climate change the at global and regional levels
for irrigated crops on a basin scale. The present study focused on WF assessment for
rainfed crops on the watershed scale in SAT regions with adaptation strategies of rainwater
harvesting through on-farm reservoirs in a watershed.

2. Material and Methods
2.1. Study Area and Climate

The present study was conducted in a watershed consisting of 8 tribal villages of
Padara Mandal, Nagarkurnool district of Telangana state (Figure 1). The area lies between
16◦27′ N and 79◦1′ E. The watershed has its automatic weather station in PadaraMandal.
The watershed having an area of 4700 ha was delineated into several sub watersheds with
different land use, soil characteristics and slopes. According to the 20 years observation
data, the average annual rainfall in the watershed is 734 mm, of which the average south
west seasonal rainfall accounts for 86%. Two-thirds of the rainfall occurs during the period
of July to October. The average maximum and minimum temperatures of the area are 33 ◦C
and 12 ◦C. The elevation of the selected area is 145 m above mean sea level.
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Figure 1. Location map of the watershed. Figure 1. Location map of the watershed.

The area is dominated by sandy clayey loam soils accounting for around 78% with poor
soil health. The major land use consists of agriculture (31%) and small bushes (56%) and
forest (7.6%). Agriculture in the watershed mainly consists of seasonal rainfed crops like
maize, cotton, redgram, groundnut, and sorghum. The watershed has a rolling topography
having slopes from 1–11% on average.

2.2. Data Acquisition

Data required for the study were compiled from different sources. Digital elevation
map from the ASTER Satellite with an accuracy of 30 m was obtained from USGS. Land
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use/land cover map was obtained from IRS-LISS III. Spatial distribution of major soil types
and sand, silt, and clay content of these soils were taken from grid-based Harmonized
World Soil Database (HWSD-FAO) [33]. Crop coefficients at different crop development
stages (initial, middle, and late-stage), were taken from FAO report [34].

Climate Data

The climate data related to monthly average rainfall and temperature of the study area
under various RCPs and time periods are presented in Figure 2.
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2.3. Estimation of Water Balance in a Watershed Using SWAT

Soil Water Assessment Tool (SWAT) was used to estimate the watershed surface runoff,
potential evapotranspiration, and percolation rates, stream flows, etc. In this model, a
watershed is divided into multiple sub-watersheds that are then further subdivided into
unique soil/land use characteristics called hydrologic response units (HRUs) using ARC-
GIS. The input layers of daily rainfall, temperature, relative humidity, radiation, wind,
DEM, Land use, Soil cover, etc. were provided to the model (Figure S1). Digital elevation
model (DEM) at a resolution of 30 × 30 m was used as input for delineation. In this study,
three emission scenarios from the IPCC were used as RCP 2.6, 4.5, and 8.5, representing low,
medium, and high radiant energy levels. The long-term data on runoff was generated for
three climate change scenarios of 2020, 2050, and 2080. Using these data, effective rainfall
of different rainfed crops, PET, and crop ET (ETc) were calculated.

2.4. Estimation of Crop Yields in Different Climate Change Scenarios

The crop yields for selected crops namely maize, sorghum, groundnut, redgram, and
cotton were assessed using the AquaCrop using soil, climate, crop, and water use data
under climate change scenarios of RCP 2.6, 4.5, and 8.5 for different time periods of 2020,
2050, and 2080 including base period. The crop yields were estimated for rainfed and two
critical irrigation (CI) levels of 30 mm and 50 mm at critical stages of crops for climate
change scenarios and base period. Based on the experience, the two levels of 30 mm and
50 mm for both deficit and intensive critical irrigations were found optimum for SAT
regions with sandy clay loam soils [6]. These data were used for calculating the WF of
selected crops.
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2.5. Water Footprint (WF) Assessment

The base data on crops, and existing land productivity in a watershed were taken to
calculate both green and blue water footprints. The blue and green WF (WFblue and WFgreen)
of rainfed crops were calculated based on the standard methods proposed in the Water
Footprint Assessment Manual [23]. Presently, all the crops are grown under rainfed which
is primarily rainfall-dependent production. As the scope for runoff water harvesting is
seen in the selected watershed, two critical irrigations of 30 mm and 50 mm were taken
to provide as a drought management strategy for improving the yields in the existing
rainfed cropping systems of the watershed. Using this information, the water footprints
were calculated for the existing crops in a watershed. However, the grey water footprint is
neglected in the watershed due to the very low application rate of fertilizers in the rainfed
agriculture in the watershed by the farmers.

