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Abstract: Machine learning algorithms are commonly employed in landslide susceptibility assess-
ments. Recently, algorithms that utilize artificial intelligence have come into prominence. This
study attempts to adapt the most fundamental framework of deep learning and introduces fuzzy
theory concepts to analyze landslide susceptibility while updating the network parameters with
trial-and-error methods. The final analysis results will compare with those of logistic regression (LR).
In order to assess the ability of the model to identify landslides in a more objective way, two typhoon
events were used as a training event and a validation event, respectively. The results of the analysis
show that the area under the curve (AUC) of the fuzzy neural network (FNN) for the training event
is 0.915, but the AUC for the validation event drops to 0.746. Although the results of the FNN for
training events were better than those of LR, they did not differ much from those of LR in predicting
future events. The reason for this is that the difference between the landslide distributions of the
training and validation events is too large, making the model biased in its identification. Overall,
FNN is still a recommended method for analyzing landslide potential and can be used as a reference
for LR.

Keywords: landslide; landslide susceptibility; artificial neural network; fuzzy; machine learning

1. Introduction

Landslide susceptibility analysis has developed over the past few decades. The
analysis methods can be broadly classified into two categories, infinite-slope-based and
statistically-based methods. Slope stability analysis using infinite slopes [1,2] requires a
wide range of material parameters and groundwater level data, which are not easy to
collect. As a result, statistical methods are becoming the mainstay of wide-area landslide
susceptibility analysis [3].

The term deep learning has emerged rapidly in recent years but its predecessor,
machine learning, has been in widespread use for over a decade. In landslide susceptibility
analysis the most commonly used machine learning algorithms include logistic regression
(LR) [4–6], artificial neural network (ANN) [7–13], decision tree [14–17] and support vector
machine [13,18–21]. However, due to a lack of computational power, simple logistic
regression is more widely used.

Deep learning is a complex version of artificial neural networks that requires not
only a large amount of sample data but also data analysis of the sample data. Therefore,
this study uses a simple neural network structure and adjusts its structure and execution
parameters by a trial-and-error method. In addition, most of the previous analyses of
landslide susceptibility using neural networks set the output layer as a node, output
continuous values, and then set threshold values to split into two categories. In order to
achieve a more objective classification, this study attempts to combine a fuzzy membership
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function [22–26] in the output layer to form a fuzzy neural network (FNN) with a fuzzy
function, which has both classification and quantification capabilities.

Over-training happens when using the same landslide inventory and validating model.
To avoid this situation, two landslide inventories, generated by typhoon events Aere and
Matsa, were used in this study. The landslide inventory of Typhoon Aere is used to train
the model and Typhoon Matsa is used to validate the model. In addition, the results of the
FNN will be compared with the LR.

2. Study Area

We conduct our study in the Shihmen Reservoir catchment, an import water resource
in northern Taiwan. The Shihmen Reservoir catchment (757 km2) is steeply dissected,
mountainous terrain that includes numerous alluvial terraces (Figure 1). The overall
topography is highest in the south and lowest in the north. Elevation ranges from 3500 m
at the southernmost edge to about 150 m at the northern end and channels generally flow
northwards. In the upland regions of the catchment, high-gradient streams are common and
carry enormous amounts of sediment into the Shihmen Reservoir, causing siltation of the
reservoir. The average annual rainfall is about 2400 mm. Affected by the plum rain season
and typhoons; the main rainy season is from May to October. There are also thunderstorms
brought by south-westerly currents and heavy rainfall induced by tropical depressions.

Figure 1. Topographic map of the Shihmen Reservoir catchment area in Taiwan.

The geologic setting of the basin is defined by the north-east, south-west trending
Chuchih fault, which divides the basin into two different geologic regions. North of
Chuchih fault is characterized by sandstone and shale, and south of the fault is dominated
by indurate sandstone and shale, argillite, and quartzite. The prevalence of metamorphic
rock and the grade of metamorphism gradually increase to the south.

