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Abstract: River flow regulations and thermal regimes have been altered by human-induced inter-
ventions (such as dam construction) or climate change (such as air temperature variations). It is of
great significance to adopt a well-performed data-driven model to accurately quantify the impact of
human-induced interventions or climate change over river water temperature (WT), which can help
understand the underlying evolution mechanism of the river thermal regimes by dam operation or
climate change. This research applied the Bayesian network-based model (BNM), which can easily
identify inherently stronger associated variables with a target variable from multiple influencing
variables to predict the daily WT and make a quantitative assessment of the effect produced by Three
Gorges Reservoir (TGR) construction in the Yangtze River, China. A comparative study between the
proposed model and two other models was implemented to verify the predicted accuracy of the BNM.
With the help of the BNM model, the impact of reservoir impoundment over water temperature was
quantitatively analyzed by calculating the difference between reconstructed water temperature series
and observed series during the post-TGR period. The construction of the TGR posed more impact
on variations in WT than the impact induced by the climate change according to results. The effect
of TGR on WT can be concluded as follows: WT from October to January in post-TGR showed a
remarkable warming tendency and an increase in released warmer water volumes than before, while
WT showed a cooling tendency during March to June because of the hysteretic effect of WT response
to increasing air temperature. The proposed BNM model shows great potential for WT prediction
and ecological risk management of rivers.

Keywords: water temperature predicting; dam construction; Bayesian network; Three Gorges Reservoir;
Yangtze River

1. Introduction

Water temperature (WT) is the key monitoring indictor of aquatic ecosystems, as
evidenced by the fact that temporal variations in WT could drive biogeochemical evolution
regime, such as biochemical reaction velocity and water surface evaporation rate [1,2].
The multi-scaled characteristics (day, month, year) of WT fluctuations could be attributed
to the complex heat flux interchange process at air–water interface and temperature of
contributing hydrological elements to the river ranging from surface to underground
level [3]. Various studies of WT have issued that thermal behavior is significantly related
with large-scale climate change [4,5] and anthropogenic perturbations, such as constructions
and operations of dams [6,7] at a local scale. As a result, it is of great importance to model
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and forecast the WT time series accurately to attribute the contributions of climate change
and human-induced perturbations over WT.

Data-driven models are commonly used water temperature models over recent decades [8,9].
Data-driven models establish the predictor–predictand association between WT and other
covariates such as air temperature (AT) and discharge (Q) through statistical or data-mining
techniques. AT is always assumed to be the potential predictor due to its the dominant
role in deciding the heat fluxes at the air–water interface. Besides the natural heat fluxes
quantified by AT, river flow patterns are another key driver of the thermal evolution regime
of the river, which is particularly the same situation after constructing and operating of
large reservoirs. Thus, discharge (Q) should be selected as another potential predictor.
Recent studies have implemented comparative research of the performance of a variety of
machine-learning methods for WT forecasting and modelling [10,11]. However, consider-
ing the lag effect for the relation between AT and WT, a great number of interdependent
influencing variables (different potential time-lag air temperature series) should be consid-
ered, which is laborious for selecting optimal predictors among the tremendous number of
influencing variables. It is of great importance to master relatively complete conditional
independent information for the potential predictors identification. The concepts of net-
work structures that can help to gain a wonderful insight into the behavior of a complex
system with multiple random variables have been addressed in the field of hydrology
and hydroclimatology [12,13]. In this study, we used a graphical modelling (GM)-based
Bayesian network approach [14] to identify the directly associated variables and establish
the predictor–predictand association between WT and air temperature and discharge.

The Yangtze River, the longest river in China, has been a hotspot after the operation
of the Three Gorge Reservoir (TGR), which is the largest water conservancy project in the
world [15]. Recent studies about TGR focus on quantitative assessment of the effects of
TGR over hydrological processes, risk of hydrometeorological extremes, and the impact
of aquatic animal habitat sustainability and diversity along the Yangtze River [16–18]. A
multivariate regression method [19] and a semi-physical air2stream model [6] have been
used to diagnose the potential influence over WT variations posed by TGR operation.
However, few studies in the literature have addressed the above effect at the daily scale.
Further investigation should be made to verify the potential of Bayesian network-based
models (BNM) to quantify daily WT variations accurately under the impact of human-
induced perturbations.