2.5.1. Green Water Footprint

The green crop water use (CWUgreen) is estimated by considering two parameters
namely crop evapotranspiration (ETc) and Effective rainfall (Pe f f ) during crop growth
period. Minimum of these values is considered for calculating the water footprint as
given below:

CWUgreen = 10×∑ Min
(

Pe f f , ETc

)
(1)

ETc was calculated by using crop coefficients at different growth stages of selected
crops in the watershed as given below

ETc = ET0 × Kc (2)

where ET0 is potential evapotranspiration (mm) and Kc is crop coefficient. Crop coefficients
(Kc) were obtained from FAO [35]. Crop planting dates and lengths of cropping seasons
were obtained from PJTSAU [36] (Table 1).

Table 1. Crop characteristics of different crops.

Crop Kc_Ini Kc_mid Kc_end Date of Sowing Length of Crop
Growing Period (Days)

Maize 0.3 1.2 0.5 05-July 120

Sorghum 0.3 1 0.55 05-July 115

Groundnut 0.4 1.15 0.6 10-July 120

Cotton 0.35 1.2 0.6 15-July 180

Redgram 0.3 1 0.5 10-July 120
Source: Kc values: FAO (1988) [35], Sowing dates and length of crop periods: PJTSAU (2019) [36].

Effective rainfall for different crops was calculated by using USDA [37] as given below:

Pe f f = R− SR0 − PR (3)

where R is daily rainfall (mm), SR0 is surface runoff (mm) and PR is percolation (mm).

2.5.2. Blue Water Footprint

The blue crop water use (CWUblue) is the amount of surface and groundwater used by
the crop over the entire crop growing period i.e., the amount of water provided as critical
irrigation (Ic) in addition to effective rainfall to the crop during the growing period. The
total green crop water use is the summation of ETc or Pe f f over the crop growth period.

CWUblue = 10×∑ Ic (4)
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The crop water uses over the crop growing period (m3 ha−1) were obtained by mul-
tiplying with factor 10 which converts water depths (mm) into water volumes per unit
surface area (m3 ha−1). The green water footprint (WFgreen, m3/t) and blue water foot-
print (WFblue, m3/t) were calculated by dividing the green crop water use (CWUgreen)
and the blue crop water use (CWUblue) by the yield of different crops respectively [23] as
given below:

WFgreen = CWUgreen/Yr (5)

WFblue = CWUblue/YIc (6)

The total water footprint of a crop (WF, m3/t) is the sum of the green and blue compo-
nents:

WF = WFgreen + WFblue (7)

2.5.3. Water Footprints for Climate Change Scenarios

The long-term data on SRO, PET and PR for different RCPs were simulated using
SWAT for the periods of 2020, 2050, and 2080. Crop evapotranspiration and effective rainfall
were calculated for the scenarios of 2.6, 4.5, and 8.5 for future time periods of 2020, 2050,
and 2080. The WF for climate change scenarios of RCP 2.6, 4.5 and 8.5 for the periods of
2020, 2050 and 2080 were calculated by providing downscaled rainfall obtained from global
climate models (GCM) as input to the calibrated SWAT model. It was assumed that there
will be no change in land use for the project area in the future. Climate variables in the
future, such as wind speed, relative humidity, and sunshine hours, were also assumed to
be the same as that of the base period.

3. Results
3.1. SWAT Calibration and Validation

Calibration and validation were carried out using SWAT-CUP. Sensitive parameters
were identified for the selected watershed in the first step. Then the model parameters
were calibrated on daily basis comparing the observed and simulated runoff values in
the watershed. The validated results are presented in Figure 3 with an R2 (Coefficient of
determination) of 0.87. It indicated that there is a close relationship between observed and
simulated runoff in a watershed and the model can be applied to the watershed considered
under the present study.
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3.2. Water Balance