In August 2004, a large number of landslides were triggered in upstream regions
of the catchment during Typhoon Aere, which dumped 973 mm of precipitation, with
some regions of the basin receiving up to 1600 mm. Massive amounts of soil and mud
flushed into the reservoir and increased sediment concentration, disrupting water supply
for domestic and industrial use for 17 days. In August 2005, Typhoon Matsa released
819 mm of precipitation in the catchment, which again triggered landslides and disrupted
the water supply for 7 days. Though the cumulative rainfall of Typhoon Matsa was less
than Typhoon Aere, both storms triggered a similar number of landslides.
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3. Materials and Methods
3.1. Landslide Inventory

Landslide inventories collected after the Typhoon Matsa and Aere events are used
to analyze landslide susceptibility in this study. Landslides can be interpreted through
pseudo-color images according to the texture, shape and topographical characteristics of
the landslide. Prior-event and post-event landslide inventories were created for both storms
from the manual interpretation of SPOT-5 satellite images. A sub-sample of the landslide
sites was selected randomly to verify locations and boundaries via fieldwork. Through
comparison of prior-event and post-event landslide sites (Figure 2), recent landslides and
expanded landslides due to the actual event are identified and are named as triggered
landslides. Figure 3 shows the triggered landslide inventory of the two events considered
in this study.

Figure 2. The identifying procedure of triggered landslide: (a) recent landslide; (b) expanded landslide.

Figure 3. The triggered landslide inventory of two events: (a) Typhoon Aere; (b) Typhoon Matsa.
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3.2. Factor Selection

There are two types of factors used in this study, the first is a categorical factor, the
second one is a continuous factor. Categorical factors are lithology and aspect. These two
categorical factors are not screened and are used directly by FNN. The LR is split into
4 different lithology classes and 8 different aspect orientation classes based on 8 directions.
Factor selection was carried out for continuous factors. The selection process can be divided
into three steps (Figure 4) [4]. First, the available factors in our study area were selected.
Second, graphical discrimination was used to identify factors typically needed to correctly
interpret a landslide, such as high Area Under Curve (AUC), probability of failure curve
matched physical laws, and low overlap between landslide and non-landslide distribution
(Figure 5). Finally, high correlated factors were excluded based on correlation analysis.

Figure 4. The procedure of factor selection.

Figure 5. The example of graphic discrimination.

This study adopts 12 factors for landslide susceptibility analysis (Table 1). The factors
are shown separately in Figure 6. Lithology factors were simplified from a 1:50,000 geology
map (Central Geology Survey, Taiwan), to include 4 lithology classes: sandstone and
shale, indurated sandstone and shale, argillite, and finally quartzite and argillite. Aspect,
slope, slope roughness, tangential curvature and Topographic Wetness Index (TWI) were
calculated from a 10 m digital elevation model following Wilson and Gallant [27]. Total
slope height and relative slope height were defined as shown in Figure 7 [4]. Distance
to a fault was grouped at intervals of 500 m with a maximum of 4000 m in total. The
Normalized Difference Vegetation Index (NDVI) was calculated from prior-event SPOT-
5 satellite images event using an algorithm based on a near-infrared band and a red
band marked as IR and R, separately. Maximum rainfall intensity and total rainfall were
interpolated from in situ hourly rainfall maintained by the Central Weather Bureau, Taiwan
and Water Resources Agency, Taiwan into grid data. While applying interpolation, the
altitude was considered as weight.
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Figure 6. The example of selected factors. (a) lithology; (b) aspect; (c) slope; (d) slope roughness;
(e) tangential curvature; (f) total slope height; (g) relative slope height; (h) TWI; (i) distance to a
fault; (j) NDVI of typhoon Aere; (k) maximum rainfall intensity of typhoon Aere; (l) total rainfall
of typhoon Aere; (m) NDVI of typhoon Matsa; (n) maximum rainfall intensity of typhoon Matsa;
(o) total rainfall of typhoon Matsa.
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Table 1. Selected factors for landslide susceptibility.

Code Factor Item Code Factor Item

L lithology F05 relative slope height
A aspect F06 TWI

F01 slope F07 distance to a fault
F02 slope roughness F08 NDVI
F03 tangential curvature F09 maximum rainfall intensity
F04 total slope height F10 total rainfall

Figure 7. The definition of total slope height and relative slope height.

3.3. Methodology
3.3.1. Fuzzy Neural Network

Landslide susceptibility analysis is a complex and non-linear problem, and is worth
testing by ANN; however, the ANN framework is difficult to quantify and classify at the
same time. Typical applications of ANN use an output layer with one node and use a
continuous landslide susceptibility value for classification [7,10]. Alternatively, the output
layer with two nodes is defined as landslide and non-landslide groups, and the landslide
susceptibility is quantified and assigned afterward [12,13]. This study attempted to merge
the advantages of fuzzy set theory and the conveniences of ANN to develop a simple
neuro-fuzzy model for application to landslide classification and landslide susceptibility
analysis [8]. The uniqueness of this model is that two fuzzy membership functions are
separately designed for the landslide and non-landslide groups during classification in the
output layer (Figure 8). The triangular areas delineated by the fussy membership function
have less overlap and the classifying performance is better. The vertical axis of Figure 8
represents the landslide susceptibility, and values 1 to 0 correspond to the possibility of
landslide occurrence from high to low.