This study focused on the following two angles: (1) to evaluate the prediction accuracy
of the proposed BNM model to estimate mean daily WT observed at the Yichang station
of the Yangtze River compared with other two commonly used data-driven models; and
(2) to use the BNM to make a reconstruction of the natural daily river water temperature
time series, ignoring the operation of TGR in order to isolate the human-induced effect
(caused by TGR) on the thermal regime of this river.

2. Study Area and Data

The Yangtze River, which is the third longest river in the world, originates from the
Qinghai-Tibet Plateau, ranging from 4000 to 5000 m, and flows eastward to the East China
Sea. The TGR, which is located along the main stream of the Yangtze River between
Chongqing and Yichang, started to impound water, with the water level rising from 70 m
in 2003 to 143 m in 2005. For the purpose of flood control, irrigation, and power generation,
the TGR was set at a standard normal operation phase by October 2010 [6].

Daily water temperature and daily discharge data during 1984–2013 observed at
Yichang station are provided by the Yangtze River Water Resources Commission. In
addition, the air temperature data from 1984 to 2013 observed at Yichang were downloaded
from the National Meteorological Information Center (http://data.cma.cn/). Here, the
pre-TGR (1984–2002) is defined as the period before the construction of the reservoir, while
the post-TGR (2003–2013) is defined as the period with the operating TGR.

http://data.cma.cn/
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3. Methodology

The framework of this study can be considered to consist of the three following
sequential components:

Model performance evaluation: Daily water temperature (WT), air temperature (AT),
and discharge (Q) data were fitted by the Bayesian network-based models (BNM) to estab-
lish potential predictor–predictand association between them. Considering the delayed
change in WT relative to AT fluctuations, it is necessary to incorporate a time-lag effect for
AT [20]. If we use WT(t) denote the target variable, time lags ranging from 1 to 30 days
of air temperature, which can be represented by AT(t− 1), AT(t− 2), . . . , AT(t− 30) in
this study, are considered as possible input variables. In addition, discharge Q(t) was set
as another input variable. As a result, a 32 node-based Bayesian network model should
be established to predict WT by plugging in the new values for the above potential input
variables. Two other data-driven models including an adaptive neuro-fuzzy inference sys-
tem (ANFIS) [21] and a support vector regression (SVR) [22] were also used as benchmark
models to evaluate the performance of the proposed BNM models in daily WT prediction.

Quantify the influence of TGR over WT: The pre-TGR period was used for calibrat-
ing the BNM model. Daily inflow discharge to the TGR was assumed as natural discharge
of the Yichang station, which can reconstruct the expected WT ignoring the operation of
TGR by the calibrated BNM model. Based on several change impact quantifying indexes,
the impact of TGR over WT can be easily quantified.

Distinguish the thermal effect of different operation phases at TGR: Based on the
reconstructed WT time series during post-TGR, the temporal variability at seasonal scale
of WT during different operation stages of the TGR can be addressed. Since the operation
of TGR experienced three phases: (1) TGR started to impound water with the water level
from 70 m in 2003 to 143 m in 2005; (2) TGR experienced a transition phase with water level
rising from 145 m in 2006 to 156 m in 2008; (3) TGR experienced the final standard normal
phase with water level rising from 145 m in 2009 to 175 m in 2013.

3.1. Bayesian Network-Based Prediction Models

The workflow of Bayesian network modelling involves three fundamental steps:
(1) identify the potential BNM structure; (2) estimate the parameters of the network;
(3) perform prediction of the target variable from a Bayesian network.

