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Abstract: Iraqi greenhouses require an active microcontroller system to ensure a suitable microclimate
for crop production. At the same time, reliable and timely Water Consumption Rate (WCR) forecasts
provide an essential means to reduce the amount of water loss and maintain the environmental
conditions inside the greenhouses. The Arduino micro-controller system is tested to determine its
effectiveness in controlling the WCR, Temperature (T), Relative Humidity (RH), and Irrigation Time
(IT) levels and improving plant growth rates. The Arduino micro-controller system measurements
are compared with the traditional methods to determine the quality of the work of the new control
system. The development of mathematical models relies on T, RH, and IT indicators. Based on the
results, the new system proves to reliably identify the amount of WCR, IT, T, and RH necessary for
plant growth. A t-test for the values from the Arduino microcontroller system and traditional devices
for both conditions show no significant difference. This means that there is solid evidence that the
WCR, IT, T, and RH levels for these two groups are no different. In addition, the linear, two-factor
interaction (2FI), and quadratic models display acceptable performance very well since multiple
coefficients of determination (R2) reached 0.962, 0.969, and 0.977% with IT, T, and RH as the predictor
variables. This implies that 96.9% of the variability in the WCR is explained by the model. Therefore,
it is possible to predict weekly WCR 14 weeks in advance with reasonable accuracy.

Keywords: Arduino microcontroller; environment; sensors; models; greenhouses

1. Introduction

Agriculture is a pillar of the economic lifeline, but traditional, broad forms of agri-
culture are no longer able to meet the development requirements of modem agriculture;
therefore, developing precision agriculture has become an inevitable trend. Water repre-
sents a natural extension of the agricultural concept. Water is vital for farm production, and
more water can increase crop production [1]. Irrigation allows farmers to apply nutrients
more precisely and uniformly to the wetted root volume, where the active roots are con-
centrated. When environments of plants are consistently maintained and kept within their
comfort zone, plants are more photosynthetically efficient and can grow stress-free [2].

In arid and semi-arid zones, the main constraints limiting crop production in open
fields are the scarcity and disparity in rainfall, high temperatures, extreme solar radiation,
and the spread of weeds and diseases [3,4]. Since the beginning of this century, agriculture
in Iraq has undergone many changes [5,6]. Agriculture was making valuable contributions
to the Iraqi economy until production costs rose and farmers lacked any real support from
the government. Neighbouring countries began to produce more at lower prices, and Iraqi
farmers struggled to compete. Luckily, in the past few years, agriculture has become the
one sector that has contributed the most to national food security, economic growth, and
employment [7–9]. Greenhouses can provide high-quality products year-round with effi-
cient production resources, including fertilizer, water, pesticides, and labour. Countries like
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the United States, Europe, China, and countless others have used greenhouses to increase
crop production [10–12]. The practice of producing crops in protected environments has
developed rapidly, and by 2019, there were nearly 5,630,000 ha covered by greenhouses,
high tunnels, low tunnels, or direct covers worldwide [13]. In Iraq, the cultivated area
under greenhouses was 41,776 ha in 2019 [14].

A controlled greenhouse environment can provide suitable conditions for the optimal
growth of vegetables and flowers in Iraq. Furthermore, greenhouses can be used to
minimize the annual importation of vegetables. Greenhouses protect against high winds,
unstable air temperature, insects, and airborne diseases. In addition to crop protection,
the humidity of the air in these closed environments is considerably increased. Water
productivity is increased and freshwater resources are used more efficiently [15,16].

Automated greenhouse monitoring has been addressed on a large scale from multiple
perspectives and has been mostly focused on specific applications such as precision farming,
irrigation, environmental control, yield prediction, and weed detection, to name a few [17].
Reference [18] explained that the interest in automated greenhouse monitoring has now
reached an impressive level and noted that the interest in cultivation applications is growing
exponentially. This increasing interest is also reflected in the significant advances in relevant
technology such as various sensors as well as the development of cloud computing and
machine learning techniques [19]. New technological improvements should allow farmers
to realize their long-term expectations when using sensors in greenhouses [20]. For example,
the water monitoring system improved water sustainability and reduced the daily water
use of a beverage factory by 11% [21].

Unfortunately, due to poor management, loss of climate control, and overuse of water,
there can be heavy losses of up to 40% for crops grown in greenhouses [13,14]. One of
the major environmental stressors affecting plant growth and productivity is temperature.
High-temperature stress frequently causes physiological disturbance and reduced yield
and negatively affects the primary functions of the root systems [22,23].