Hence, the target output of the neural network model is no longer a single node but a
series of nodes representing the fuzzy memberships. With this design, the model is capable
of classification and quantification. It combines the advantages of ANN and fuzzy set
theory while avoiding drawbacks. This model is actually a simple FNN and can be carried
out in Matlab.

In this study, trial and error was used to decide the number of hidden layers and the
number of nodes in the hidden layer. The number of nodes in the input layers coincides
with the number of landslide causative factors and a triggering factor. The number of
nodes in the output layers is the same as the designed nodes of the fuzzy memberships for
landslides and non-landslides. In this way, the framework of FNN was established. This
framework is similar to a common ANN, which is capable of lessening the error between
the predicted output values and the calculated output values.
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Figure 8. The framework of FNN.

Ideally, the model should be trained with a large number of data, so that the connection
weights between the nodes are stabilized and the error is minimized. The output is a series
of values representing a fuzzy membership. The degree of fuzzy neartude (fuzzy degree)
to a landslide group or a non-landslide group may be measured by comparing the output
fuzzy set with a membership function. This comparison may be carried out using the
“clustering” technique outlined below [28]:

Si =
n

∑
i=1

µi ∗ αi (1)

Wi =
Si

m
∑

i=1
Si

(2)

where S is the relevance of the origin series belonging to the target series, µ is the target
series, α is the origin series, and W is the relevant coefficient origin series belonging to the
target series. Finally, max (W) is used to determine the classification.

Defuzzyfication is the step that transforms output linguistic variables into crisp values.
Crisp values are Landslide Susceptibility Index (LSI) in this study. The most common
defuzzyfication method is the Centre of Gravity method given by:

y =

∫
µb(x)xdx∫
µb(x)dx

(3)

where y is the output fuzzy set and µb is a membership function.

3.3.2. Logistic Regression

LR is a common method used in traditional statistical analysis. It is often considered
the entry point to machine learning and is a common algorithm for classification problems.
Compared to linear analysis, the linear relation between dependent variables and inde-
pendent variables is not necessary, and the format of independent variables is not limited.
Dependent variables in binary format are suitable for LR analysis which is usually used
to analyze landslide susceptibility [4–6] to overcome the various and complex formats of
geological data. The equation is as follows:

ln
(

P
1 − P

)
=

m

∑
i=1

wiFi + C (4)
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where P is the ‘dependent variable’, in this case, the LSI, calculated as the relative incidence
given the independent variable F (i.e., each factor), w is the coefficient of the respective
independent variable, and C is a constant term. Regression was performed on the training
data to obtain the respective independent variable coefficient w and constants C. When
regressed, the landslide group P is 1 and the non-landslide group P is 0. The LSI for each
cell is calculated after bringing all parameters into Equation (4).

3.4. Model Calibration

All analyzed data was converted to a 10 m grid. The study area was then divided into
stable areas and unstable areas that included landslide and non-landslide according to the
topographic character. The stable areas are flat, or the slope gradient percentage is under
10% and the area is over 1 ha. Stable areas typically included river channels and/or flat
regions, where landslide initialization is not likely to happen and were thus not used in the
analysis. The number of non-landslide samples was greater than the number of landslide
samples. The same amount of non-landslide samples was randomly selected for training in
order to reduce the deviation. If the non-landslide sample was around a landslide object or
was once a landslide, it was not selected.

The coefficient of Equation (4) will be obtained through these training samples. The
analyzed results of the logistic regression are as follows:

ln
(

P
1−P

)
= 1.541 L1 + 2.797L2 + 2.777L3 + 1.362L4 − 0.221A1 + 0.323A2

+1.377A3 + 1.472A4 + 1.595A5 + 1.179A6 + 0.341A7
+0.001A8 + 0.377F01 + 0.035F02 + 0.307F03 + 0.180F04
−0.670F05 + 0.040F06 − 0.024F07 − 0.596F08 + 0.612F09
+0.678F10 − 4.588

(5)

The dependent variable p is taken as LSI in this study and its range is from 0 to 1. L1
represents sandstone and shale units, L2 represents indurated sandstone and shale units,
L3 represents argillite units, and L4 represents quartzite and argillite units. A1 is the aspect
direction within the range 337.5 to 22.5, A2 is the aspect direction within the range 22.5
to 67.5, A3 is the aspect direction within the range 67.5 to 112.5, A4 is the aspect direction
within the range 112.5 to 157.5, A5 is the aspect direction within the range 157.5 to 202.5, A6
is the aspect direction within the range 202.5 to 247.5, A7 is the aspect direction within the
range 247.5 to 292.5, and A8 is the aspect direction within the range 292.5 to 337.5. Table 1
shows the names of factors F01 to F10.