In this study, graphical model-based (GM) Bayesian networks (BNs) were utilized
using the bnlearn package in R software [14]. A scored-based Hill-Climbing (HC) greedy
search algorithm was implemented to optimize the potential BNM structure. On the basis of
the Bayesian Information Criterion (BIC) score, the graph structure was updated iteratively
by optimizing the number of edges with the BIC value. Since the score represents the
model fit performance, the highest BIC score suggests the best model fit. After GM-based
BNM structure optimization, the connecting edge strength (CES) for each pair variables
was quantified in the following steps. Here CES can be quantified by the BIC score. As
shown in Figure 1 by the network structure for January, the variables, Q, AT_1, AT_2, AT_4,
AT_6, AT_10, AT_13, AT_17, AT_25, AT_27, and AT_30, have stronger association with WT
based on BIC score. These variables, also called the parent set of variable WT in this graph,
were selected as the predictors. Here AT_i represents lag-i for air temperature (AT) series.

After the best network structure and the parent variables were identified, the parame-
ters of the selected network were estimated by the maximum likelihood estimation (MLE)
method. Let { X1, X2, . . . , Xm} be a data set composed of m random variables with an
underlying BNM structure. The joint distribution of m random variables, also called global
distribution of the data can be expressed as follows:

F(X1, X2, . . . , Xm|Θ) =
m

∏
i=1

F(Xi|ΛXi , θi) (1)
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where, θi represents a vector of parameters for conditional distribution of Xi given ΛXi .
ΛXi denotes the parent set of Xi in the graphical modelling of the network. In other words,
ΛXi is just the set of several other random variables (also called parents) that are associated
with Xi. Θ = {θ1, θ2, . . . , θm}. F(Xi

∣∣ΛXi , θi) is just the local distribution function to exhibit
the association between Xi and its parent variables. Since the graph structure is identified
from the previous step, this can be accomplished efficiently by estimating the parameters
of the local distributions.

Once the parameters of global and local distribution function are estimated, the BNM-
based prediction model was initiated. Subsequently, forecasting of the output variable
could be performed by plugging in the new values for the parents of the node in the local
distribution (also called as potential input variables).

Figure 1. Typical network structure obtained for January. Notations for the variables are as follows:
water temperature (WT), discharge (Q). AT_1, AT_2, . . . , AT_30 represent the time lags ranging from
1 to 30 days of air temperature (AT) series. The nodes denoted with a blue circle are selected as final
potential predictors. WT is target variable, while other variables are set as input variables.

3.2. Performance Metrics

In order to achieve the unbiased evaluation of BNM modelling accuracy, three kinds of
residue error analyzing metrics were applied: (1) root-mean-square error (RMSE); (2) Kling–
Gupta efficiency (KGE) [23]; (3) Nash–Sutcliffe efficiency coefficient (NSE). These three
metrics of the BNM-based prediction model were compared with those of ANFIS-based
prediction model and SVR-based prediction models.

3.3. Reconstruction of Water Temperature

The operation of TGR has directly affected the hydrological process of Yangtze River,
particularly for the observed Q at Yichang station. Due to the effect of Q over thermal
inertia of the river, the WT of Yichang station would be influenced by the operation of
TGR. As a result, the BNM model was applied to reestablish the WT series ignoring the
impact of TGR to make a quantitative assessment of the influence of TGR on WT. In order to
realize the above research goal, the original data set was spilt into two parts: (1) a pre-TGR
period from 1984 to 2002 and (2) a post-TGR period from 2003 to 2013.The data during
pre-TGR period was fitted for the purpose of model verification. The calibrated BNM-based
model was applied to derive the WT predictions during the post-TGR period in the absence
of the TGR by replacing the observed value of Q to TGR with daily inflow values of Q,
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which represents natural discharge series, getting rid of human-induced interventions (i.e.,
operation of TGR). These inflow series (Qin) could be obtained from information on the
temporal variations in water storage of TGR.

Based on the predictions quantified by the BNM model, the influence posed by the
operation of TGR (∆TGR) and climate change (∆CLI) over the WT from post-TGR to pre-TGR
period can be quantified as follows [6]:

∆TOT = WTobs2 −WTobs1 (2)

∆TOT is just the total change in WT because of dam construction. WTobs1 and WTobs2 are
the WT observations in the pre-TGR and post-TGR periods, respectively.