SWAT outputs of surface runoff, potential evapotranspiration and percolation were
taken for calculating effective rainfall (ER), crop evapotranspiration (Etc) for all selected
rainfed crops during their crop growth period. These calculations were made for RCPs (2.6,
4.5 and 8.5) with different time periods (2020, 2050, and 2080). The total rainfall during crop
growth stages of different crops has an increasing trend in RCPs and time periods over the
base period (Figure 4). The percentage increase in the total rainfall varied from 1.48–2.26%
in RCP2.6 in 2020 and 23.5–26.85% in RCP 8.5 in 2080 across the crops over the base period.
Accordingly, the surface runoff also increased from 68 mm to 121 mm in maize, 73 mm
to 122 mm in sorghum, 74 mm to 124 mm in groundnut, 120 mm to 240 mm in redgram
and 119 mm to 200 mm in cotton across the RCPs and time periods. The maximum surface
runoff was found under the RCP 8.5 by 2080. During the base period, the surface runoff
was found less varying from 68 mm to 114 mm across the crops. The analysis indicated that
there was potential for rainwater harvesting through on-farm reservoirs for implementing
critical irrigation in watershed for selected crops in both base period and RCPs and time
periods of 2020 to 2080. The effective rainfall was found less than ETc in base period as well
as in RCPs for different time periods. The ER was taken for calculating green WF for the
respective crops. The percolation varied from 52 mm to 96 mm in different crops and the
maximum was noticed in deep-rooted crops like redgram and cotton.

3.3. Water Footprint of Rainfed Crops
3.3.1. Base Period (1994–2013)

The analysis was carried out for five rainfed crops commonly grown in the selected
watershed for a base period of 30 years. The crops considered are maize, sorghum, ground-
nut, redgram and cotton. The crop ET and ER were calculated from SWAT water balance.
All the rainfed crops are considered with two critical irrigations during kharif at two critical
stages of crops. The average estimated crop ET and effective rainfall for their growing
period are presented in Table 2 for base period and for different climate change scenarios.
It is observed that the ER was less than crop ET for all the rainfed crops. Green water
footprint was calculated by taking a minimum of crop ET and effective rainfall for all the
rainfed crops. The average simulated crop yields through AquaCrop are presented in
Table 3 for different climate change scenarios and time periods and for the base period.

Table 2. Crop ET and effective rainfall of different crops during crop growth period.

Maize Sorghum Groundnut Redgram Cotton
ETc

(mm)
ER

(mm)
ETc

(mm)
ER

(mm)
ETc

(mm)
ER

(mm)
ETc

(mm)
ER

(mm)
ETc

(mm)
ER

(mm)

Base
period 464.57 321.93 455.20 331.88 508.09 319.74 455.33 352.98 705.55 401.62

2020-2.6 465.63 322.62 462.63 332.14 510.16 319.92 456.82 353.24 707.13 401.70
2020-4.5 466.72 323.90 463.74 333.92 511.09 321.74 457.62 354.84 708.59 402.15
2020-8.5 467.68 325.73 464.25 334.95 512.88 322.61 458.12 356.65 709.14 403.12
2050-2.6 469.87 329.26 467.25 339.32 516.76 326.83 461.58 360.64 713.67 407.80
2050-4.5 473.55 330.54 468.76 340.86 517.61 327.57 462.18 361.62 714.37 408.96
2050-8.5 474.16 332.66 470.47 342.64 521.77 330.44 464.32 364.33 718.95 413.33
2080-2.6 471.59 331.99 469.69 341.02 518.72 328.59 462.07 362.08 715.73 409.46
2080-4.5 475.70 334.16 470.50 345.60 521.09 331.43 463.48 365.68 718.01 413.83
2080-8.5 478.37 339.06 476.18 350.48 532.72 338.06 470.31 370.97 728.29 421.82

ETc = Crop Evapotranspiration, ER = Effective Rainfall.
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Figure 4. SWAT estimated water balance (mm) for selected crops during their growing period for the
base period and climate change scenarios. (PREC, Precipitation; SURQ, Surface runoff; ETc, Crop
evapotranspiration; ER, Effective rainfall; PR, Percolation). (a) Maize, (b) Sorghum, (c) Groundnut,
(d) Redgram, (e) Cotton.
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Table 3. Simulated crop yields under rainfed and critical irrigations using AquaCrop.

Maize (t/ha) Sorghum (t/ha) Groundnut (t/ha) Redgram (t/ha) Cotton (t/ha)
Rainfed 30