Farmers took the agricultural traditions normally practiced in open fields in Iraq, such
as using large quantities of water, and transferred them to greenhouses. Because of these
traditions, water control systems and environmental sensors are not widely used, and
farmers do not think that they are useful.

Studies carried out in countries neighbouring Iraq have presented many findings
related to the use of automated monitoring in greenhouses under environmental conditions
that differ from those in Iraq. The aims of these studies were to provide specific and
non-exhaustive information on what automated monitoring should provide for greenhouse
applications in their respective countries. Following the same vein, the present study aims
to complement previous research by closely examining automated monitoring for green-
house applications. The main objective of this research is to improve the methods used for
water control systems and environmental sensors. Sensors monitor information related to
the water levels and the general environments in greenhouses. Additionally, this paper fo-
cuses on how automated greenhouse monitoring could help meet the specific requirements
of different stakeholders for several major greenhouse applications. Providing an overview
of the emerging opportunities that could enhance the role of automated monitoring in Iraq
by providing operational and efficient greenhouse application services will hopefully help
reduce crop imports. Another goal of this study is to develop a simplified mathematical
model of the water system, specifically concerning water consumption in greenhouses.

2. Materials and Methods
2.1. Test Site and Climate

The experiments were conducted in greenhouses affiliated with the College of Agricul-
ture and Forestry, Mosul University, in the Mosul Governorate (36◦23′24.1” N 43◦07′55.1” E
longitude, at an altitude of 234 m), Northern Iraq, as depicted in Figure 1. The soil was
silt loam. It consisted of 17.4% Sand, 56.7% Silt, and 25.9% Clay. Soil EC and PH were
1.607 dS/m and 7.7%, respectively.
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Figure 1. Greenhouses affiliated with the College of Agriculture and Forestry, Mosul University.
https://goo.gl/maps/SuGqvhba4uQ3Tw6s5, accessed on 6 September 2021.

The study area was similar to a Mediterranean climate (a hot semi-arid climate) with a
sweltering, prolonged, dry summer, brief and mild autumn, spring, and moderately wet,
relatively cool winter. The ranges of rainfall, temperature, relative humidity, average cloud,
and wind speed were 50–150 mm, 14–45 ◦C, 14–53%, 1–39%, and 14–22 km/h, respectively.
Table 1 presents the average seasonal rainfall during the experimental period along with
some climate characteristics.

Table 1. Average monthly climate at the test site.

Months
Climate

Temperatures
(◦C)

Precipitation
(mm)

Average Cloud
(%)

Average
Humidity (%)

January 14 156.7 32 49

February 16 71.2 29 47

March 18 179.6 36 49

April 24 62.1 27 40

May 35 10.3 14 20

June 42 0 2 14

July 45 0 1 14

August 45 0 0 15

September 38 2.3 2 14

October 32 64.4 28 24

November 21 91.9 34 47

December 17 139.7 39 53

2.2. Specifications of the Plants

Cucumber F1 Bahar was one of the more suitable plants chosen largely due to high
returns and a short growth period. The desired temperature for plant growth is between
15 ◦C and 32 ◦C with a growth period between 50 and 70 days. Humidity can range from
50 to 90% according to the growth stage [13].

2.3. Description of the Greenhouse and Control System

The greenhouse was made of galvanized steel tubes and covered with a polyethylene
material. It was also equipped with a fan and a ventilation cooling system that was

https://goo.gl/maps/SuGqvhba4uQ3Tw6s5
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used in the study. The dimensions of the greenhouse were 44 m in length, 9 m in width,
and 4 m in height. The greenhouse was constructed at an elevation of 234 m. The fans
were distributed inside the greenhouse according to the method described by [24] and
the standard guideline of the American Society of Agricultural Engineering [25]. The
polyethylene used as covering material (200 µm thick) had a low transmission coefficient
compared to glass. The light transmittance was 88%, with 80% U.V. and 77% infrared.

The Arduino microcontroller system (Figure 2) was developed to control all electrical
components involved in measuring temperature, humidity, and irrigation processes. The
designed control board consisted of main components such as wireless communication,
multiple voltage regulator circuitry (5 V, 6 V, and 9 V), and control modules integrated
onto a single Printed Circuit Board. The 9 Amp/hour rechargeable battery was used as
a backup when the main power supply was cut off. The Arduino was used primarily in
the microcontroller system to create an interactive electronic project that could include
different environmental sensors to measure temperature, humidity, and irrigation.
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Figure 2. Actual prototype of the Arduino microcontroller system installed inside the greenhouse.