∆CLI = WTsim2 −WTsim1 (3)

∆CLI denotes the change in WT attributed to the meteorological forcing (possibly influenced
by climate change). WTsim1 and WTsim2 are the simulated WT values in the pre-TGR and
post-TGR periods, respectively.

∆TGR = WTobs2 −WTsim2 (4)

∆TGR represents the change in WT attributed to TGR construction.

ε = WTsim1 −WTobs1 (5)

ε is just model bias. WTsim2 was derived from the fitted BNM model with natural discharge
(Qin) and observed time lag-based AT as inputs, while WTsim1 was derived from the fitted
BNM model with observed discharge and time lag-based AT as inputs.

In this study, other human-induced activities besides the TGR construction were not
taken into consideration. According to the above equations, ∆TOT = ∆CLI + ∆TGR + ε.
Once the model bias meets the condition that ε� ∆TGR, the proposed BNM model can be
credible when performing a quantitative assessment of the influence of the TGR on WT. In
this study, |ε| < |1.1 × 10−3 × ∆TGR|) reflects that the proposed model is reasonable for
quantifying the influence of the TGR on WT.

4. Results
4.1. Performance of Bayesian Network-Based Prediction Models

In this study, since a month-wise prediction strategy was adopted, a month-wise
network structure was derived in Figure 1 and Figure S1a–k according to the procedures
of establishing the BNM model. According to the Bayesian Information Criterion (BIC)
and graph in Figure 1, Q, AT_1, AT_2, AT_4, AT_6, AT_10, AT_13, AT_17, AT_21, AT_25,
AT_27, and AT_30 have the strongest associations in the January WT series, which were
identified as the final potential input variables. In the same way, potential input variables
for other months’ WT series can be decided (Figure S1a–k). Based on maximum likelihood
estimation (MLE) method, the parameters of these local distributions can be estimated.
The number of the final potential input variables is different from month to month, which
suggests that the possible stronger association for WT varies from month to month. In
addition, this issue just helps validate the rationality of a month-wise prediction strategy to
improve the forecasting accuracy.

After choosing the best-fitted BNM models for WT, the performance of daily WT
forecast for the pre-TGR and post-TGR are evaluated in this section (Table 1). Details of the
control parameters of ANFIS and SVR are shown in Table S1a,b. According to three perfor-
mance metrics, the proposed BNM model has reduced RMSE by 16.4% and raised the KGE
and NSE by 15.5% in average compared with the other two models, which suggests that the
BNM model provides a superior simulation performance in comparison with the ANFIS
and SVR models. The annual mean value of AT during pre-TGR period was 16.89 ◦C, and
it rose to 17.50 ◦C during the post-TGR period, while annual mean value of Q experienced
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an 8.8% increase during the post-TGR period in comparison with the pre-TGR period. The
above two variations in AT and Q would more or less influence the BNM performance
during those above two periods (pre-TGR and post-TGR). Fortunately, the BNM model still
outperformed the other two models in the post-TGR period. For most months’ simulation,
all three models showed relatively poor forecasting performance in the post-TGR period,
with RMSE becoming larger and KGE and NSE becoming smaller. Totally speaking, the
performance for three prediction models can be ranked as BNM > SVR > ANFIS.

Table 1. Performance of BNM, SVR, and ANFIS models in the calibration and validation periods.