mm
50

mm Rainfed 30
mm

50
mm Rainfed 30

mm
50

mm Rainfed 30
mm

50
mm Rainfed 30

mm
50

mm
Base

period 1.50 2.20 4.20 1.00 1.76 2.98 1.30 2.70 4.80 0.80 1.51 2.60 0.90 2.40 4.50
2020-2.6 1.53 2.29 4.51 1.02 1.84 3.17 1.34 2.90 5.19 0.82 1.62 2.80 0.93 2.58 4.87
2020-4.5 1.56 2.39 4.74 1.05 1.91 3.35 1.36 2.99 5.49 0.85 1.66 2.94 0.98 2.66 5.17
2020-8.5 1.60 2.51 4.98 1.09 2.05 3.61 1.39 3.17 5.85 0.87 1.76 3.14 0.99 2.80 5.51
2050-2.6 1.65 2.62 5.25 1.12 2.11 3.92 1.44 3.29 6.27 0.90 1.82 3.39 1.01 2.92 5.91
2050-4.5 1.70 2.76 5.56 1.16 2.21 4.19 1.49 3.41 6.63 0.92 1.89 3.65 1.04 3.04 6.33
2050-8.5 1.74 2.86 6.05 1.18 2.31 4.42 1.52 3.59 7.05 0.94 1.98 3.88 1.06 3.21 6.78
2080-2.6 1.76 2.94 6.42 1.20 2.35 4.73 1.55 3.68 7.58 0.95 2.04 4.09 1.08 3.27 7.09
2080-4.5 1.80 3.05 6.97 1.21 2.46 5.00 1.58 3.84 7.98 0.98 2.11 4.32 1.10 3.39 7.50
2080-8.5 1.83 3.15 7.30 1.24 2.51 5.20 1.61 3.92 8.47 1.00 2.18 4.58 1.13 3.52 8.00

The yields of maize were 1.5 t/ha, 2.2 t/ha and 4.2 t/ha for rainfed, 30 mm and 50 mm
critical irrigations in the base period, respectively. The effective rainfall for maize was
321.93 mm as compared to crop ET of 464.6 mm. The green WF for maize was 2146 m3/t
and blue WFs were 273 m3/t and 238 m3/t for 30 mm and 50 mm CI, respectively (Figure 5).
The yields for the sorghum were 1 t/ha, 1.76 t/ha and 2.98 t/ha under rainfed, with two
critical irrigations of 30 mm and 50 mm, respectively. Effective rainfall for the base period
was 331.88 mm with a green WF of 3319 m3/t for sorghum. The blue WFs for sorghum
were 341 m3/t and 336 m3/t under 30 mm and 50 mm CI, respectively.

The ER calculated during the growing period for groundnut crop was 319.7 mm
against crop ET of 508 mm. The yields of groundnut were 1.3 t/ha, 2.7 t/ha and 4.8 t/ha for
rainfed, 30 mm, and 50 mm CI, respectively. The green WF for groundnut was 2460 m3/t
and the blue WFs were 222 m3/t and 208 m3/t under 30 mm and 50 mm CI’s, respectively
(Figure 5). The ER during the growing period of redgram was 353 mm against crop ET of
455 mm. The yields of redgram were 0.8 t/ha, 1.5 t/ha and 2.6 t/ha under rainfed, 30 mm,
and 50 mm CI’s, respectively. The green WF for redgram was 4412.25 m3/t and blue WF’s
were 397 m3/t and 384 m3/t for 30 mm and 50 mm CI’s, respectively. The effective rainfall
for cotton during its growth period was 401.6 mm as compared to crop ET of 705.6 mm.

The yields of cotton were 0.9 t/ha, 2.4 t/ha and 4.5 t/ha under rainfed, 30 mm, and
50 mm CI, respectively. The green WF was 4462.5 m3/t and the blue WFs were 250 m3/t at
30 mm and 222 m3/t at 50 mm CI (Figure 5). The strategy of critical irrigations two times
during crop season reduced the WF as compared to rainfed which totally depends on the
utilization of ER as green water storage in the root zone. ER contribution to the crop yields
is rainfall-dependent during the crop growing period. The total WF was minimum for
maize as compared to all other crops under rainfed system indicating that the crop has
better utilization of water converting into higher yields than the other crops followed by
sorghum, groundnut, redgram and cotton.