The Arduino microcontroller system observed daily WCR, IT, T, and RH values
obtained using WCR, IT, T, and RH sensors and readings on an LCD panel. The values could
be downloaded onto a USB flash drive. Four inputs and six outputs were used to control
the module temperature, humidity, and irrigation processes, as described in Figure 3.
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2.4. Execution of the Study and Development of Mathematical Models

The drip irrigation system used inside the greenhouse was one of the best irrigation
systems suitable for greenhouse agriculture. Four irrigation pipes extended along the
greenhouse. The irrigation pipe had drippers with a discharge of 3.6 L per hour, and
the distance between the drippers was 20 cm. Each pipe was 40 m long and contained
200 drippers. The irrigation system was operated for two days before planting to carry out
the calibration process and ensure that the drippers worked.

The traditional method used to grow this type of cucumber was followed to verify the
accuracy of measuring and controlling the temperature, humidity, and irrigation processes
(water consumption and irrigation time) of a new control unit (an Arduino microcontroller
system). The system monitored the temperature, humidity, and irrigation processes using
DHT22 and FC-28 soil moisture sensors. The system had two functions, the first one was to
turn on and off the ventilating fan, air circulation fan, and the pump when the temperature,
humidity, and soil moisture fell below a certain reference value. The secondary function of
the system was to display the status of the temperature, humidity, and soil using an LCD.
The FC-28 soil moisture sensor read soil moisture, and the DHT22 sensor read the value for
temperature and humidity throughout the greenhouse as input from the system that the
Arduino microcontroller system could process. Temperature, humidity, and soil moisture
content were measured in three locations (at the entrance, in the middle, and at the end of
the greenhouse).

The HTC-2 Digital Thermometer Hygrometer Electronic was used to measure humid-
ity and temperature using three devices placed throughout the greenhouse. An Extech
-Mo750 device was used to measure the moisture content of the soil. The details of the
devices are shown in Table 2. For the purpose of verifying the accuracy of the control, the
measurements obtained from the conventional devices (HTC-2 Digital Thermometer Hy-
grometer Electronic and Extech -Mo750) were compared with the measurements obtained
from the developed control unit. Fertilization, pest control, seed quantity, greenhouse
preparation, and irrigation systems were carried out as were typical for the study area [13].

Table 2. Specifications and range of the HTC-2 Digital Thermometer Hygrometer Electronic and
Extech -Mo750.

Extech -Mo750 HTC-2 Digital Thermometer Hygrometer Electronic

Sensor Type Integrated Contact Probe Material: ABS Size: 10.5 × 9.8 × 2.4 cm/4.13 × 3.86 × 0.94”
Power supply: 1.5 V × 1(AAA battery)

Moisture Content 0 to 50%
Accuracy ±(5% + 5 digits) FS @23 ± 5 ◦C

Temperature measurement range: −10 ◦C ~ +50 ◦C
Temperature measurement accuracy: ±1 ◦C

Temperature resolution: 0.1 ◦C

Operating Temperature (0 to 50 ◦C)
Operating Humidity < 80% RH

Humidity measurement range: 10% RH–99% RH
Humidity measurement accuracy: ±5% RH

Humidity resolution: 1%

Max Resolution 0.1%
Dimensions 14.7 × 1.6 × 1.6” (374 × 40 × 40 mm)

Weight 9.4 oz (267 g)

The Independent Samples t-test was used to test the research question. The research
question was: is there a difference in WCR, IT, T, and RH measurements between an
Arduino microcontroller system and traditional devices? Therefore, the Hypotheses was:

The null hypothesis (H0): There is no difference in mean WCR, IT, T, and RH measurements
between an Arduino microcontroller system and traditional devices.

The alternative hypothesis (H1): There is a difference in mean WCR, IT, T, and RH measure-
ments between an Arduino microcontroller system and traditional devices.
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The data analysis and building multiple mathematical models to predict the WRC
were performed using the Design-Expert Version 13 software. The software was from
Stat-Ease Inc., Minneapolis, MN, USA. The model followed the steps to building multiple
regression models described in [26].