Month Model
Pre-TGR Post-TGR

RMSE KGE NSE RMSE KGE NSE

January
BNM 0.56 0.77 0.67 1.01 0.74 0.60

ANFIS 0.76 0.46 0.40 1.35 0.16 0.32
SVR 0.74 0.63 0.57 1.06 0.49 0.47

February
BNM 0.64 0.75 0.68 0.92 0.45 0.75

ANFIS 0.88 0.51 0.39 0.98 0.31 0.52
SVR 0.67 0.71 0.63 1.03 0.26 0.45

March
BNM 0.84 0.80 0.72 0.57 0.75 0.49

ANFIS 1.25 0.46 0.41 1.39 0.29 0.30
SVR 0.94 0.73 0.66 1.03 0.18 0.41

April
BNM 0.88 0.81 0.76 1.13 0.62 0.70

ANFIS 1.22 0.65 0.52 1.42 0.60 0.57
SVR 0.97 0.81 0.69 1.15 0.53 0.38

May
BNM 0.78 0.76 0.69 1.05 0.51 0.43

ANFIS 1.07 0.45 0.39 1.52 0.35 0.28
SVR 0.86 0.69 0.60 1.57 0.57 0.21

June
BNM 0.81 0.50 0.47 1.04 0.30 0.29

ANFIS 0.97 0.35 0.18 1.29 0.19 0.19
SVR 0.85 0.42 0.34 1.25 0.21 0.23

July
BNM 0.83 0.82 0.67 0.91 0.38 0.39

ANFIS 1.21 0.57 0.37 1.32 0.33 0.32
SVR 0.89 0.69 0.62 0.96 0.26 0.25

August
BNM 0.84 0.78 0.51 0.87 0.67 0.38

ANFIS 1.06 0.59 0.25 1.09 0.49 0.31
SVR 0.82 0.71 0.49 1.17 0.39 0.29

September
BNM 0.90 0.66 0.45 0.69 0.77 0.67

ANFIS 1.77 0.38 0.25 1.41 0.38 0.50
SVR 0.99 0.67 0.31 1.55 0.36 0.51

October
BNM 0.81 0.69 0.60 1.00 0.68 0.57

ANFIS 0.78 0.56 0.52 1.47 0.41 0.45
SVR 1.12 0.66 0.43 1.21 0.47 0.51

November
BNM 0.89 0.82 0.51 1.11 0.56 0.65

ANFIS 0.81 0.44 0.53 1.23 0.32 0.26
SVR 1.12 0.74 0.18 1.32 0.47 0.48

December
BNM 0.98 0.76 0.49 1.33 0.45 0.43

ANFIS 0.92 0.57 0.44 1.59 0.32 0.38
SVR 1.08 0.71 0.33 1.47 0.48 0.43

4.2. Quantifying the Impact of Climate and Reservoir Construction over WT

Due to the superior performance of the proposed BNM model, the BNM model was
used as a powerful tool for quantifying the effects of climate change (as AT variations
here) and human-induced interventions (TGR construction in this study) on the mean daily
thermal regime by successful reconstruction of natural variation in WT.

In the follow-up study, the expected WT values forecasted by the BNM model during
the post-TGR with natural discharge and observed time lag-based AT as inputs were
reconstructed to separate the impact over WT only because of AT variations in comparison
with the pre-TGR period (∆CLI), and only because of the presence of human-induced
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activities, here construction of the TGR was assumed as the main attribution (∆TGR). The
four statistics by Equations (2)–(5) at annual and seasonal scale are presented in Table 2.
As listed in Table 2, all seasonal and annual model bias ε was smaller than the calculated
∆TGR (generally |ε| < |1.1× 10−3 × ∆TGR|), reflecting that the BNM model is reasonable
for quantifying the TGR impact over WT. From the annual scale, both the meteorological
variations in AT and the TGR have contributed to the rise in annual mean WT value (∆TGR
accounting for 53% of ∆TOT and ∆CLI accounting for 47%).

Table 2. Seasonal and annual changes in WT during the selected two periods (pre-TGR and post-TGR).

WT Change Spring Summer Autumn Winter Annual

∆TOT −1.66 −0.07 1.88 2.58 0.65
∆CLI 0.61 0.49 0.26 0.08 0.31
∆TGR −2.27 −0.57 1.62 2.50 0.34
ε 1.1× 10−4 8× 10−3 5× 10−4 2× 10−6 4× 10−5

When it comes to the intra-annual variability in ∆TGR, the TGR effect can be decom-
posed into two cases. The construction of TGR has led to a 1.42 ◦C decrease in monthly
mean WT on average during spring–summer period, while the construction of TGR has
caused a 2.1 ◦C increase during autumn–winter period. The most affected season by TGR
was winter, with a 2.50 ◦C increase, which accounts for 96.8 of total change ∆TOT . The
summer season experienced a cooling of 0.57 ◦C, which indicates that the construction of
the TGR had the least impact on changes in water temperature during this period.