3.3.2. Green and Blue Water Footprints of Rainfed Crops under Different Climate Change
(CC) Scenarios

The green and blue water footprints were calculated for three CC scenarios of RCP
2.6, 4.5 and 8.5 for the time periods of 2020, 2050 and 2080 and the results are presented in
Figure 5.
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Maize

The crop ET varied from 465.6 mm to 478.4 mm with an increasing trend during its
crop growth period of 117 days in different scenarios with a minimum in RCP 2.6 in 2020
and a maximum in RCP 8.5 in 2080. The ER of maize varied from 322.6 mm to 339 mm with
an increasing trend in different RCP scenarios. However, the ER observed was less in RCP
scenarios for the time periods of 2020 to 2080. Green and blue WF were calculated by taking
the yields of 1.5 t/ha, 2.2 t/ha and 4.2 t/ha in rainfed, 30 mm and 50 mm CI’s strategies for
the base period. There was a slight increase in the maize yield from 1.53 t/ha to 1.76 t/ha
in RCP 2.6 for different time periods. Similar trend was observed in RCP 4.5 and 8.5 with a
range from 1.56 t/ha to 1.8 t/ha and 1.6 t/ha to 1.83 t/ha under time periods. The green
WF of maize reduced from 2106 m3/t to 1886 m3/t in RCP 2.6 during the time period of
2020 to 2080 (Figure 5a). In RCP 4.5, it reduced from 2074 m3/t to 1862 m3/t from2020 to
2080. In RCP 8.5, green WF varied from 2035 m3/t to 1853 m3/t. It was observed that there
was a decrease of 1.88%, 7% and 12.1% of green WF in RCP 2.6 for different periods of
2020, 2050 and 2080 respectively over the base period (Figure 6a). In RCP 4.5 green WF was
decreased by 3.4%, 9.3%, and 13.3% in different time periods (2020, 2050, and 2080) over
the base period. In RCP 8.5, the maximum decrease in green WF (rainfed) was observed
varying from 5.2–13.7% in different time periods as compared to the base period.

The WF of maize with two CI of 30 mm and 50 mm as an adaptation strategy to CC,
the blue WF with 30 mm CI varied from 255 m3/t to 204 m3/t in RCP 2.6, 248 m3/t to
195 m3/t in RCP 4.5 and 235 m3/t to 190.5 m3/t in RCP 8.5 during the time period of 2020
to 2080 (Figure 5b). Similarly, with a 50 mm CI strategy, the blue WF varied from 222 m3/t
to 156 m3/t in RCP 2.6, 209 m3/t to 143 m3/t in RCP 4.5 and 201 m3/t to 137 m3/t in
RCP 8.5 during 2020 to 2080 (Figure 5c). Though the blue WF of maize has decreasing
trend within RCPs from 2020 to 2080, the WF was decreased over rainfed (green WF). The
percentage decrease in blue WF was 6.5–25%, 9–28.4% and 13.7–30.2% in RCP 2.6, 4.5 and
8.5 respectively for different time periods. In 50 mm CI strategy, the blue WF was further
reduced by 6.9% to 35%, 12.3–39.7%, and 15.7–42.5% in RCP 2.6, 4.5, and 8.5, respectively
(Figure 6a) for different time periods indicating the optimum adaptation strategy for maize
in SAT regions.

Sorghum

The crop ET varied from 455 mm to 476.2 mm in different scenarios of climate change
(RCP 2.6 to RCP 8.5) during the time periods of 2020 to 2080. Similarly, the ER for the
sorghum varied from 332.1 mm to 350.5 mm which is less than crop ET. Therefore, ER is
considered for calculating green WF for sorghum in different RCPs and time periods. The
yields estimated in different RCPs and time periods varied from 1.02 t/ha to 1.24 t/ha
under rainfed, 1.87 t/ha to 2.51 t/ha with 30 mm CI and 3.2 t/ha to 5.2 t/ha with 50 mm
CI. The predicted yields had an increasing trend over the RCPs and time periods over the
base period (Table 3). The green WF varied from 3253 m3/t to 2849 m3/t, 3168 m3/t to
2849 m3/t and 3067 m3/t to 2838 m3/t in RCP 2.6, 4.5 and 8.5 respectively for different
time periods (Figure 5).The green WF decreased from 1.98% to 14.2%, 4.5% to 14.2% and
7.6% to 14.5% over the base period in RCP 2.6, 4.5 and 8.5 respectively over time periods of
2020, 2050 and 2080 (Figure 6b).