2.5. Simulation Models

A simulation model was necessary to measure the power and efficiency of any de-
veloped forecasting algorithm. It allowed the researchers to verify the robustness of the
different algorithms by considering the component combination of the model to obtain
the best test scenario. The model’s performance was evaluated by the correctness of its
estimation, its ability to reproduce the actual return in the simulation, and its stability. We
wanted to regularly forecast the weather 14 weeks in advance and produce a new forecast
each week. Hence, the estimated model in this study was validated and evaluated based on
its forecasting power by using the mean square error (MSE), mean absolute percentage error
(MAPE), and average accuracy percentage (AAP). The following performance measure
functions were employed [27,28]:

1-The form of MSE can be written as follows:

MSE =
1
N

N

∑
1
(Actual yield− Forecasted yield)2

2-Mean absolute percentage error MAPE

MAPE =
1
N

N

∑
1

/(Actual yield− Forecasted yield)/
Actual yield

× 100

3-Average accuracy percentage AAP

AAP% = 100% −MAPE

where: N is the number of data points for I = 1, 2, . . . , N.

3. Results and Discussion
3.1. Comparison of the Arduino Microcontroller System and Traditional Devices

WCR, IT, T, and RH levels were measured during both sunny and cloudy days by
the Arduino microcontroller system and traditional devices in the greenhouse. The results
were compared using an Independent Samples t-test as described in Table 3. Levene’s test
checked the null hypothesis that the variances of the two groups were equal. In this study,
the p-value for WCR, IT, T and RH levels was 0.778, 0.589, 0.651, and 0.985, respectively.
The assumption of equal variances was not violated so we can look at the top row of Table 3.

The values of the t statistic are 1.669, 1.251, 1.298, and 1.355, and the p-value is dis-
played as 0.107, 0.222, 0.206, and 0.187. This means that there is a very small probability of
these results occurring by chance under the alternative hypothesis of difference between
the two groups. The alternative hypothesis is formally rejected when accepting the null
hypothesis. There is no difference in mean measurements between an Arduino microcon-
troller system and traditional devices. This means that there is very strong evidence that
the WCR, IT, T, and RH levels for these two groups are no different, which can be seen
clearly in Figures 4–7.

The Arduino microcontroller system was tested and compared with traditional mea-
suring methods commonly used in greenhouses. Observed values of daily WCR, IT, T, and
RH were obtained by means of WCR, IT, T, and RH sensors and readings on an LCD panel.
The values could be downloaded onto a USB flash drive.

The daily WCR, IT, T, and RH were recorded for 100 days (14 weeks) and the weekly
averages of WCR, IT, T, and RH were calculated. Figures 4–7 show the comparisons between
weekly measurements of the WCR, IT, T, and RH from the Arduino microcontroller system
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versus the traditional devices for 14 weeks during the planting season. The developed
system was able to identify the behaviour and changes in the measured levels without
significant differences as compared to the traditional methods. All these results indicate
that the developed system was able to identify the environmental conditions and the
amount and time that irrigation was used inside the greenhouses; these findings are in
accordance with [17,19,20]. Based on the results obtained from the study (Table 3 and
Figures 4–7), the Arduino microcontroller system has proven to be reliable when installed
in large greenhouses and the system saves approximately 12.5% of the water normally used
in these greenhouses. These observations agree with the results obtained by [11].

Table 3. T-test results of the independent samples for WCR, IT, T, and RH.

Independent Samples Test

Levene’s Test for
Equality of Variances t-Test for Equality of Means

F Sig. t df Sig.
(2-Tailed)

Std. Error
Difference

WCR
Equal variances assumed

0.081 0.778
1.669 26 0.107 0.15282

Equal variances not assumed 1.669 25.823 0.107 0.15282

IT
Equal variances assumed

0.299 0.589
1.251 26 0.222 2.57028

Equal variances not assumed 1.251 25.679 0.222 2.57028

T
Equal variances assumed

0.210 0.651
1.298 26 0.206 0.81842

Equal variances not assumed 1.298 25.463 0.206 0.81842

RH
Equal variances assumed

0.000 0.985
1.355 26 0.187 1.87472

Equal variances not assumed 1.355 25.997 0.187 1.87472
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3.2. Modelling and Relationships between WCR, IT, T, and RH

In Iraqi greenhouses, measurements of temperature, humidity, and irrigation duration
that are collected by most commercial plantations are minimal since normally, only data
concerning monthly whole rainy days and daily rainfall days are available [13]. Therefore,
it is critical to provide a simplified methodology for weekly WCR using the limited temper-
ature, humidity, and irrigation time data. The mathematical models used the T, RH, and IT
data from the Arduino microcontroller system.

The resulting linear, 2FI, and quadratic equations and the corresponding values of R2
for the testing period of 14 weeks are presented in Table 4. The model equation with WCR,
IT, T, and RH in weeks as the independent variables showed that R2 = 0.962, 0.969, and
0.977, implying that the model explained well 96.2, 96.9, and 97.7% of the variability in
WCR. A linear relationship between actual and predicted weekly WCR showed a strong
positive association with high significance at p < 0.0001.