Same training samples will be used to calibrate FNN model. In this study, the number
of hidden layers and nodes in a hidden layer were determined by trial and error. The
learning rate and momentum term were set to be 0.01 and 1, respectively, whereas the
initial weights were randomly selected. The number of epochs was set to 500 and the
root mean square error (RMSE) goal for stopping was set to 0.0001. Most of the iterations
stopped within the 500 epochs. However, if the goal met the 0.0001 RMSE goal, the iteration
was stopped.

During model calibration, the best framework (12 × 30 × 30 × 11) was obtained.
The framework is shown in Figure 8, the input layer has 12 nodes, the hidden layer has
2 layers and each layer has 30 nodes, and the output layer has 11 nodes. It produced a fuzzy
membership function for each grid. Using the defuzzy method, the fuzzy membership
function could be transferred to a continuous value known as the LSI. This study defined
the value LSI as between 0 and 1. Through the grey clustering technique [28], landslide
groups and non-landslide groups could be classified at the same time.
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4. Results

During model calibration, the optimum FNN and LR model was obtained, and it
produced a fuzzy membership function for each grid. Through the grey clustering tech-
nique [28], the fuzzy membership function was divided into a landslide group and a
non-landslide group.

Classified accuracy is a common method that identifies the quality of a model. Land-
slide accuracy, non-landslide accuracy, and overall accuracy is the measure of performance
of FNN in this study. The classified result of the training event was displayed through a
confusion matrix (Table 2) and formulas of accuracy. In the training phase (Table 3), all
accuracies are over 80% and landslide accuracy achieves 90%. All validated accuracies are
over 70%, which shows that the model can predict landslide occurrence well.

Table 2. Confusion matrix.

Observed

Landslide Non-Landslide

Predicted
Landslide a b

Non-Landslide c d
Landslide accuracy: a/(a + c). Non-Landslide accuracy: d/(b + d). Overall accuracy: (a + d)/(a + b + c + d).

Table 3. Classified result of training event and validated event.

Aere Event (Training) Matsa Event (Validation)

FNN LR FNN LR

Landslide Accuracy 90.1% 82.1% 75.6% 72.7%
Non-Landslide Accuracy 80.2% 78.4% 71.3% 74.0%

Overall Accuracy 84.7% 80.8% 72.9% 73.6%

The success rate curve (SRC) and prediction rate curve (PRC) can be plotted by actual
landslide and LSI [29]. The AUC is used as a measurement of the FNN model reliability.
The baseline of the AUC value is 0.5 and if the AUC value is close to 1, the capability
of the FNN model to interpret a landslide is considered good. Figure 9 shows that the
FNN model performs well. Although the validation result was inferior to the training
result, it is still close to 75%. AUC and the accuracy of the validated event show stable
results. Therefore, FNN is shown to be useful in landslide susceptibility analysis. Thus, the
landslide susceptibility analysis results were reasonable and acceptable.

Figure 9. The performance of model: (a) training event; (b) validated event.
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The LSI domain was divided into intervals. For each interval, we counted the landslide
pixel amount and total pixel amount. The probability of failure was computed by dividing
the calculated landslide pixel amount by the total pixel amount. The probability of failure
and LSI was used to plot the curve (Figure 10) and fit. A trend was obtained from the
probability of failure curve. High LSI indicates a high probability of failure, and the
LSI translates to a probability of failure that indicates the spatial probability of landslide
occurrence when plotted over the catchment area (Figure 11).

Figure 10. The result of curve fitting: (a) FNN’s probability of failure curve; (b) LR’s probability of
failure curve.

Figure 11. Cont.
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Figure 11. Landslide probability map. (a) training result of FNN; (b) training result of LR; (c) valida-
tion result of FNN; (d) validation result of LR.