With the adaptation strategy of CI’s with 30 mm, the blue WF varied from 321 m3/t to
257.6 m3/t, 314 m3/t to 243 m3/t, 293 m3/t to 239 m3/t in RCP 2.6, 4.5 and 8.5, respectively
for different time periods (Figure 5b). The percentage decrease in blue WF for 30 mm CI
was 5.88–24.4%, 8–28.7%, and 14.1–29.9% over the base period among different RCP and
time periods (Figure 6b). In the case of 50 mm CI two times, the blue WF varied from
313.5 m3/t to211.4 m3/t, 296 m3/t to 199.6 m3/t and 277 m3/t to 192 m3/t in RCP 2.6, 4.5
and 8.5, respectively during the time period of 2020 to 2080 (Figure 5c). The maximum
decrease was observed with a 50 mm CI strategy varying from 6.58–37%, 11.8–40.5% and
17.5–42.7% (Figure 6b) over the base period in different RCP and time periods. The analysis
indicated that the rainfed sorghum when cultivated with effective rainfall, the WF’s were
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maximum as compared to the adaptation strategy of giving critical irrigations with 30 mm
and 50 mm two times during its crop growth period. Among the blue WFs, 50 mm CI
reduced maximum WF in all RCP scenarios and time periods. However, it was found that
there was a decreasing trend with RCP and time periods in all crops WF.
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Figure 6. Percentage change in WF of rainfed crops ((a) maize (b) sorghum (c) groundnut (d) redgram
and (e) cotton) with critical irrigation under different RCPs and time periods.

Groundnut

The groundnut yields taken for the WF analysis varied from 1.37 t/ha to 1.61 t/ha,
2.9 t/ha to 3.92 t/ha and 5.19 t/ha to 8.47 t/ha in rainfed, 30 mm and 50 mm CI, respectively,
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in different RCPs and time periods (Table 3). The crop ET varied from 510 mm to 519 mm
in RCP 2.6, 518 mm to 521 mm in RCP 4.5, and 513 mm to 533 mm in RCP 8.5 during the
time period of 2020 to 2080. The ER varied from 320 mm to 329 mm, 322 mm to 331 mm,
and 323 mm to 338 mm in RCP 2.6, 4.5, and 8.5, respectively, during the time period of 2020
to 2080 showing the increasing trend (Table 2). However, the ER was observed to be less
than crop ET in all RCP and time periods.

The green WF under rainfed with ER contribution in the production varied from
2328 m3/t to 2125 m3/t, 2010 m3/t to 2104.3 m3/t and 2085 m3/t to 2100m3/t in RCP 2.6,
4.5 and 8.5, respectively for different time periods (Figure 5a).The blue WF with 30 mm
CI varied from 207 m3/t to 163 m3/t, 201 m3/t to 156 m3/t and 189 m3/t to 153 m3/t in
RCP 2.6, 4.5 and 8.5, respectively (Figure 5b). Similarly, with 50 mm CI, the blue WF varied
from 193 m3/t to 132 m3/t, 182 m3/t to 125 m3/t, and 171m3/t to 118 m3/t (Figure 5c)
in RCP 2.6, 4.5 and 8.5 during the time periods of 2020 to 2080. The percentage decrease
in the green WF (rainfed) varied from 5.3–13.5%, 6.1–14.4% and 7.1–14.6% over the base
period in different RCP and time periods (Figure 6c). At 30 mm CI, the blue WF varied
from 6.7–26.6%, 9.6–29.7% and 14.8–31.1% over the base period in different RPCs and time
periods. With a 50 mm CI strategy the blue WF varied from 7.5–36.7%, 12.6–39.9%, and
17.9–43.3% over the base period.

In time periods of 2020 to 2080 in different RCP’s both green and blue WFs were
decreased with maximum reduction in 50 mm CI strategy. In oilseed crops like groundnut,
which is predominantly grown in south-central India is a profitable crop to the farmers
with fewer WFs under the adaptation strategy.

Redgram

Redgram is a protein-rich leguminous crop which is commonly grown in rainfed
conditions as a pulse crop. The yields of the crop varied from 0.82 t/ha to 1.0 t/ha,
1.6 t/ha to 2.18 t/ha, 2.8 t/ha to 4.58 t/ha in rainfed, 30 mm, and 50 mm CI strategies,
respectively under different RCP’s and time periods (Table 3). The crop ET varied from
457 mm to 462 mm, 458 mm to 463 mm, and 458 mm to 470 mm in RCP 2.6, 4.5, and 8.5
respectively in time periods of 2020 to 2080 with an increasing trend. The ER varied from
353 mm to 362 mm, 355 mm to 366, mm and 357 mm to 371 mm in different RCPs and
time periods (Table 2). The ER was found to be less than ETc among all RCPs and time
periods considered.