Figure 2 reveals the difference in response mechanism of WT within a year from
the perspectives of thermal inertia and river regulation mechanism. The discharge series
experienced a downward trend for annual peak flow and an upward trend for annual
low river flow during the post-TGR period (Figure 2b), caused by flow storage for the
purpose of flood prevention during the rainy period (May to October) and flow surge for
agricultural irrigation and domestic water during the dry period (November to April) [6].

As a combined result, WT from October to January in Yichang showed a remarkable
warming due to the high degree of the TGR’s thermal inertia and the increased release of
warmer water (Figure 2d). In the same way, WT from March to June showed a cooling
tendency because of hysteretic effect of WT in response to increasing AT. The cooling effect
of TGR on WT reached the strongest in April, while the strongest warming effect of TGR
on WT happened in December. According to Figure 2c, the variations in seasonal cycle of
WT under the impact of TGR can be concluded as: WT in spring becomes colder, while
autumn and winter becomes warmer. Focus on Figure 2d, the impact induced by TGR was
greater than that caused by climate change, with |∆TGR| greater than |∆CLI |.

Figure 3a shows the variations in response relation between WT and AT from pre-TGR
to post-TGR period, while Figure 3b shows the variations in response relation between
WT and Q. The wider hysteresis cycles between WT and AT can be displayed after the
TGR construction, which is caused by the high degree of TGR’s thermal inertia. The effect
should be not only on the breadth of the hysteresis but also on the slope. From Figure 3a,b,
the slope of both two pairs of response relations experienced a decrease. According to the
thermal classification in the previous literature [24], the slope extracted from the linear
regression between WT and AT is a quantitative tool for identifying the difference between
comparative patterns. A slope larger than 0.55 suggests a strong response of WT and AT. In
this way, the slope for WT and AT reduced from 0.67 to 0.54, indicating strong effect of the
operation of TGR on the river thermal response. The response between Q and WT was also
influenced by the TGR.
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Figure 2. Temporal variations in air temperature (AT), discharge (Q), and water temperature (WT)
at seasonal scale during pre-TGR and post-TGR periods; Plot (a) shows the AT time series between
two periods; Plot (b) shows the Q time series between two periods; Plot (c) shows the WT time series
between two periods; Plot (d) shows the WT variations between the above two periods, indicating
the meteorological force (green lines) and TGR (blue lines). M_bias denotes model bias.
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Figure 3. Hysteresis cycles of WT and AT, WT and Q at Yichang station: (a) response of WT and AT;
(b) response of WT and Q. The blue symbol denotes the situation without TGR (simulations) during
post-TGR period, while the red symbol denotes the samples with TGR.

4.3. Distinguishing the Impact of Different Operating Phases at TGR

In order to make a fair comparison of three phases of the operation of TGR, we
adjusted the time period for the above three phases (detailed information in Section 3.1):
(1) 1 January 2003 to 31 December 2005 for phase 1; (2) 1 January 2006 to 31 December 2008
for phase 2; (3) 1 January 2009 to 31 December 2012 for phase 3.