5. Discussion

The framework of ANN and training parameters such as the number of hidden layers,
number of hidden nodes, learning rates, momentum terms, and number of training cycles
are acquired via an empirical process of performing sensitivity analyses. Generally, trial
and error is the most familiar method employed. Although the gradient descent algorithm
can increase analysis efficiency, it still requires a large amount of training time and often
takes more time before ANN can obtain optimal parameters.

ANN is also a statistical approach that requires model calibration. The difference is
that ANN can characterize nonlinear, nonparametric, or hierarchical mapping functions
and does not require information that connects input and output variables if landslide
sampling is adequate. During the process of model calibration, underfitting and overfitting
are familiar problems. Due to the principle of ANN, if the training cycle and factors are
adequate, underfitting is much less common, however, overfitting easily occurs compared
with the statistical approach, and in particular, the amount of training sampling is less.

The statistical approach often uses cross-validation, early stopping, or model com-
parison to avoid unvalidated data. Some researchers used the same samples to train and
validate a landslide susceptibility model, but the model’s reaction for future events may
not be adequate [30]. Chung and Fabbri (2008) [31] proposed dividing the study area into
sections such as left and right: one for training and the other for validation. However, they
found model performance was best if there were independent training and validation data.
Additionally, the model may lose the training pattern if a particular geological region of
the model does not match the training pattern.

This study used separate landslide-triggering typhoon events for training and validat-
ing so as to avoid overfitting. However, the validation result of FNN looks like another
kind of overfitting (see Table 3 and Figure 9). The training and validating results of FNN
were similar (Figure 11a,c). Since parts of landslides used for validation were distributed
in the area that received very little precipitation, this led to poor validation performance.
Incomplete data dominated the validation performance rather than overfitting in this case.
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The more accurate the prediction of the future events; the more landslide inventories
are needed.

This study attempted to compare the LR of landslide susceptibility and proved that
FNN is suitable. However, landslide susceptibility actually gives a relative probability for
a region. Landslide susceptibility from different models shows that landslide occurrence
possibility is not equal. Therefore, the result of LR and FNN are only able to compare with
each other when they are in the same base. To achieve the goal, landslide susceptibility
is transferred to landslide probability in this study. This study attempted to fit a function
between landslide susceptibility and probability of failure (see Figure 10). Through the
function, landslide susceptibility is transferred to a landslide probability that is a kind of
spatial probability. The meaning is the region of particular susceptibility had the same
occurrence possibility and we do not know where it is.

After converting the landslide susceptibility into spatial probabilities, the landslide
probability of FNN and LR have the same basis of comparison. The fact that the LR
probability map had more areas of high interstitial probability in training and validation
results (Figure 11b,d) made the training accuracy lower. Due to this reason, the impact of
incomplete data is obscure compared to FNN. However, there are also more areas to focus
on, increasing the cost of disaster prevention.

Regardless of training and validation, FNN and LR have good classification accuracy.
All predicted results were inferior to training results when the trained model was verified.
FNN performed better in landslide accuracy and overall accuracy but it had the opposite
outcome in non-landslide accuracy. A comparison of the SRC and PRC shows that their
difference was small. LR is a recognized and stable statistical approach.

Compared with LR, the analysis capacity of FNN is close to LR and FNN has the
additional benefits of coping with the data in vast numbers and with no causal relationship.
Therefore, if an analysis has the option of using LR or FNN for landslide susceptibility
analysis, we suggest using FNN.

6. Conclusions

One of the greatest limitations of ANNs has been that the analysis process is too time-
consuming, and that the architecture and computational parameters must be determined
by trial and error. Additionally, overfitting also often happens in ANN. Although statistical
analysis costs considerable time in optimizing analysis samples, it is much faster than ANN.
However, with advances in technology and increased computing power, analyzing small
data is no longer a problem.

This study uses FNN to evaluate landslide susceptibility. The results indicate that the
FNN produced satisfactory results in terms of the overall accuracy and the PRC. Although
we found that the predictive capability of FNN was not much better than LR, FNN provided
an alternative method for landslide classification. Overfitting can occur in both the LR and
FNN methods. The only way to solve this problem is by collecting more event-triggered
landslide inventories and developing a complete training dataset.

When the differences in sample data are small, (i.e., the sample data have different
value domains, vary in shape (type), and have no causal relationship) an ANN may be
attempted to determine landslide susceptibility. Alternatively, it could be used as an
ancillary reference to the statistical approach. ANN may not be useful for large landslide
datasets due to the computational overhead of optimizing the training dataset.
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