The green WF varied from 4308 m3/t to 3795m3/t, 4119 m3/t to 3751m3/t and
4104 m3/t to 3728 m3/t in RCP 2.6, 4.5 and 8.5, respectively during different time pe-
riods (Figure 5a). With a 30 mm CI strategy the blue WF varied from 371 m3/t to 294 m3/t,
361.5 m3/t to 284 m3/t and 341 m3/t to 275 m3/t in RCP 2.6, 4.5 and 8.5, respectively in the
time period of 2020 to 2080 (Figure 5b). The blue WF with 50 mm CI varied from 357 m3/t
to 244.5 m3/t, 340 m3/t to 231.5 m3/t and 318.5 m3/t to 218 m3/t in different RCP and time
periods (Figure 5c). The percentage decrease in green WF varied from 2.4–14%, 4.8–15%
and 7–15.5%, the percentage decrease in blue WF with 30mn CI varied from 6.6–26%, 9–28%
and 14–30.7% by 2080, the percentage decrease in blue WF for 50 mm CI varied from
7.1–36.4%, 11.6–39.8% and 17.2–43.2% (Figure 6d) over the base period in different RCP
and time periods.

Cotton

Cotton is grown by the farmers as a commercial crop in rainfed districts of south-
central India having a growth period of 180 days. Its yields varied from 0.9 t/ha to 1.13 t/ha,
2.58 t/ha to 3.52 t/ha and 4.87 t/ha to 8.01 t/ha under rainfed, 30 mm CI and 50 mm CI,
respectively for different RCP and time periods (Table 3). The crop ET varied from 707 mm
to 716 mm, 709 mm to 718 mm, and 709 mm to 728 mm in RCP 2.6, 4.5, and 8.5 respectively
in the time periods of 2020 to 2080. The ER varied from 402 mm to 409 mm, 402 mm to
414 mm and 403 mm to 424 mm under different RCPs and time periods. It was observed
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that the ER was less than ETc among all RCPs and time periods (Table 2). Hence, ER was
considered for calculating green WF under rainfed.

The green WF of cotton varied from 4202 m3/t to 3795 m3/t, 4120.4 m3/t to 3765.5 m3/t,
and 4067.8 m3/t to 3733 m3/t in RCP 2.6, 4.5 and 8.5 for different time periods (Figure 5a).
The blue WF with 30 mm CI varied from 233 m3/t to 183.5 m3/t, 225.6 m3/t to 177 m3/t and
214 m3/t to 170.5 m3/t in RCP 2.6, 4.5 and 8.5, respectively during 2020 to 2080 (Figure 5b).
Adapting 50 mm CI in cotton reduced the blue WF over the 30 mm CI and rainfed. The blue
WF with 50 mm CI varied from 205 m3/t to 141 m3/t, 193 m3/t to 133 m3/t and 181.5 m3/t
to 124.8 m3/t (Figure 5c) in different RCP and time periods. The percentage decreases over
the base period varied from 5.8% to 15%, 7.7% to 15.6% and 8.8% to 16.4%, with 30 mm CI
it varied from 6.9% to 26.6%, 9.8% to 29.2% and 14.3% to 31.8% 1.6%, 2.4% and in 50 mm CI
it varied from 7.6% to 36.5%, 13% to 40% and 18.3% to 43.8% (Figure 6e) in different RCP’s
and time periods. Cotton also has a decreasing trend in WF’s over the time periods and
climate change scenarios of RCP. However, with adaptation strategy of providing 30 mm
and 50 mm CI reduced the WF due to increase in the yields with increased critical water
use during the growth period of the crop.

4. Discussion

The commonly grown crops in SAT regions of India are Sorghum, maize, groundnut,
redgram and cotton. Sorghum is grown extensively in both Indian and African SAT regions
as it is a staple food for poor people. It has localized value additions as well as good
fodder value for animals. Though maize is water-intensive crop, it is grown in rainfed
regions extensively in most of the SAT regions due to its commercial value, used as feed
and fodder to the animals and poultry. Groundnut and redgram are commercial oilseed
and pulse crops, respectively that provides protein and in situ nitrogen fixation to the
soil. Cotton is long duration commercial crop grown in 67% area in rainfed regions of
India having a productivity of 200–275 kg/acre which is very low compared to the other
cotton-growing countries. The other crops productivity ranges between 0.8–1.0 t/ha in
SAT regions [3]. The above crops suffer from the water supplies during critical stages with
long dry spells (30–45 days) due to rainfall breaks. It is seen from Figure 2 that the average
temperature increase will be from 1–5 ◦C having a maximum in RCP8.5. Though rainfall
has an increasing trend among RCPs and time periods from 2020–2080, there were more
non-rainy days during crop growth period indicating more dryspells happened, calling for
a scope of rainwater harvesting on farm for critical irrigation.