Figure 4 shows the seasonal variations in WT for different operation phases of the
TGR. The divergence between observed and simulated WT can help verify the remark-
able thermal impact caused by the operation of TGR. For phase 1, a minor effect caused
was identified by TGR inducing the seasonal variations of cooling and warming of WT
(Figure 4a). The TGR acted as a cold source from March to June, while acting as a heating
source from October to January of next year, which is in accordance with the conclusion
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in Section 4.2. In phases 2 and 3, the above cooling–heating process varies from season
to season. Due to the difference between different operation phases of TGR, there was a
difference in the extent of the cooling (light-blue shadow in Figure 4) and heating (pink
shadow in Figure 4). For example, the extent of cooling and heating in phase 2 was stronger
than that in phase 1, which was caused by the lower similarity between observed discharge
and natural discharge series during phase 2 (higher correlation coefficient in Figure 4d).
Although the similarity between the observed discharge and natural discharge series in
phase 3 was greater, the extent of cooling and heating became stronger with the highest
water level in the reservoir, which indicates that the increase in reservoir volume leads to
an increase in thermal inertia. The obvious correlation of cooling–heating processes corre-
sponding to different operation phases at the TGR would further verify the assumption
that the overall effect of the human-induced interventions on WT can be mainly attributed
to the TGR.

Figure 4. Interannual temporal variations in AT, WT, and discharge (Q) under three different
operation phases in TGR: (a,b) phase 1; (c,d) phase 2; (e,f) phase 3. Blue and pink shadows denote
the cooling and warming process, respectively.
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5. Conclusions

A Bayesian network-based approach was proposed to accurately quantify the impact
of human-induced interventions or climate change over river water temperature (WT),
which can help understand the underlying evolution mechanism of the river thermal
regimes due to the construction of the dam or climate change. The high efficiency of the
proposed Bayesian network-based (BNM) approach to exhibit the potential association
between hydroclimatic variables is verified in this study. The developed BNM models made
the best use of the capacity of graphical modelling based-network structures. According
to comparison of the performance metrics of this BNM and two other commonly used
data-driven models (ANFIS and SVR), the proposed BNM model reduced RMSE by 16.4%
and raised the KGE and NSE by 15.5% on average, as compared with the other two models,
which suggests that the BNM model outperformed two benchmark models for the data in
Yichang station of the Yangtze River, China.

Based on the reconstruction of water temperature, ignoring the Three Gorges Reservoir
(TGR) construction by the proposed BNM model at daily and seasonal scales, we can
address the following conclusions:

For seasonal scale, the presence of TGR has caused a 1.42 ◦C decrease in monthly
mean WT on average during the spring–summer period and a 2.1 ◦C increase during the
autumn–winter period. Monthly mean WT in winter showed the most obvious heating
trend, with 2.50 ◦C increase accounting for 96.8 of total change ∆TOT , while monthly mean
WT in summer experienced most obvious cooling of 0.57 ◦C. From the annual scale, both
the variations in AT (meteorological forces) and the TGR increased the annual mean WT
value (∆TGR accounting for 53% of ∆TOT and ∆CLI accounting for 47%).

For the daily scale, WT from October to January in Yichang showed a remarkable
warming, which was caused by the high degree of TGR’s thermal inertia and its increased
release of warmer water than before. In the same way, WT from March to June showed
a cooling tendency because of the hysteretic effect of WT response to increasing AT. The
cooling effect of TGR on WT reached the strongest in April, while the strongest warming
effect of TGR on WT happened in December.

According to the analyzed results of the seasonal variations in WT for different op-
eration phases of the TGR, the extent of cooling and heating becomes stronger with the
highest water level in the reservoir, which reflects that the thermal inertia of the reservoir is
directly proportional to the increase in reservoir volume.

By quantitatively isolating the independent influence of the TGR, which is regarded
as a human-induced intervention, from climate change on water temperature with the help
of BNM model, this study provides a new perspective for the study of river ecosystems
under the background of climate change and anthropological activities.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14081200/s1, Figure S1a–k: Typical network structure obtained
for February to December, respectively. Notations for the variables are as follows: Water temperature
(WT), discharge (Q). AT_1, AT_2, . . . , AT_30 represent the lag-1, lag-2, . . . , lag-30 for air temperature
(AT) series. The nodes denoted with blue circle are selected as final potential predictors. WT is target
variable while other variables are set as input variables; Table S1b: Control parameters for support
vector machine (SVM) for pre-TGR period and post-TGR period; Table S1b: Control parameters for
adaptive-network-based fuzzy inference system (ANFIS) for pre-TGR period and post-TGR period.
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