Water footprints were studied in SAT regions with critical irrigation strategies applying
30 mm and 50 mm two times during dryspells in the crop-growing period. The available
water content for use by the crops in rainfed soils is about 100 mm/m [38]. If the depletion
of available water content is not addressed during dryspells at critical stages of rainfed
crops, the crop yields are reduced by 30–40% in different crops causing huge losses to the
farmers. In order to minimize this loss besides enhancing the crop productivity, critical
irrigation of 50 mm was provided by meeting the requirement of the crop during dryspell at
50% depletion and deficit irrigation with 30 mm. Taking these two points into consideration,
water footprints of rainfed crops were estimated using both green and blue water. The
positive climate effects on crop growth can be adjusted by effective rooting depth and
nutrients by providing critical irrigations during dryspells which can improve water
productivity by 20–40% [39].

Rainfed crops of maize and groundnut registered the lowest water footprint in all
RCP scenarios. Blue water footprint of cotton/redgram was found to be highest in all RCP
scenarios with either 30 mm or 50 mm CI while the lowest was recorded for groundnut. It
was found that the response of the crop to the CI was positive realizing more yields in the
rainfed regions [40].

Deep rootedness, as well as long duration of the crops (redgram and cotton) standing
in the field, requires more green water for effective root spread and resource use in the root
zone under rainfed conditions. However, the long crop duration/indeterminate nature
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of the crop, makes it to survive and recoup from the extreme weather conditions. Crop
growth cycle for these crops with a long duration of 180 days in the field suffers from
moisture stress during the critical stage of pod/boll development and filling. The green
WF was very high for such crops, if they are grown in rainfed conditions and it could be
reduced with blue water supplies through CI reducing the WF of these crops. However,
if the rain breaks occur immediately after seed germination, the crop suffers affecting the
plant density and this stage becomes a critical stage for crop survival. Therefore, CI could
be applied at any stage of the crop facing severe moisture stress, resulting in improvement
of either crop stand or yields [41]. Under limited soil depths, shallow-rooted crops of
groundnut and maize registered the lowest WF as the CI of 30 mm or 50 mm would make
water available within root zone to improve crop yields. However, cotton crop, which is
deep-rooted also could record lower WF at all RCP scenarios after groundnut which might
be due to its deep rootedness and also due to high yields (nearly three times higher) over
rainfed cotton crop without CI. Reduction in WF is possible with CI at all RCP scenarios
by standardizing timing of irrigation, quantity, and method of irrigation which trigger
the crop growth parameters and yield attributes to a greater extent in crops under rainfed
SAT regions.

5. Conclusions

Water footprint assessment on watershed basis is required to select the most efficient
cropping system per unit of water consumed, which ultimately results in not only con-
serving water but also economic benefits to the farmers through proper water resource
development and use management, particularly in SAT regions. The present study deals
with the assessment of water footprints of rainfed crops grown in the watershed with
critical irrigation of 30 mm and 50 mm two times as an adaptation strategy to climate
change. Out of the water balance of watershed obtained from SWAT, modeling indicated
that there was an opportunity for water harvesting through On-Farm Reservoirs for critical
irrigation in watersheds, as surface runoff increased due to an increase in the rainfall
during the growing period of selected crops across RCP and increasing time periods. The
crop yields were simulated using the AquaCrop model for both base period and climate
change scenarios with two critical irrigations of 30 mm and 50 mm. The analysis of water
footprints for rainfed crops on a watershed basis indicated that the lowest water footprint
was observed in maize under the 50 mm CI strategy followed by groundnut, sorghum,
redgram, and cotton. The strategy of 50 mm CI during two critical stages of the crops
resulted in maximum reduction in the blue WF which is 6.6–37%, 12–40%, and 18–44% for
RCP 2.6, 4.5, and 8.5, respectively among the selected crops. In the rainfed system with a
green water footprint also resulted in the reduction of green water footprint across the RCP
and the time period of 2020 to 2080 which is less than blue water footprint of the crops.
It was the result of increasing rainfall in RCPs (1.2–24%) over the base period. Green WF
could be reduced further by the application of organics or plastic mulches which needs
further investigation and validation under field conditions. The present studies would
help to bring a policy framework from governments to effectively use water and develop
water-efficient crop plans for enhancing productivity in rainfed SAT regions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14081206/s1, Figure S1: Input layers to SWAT model.
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