Table 4. Mathematical models under an Arduino microcontroller system in a greenhouse.

Model F-Value p-Value R2 Adj. R2 Pred. R2 Std. Dev.

WCR = −0.0173451.0.001595T + 0.004261RH + 0.05329IT 320.91 <0.0001 0.962 0.959 0.952 0.093

WCR = 8.12464 − 0.489734T − 0.119744RH + 0.052929IT
+ 0.007382T × RH − 0.002221T × IT + 0.000465RH × IT 184.02 <0.0001 0.969 0.964 0.954 0.087

WCR = 20.54747 − 1.17731T − 0.275757RH − 0.012634IT
+ 0.012368T × RH − 0.000944T × IT + 0.001470RH × IT

+ 0.008004T2 + 0.000328RH2 − 0.000588IT2
155.26 <0.0001 0.977 0.971 0.959 0.077

The F-test of overall significance indicates whether a model provides a better fit to the
data than a model that contains no independent variables. Model F-values of 320.91, 184.02,
and 155.26 and p-values less than 0.0500 indicate that the model terms are significant. The
F-values with a probability of 0.0001 indicate that the regression coefficients are nonzero.
There is only a 0.01% chance that F-values these large could occur due to noise. The
predicted R2 of 0.9528, 0.9542, and 0.9598 are in reasonable agreement with the Adjusted R2

of 0.9590, 0.9640, and 0.9713, i.e., the difference is less than 0.2 for linear, 2FI, and quadratic
models, respectively.

Figure 8 was a scatter plot that showed the correlation between predicted values and
actual values for linear, 2FI, and quadratic models to see how the models performed with
the mean and best values of the variables in every prediction. Figures graphically represent
an association of the actual and predicted WCR for all models. The magnitude of error
expressed as the difference between predicted R2 and adjusted R2 values is also shown in
the same Table 4.

The practical predictive ability of the linear, 2FI, and quadratic models was visual, and
the representation strongly suggests a goodness of fit for models in predicting WCR; the
magnitude of error was very small. The mean error is preferred for the whole population
rather than a single sample [29]. According to Figure 8A, the linear predicted model fully fit
(without deviations) to the actual values and the R2 value is 0.962. Reference [26] explained
that the best model has an R-square value above 80% and it uses the smallest number
of parameters.
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The effect of WCR varies with the degree of temperature, humidity, and irrigation
duration for the cucumber plants. Water deficit stress during pre-flowering and grain filling
stages massively affects plant performance due to the imprecise traits function. Water
stress increased the flowering days and days to maturity while it decreased the leaf number
and led to a loss of normal root architecture which further led to a reduction in yield [30].
The changes in WCR due to temperature, humidity, and irrigation duration variations
usually contribute to increasing yield [17,31]. Overall, our present study indicated that
WCR has a strong relationship with temperature, humidity, and irrigation time. These
factors accounted for increasing the R2 of the models as WCR is dependent on temperature,
humidity, and irrigation duration.

Table 5 provides a comparison between the linear forecasts and the actual values based
on the MSE, MAPE, and AAP within the studied states. The results were obtained for the
forecasted WCR for 14 weeks. The outputs of the linear model were found to be closer to
the actual values for the WCR. The finding indicated that the average accuracy percentage
for the forecasts by the linear models had a record-high value of 92.038. In contrast, the
importance of the MSE and MAPE for the model was lower. Therefore, the linear model



Water 2022, 14, 1166 11 of 13

was appropriate for forecasting the data and can be used as an alternative model to predict
the WCR.

Table 5. Simulation models of WCR in greenhouses.

Weeks Actual WCR
m3

Predicted WCR
m3

1 0.6 0.589

2 0.72 0.623

3 1.44 1.285

4 1.4 1.304

5 1.42 1.357

6 1.44 1.391

7 1.68 1.592

8 1.65 1.580

9 1.67 1.564

10 1.68 1.534

11 1.82 1.677

12 1.8 1.574

13 1.8 1.576

14 1.83 1.576

MSE % 0.019

MAPE % 7.961

AAP % 92.038

4. Conclusions

The main objective of an optimal environment and evaluation is to control critical
parameters such as water consumption, irrigation time, temperature, and humidity, based
on the design of a microcontroller system in a greenhouse which is a purely sensor-based
system. The results show that the developed system maintained WCR, IT, T, and RH levels
and reduced water consumption by approximately 12.5%. We hope that the new system
will be used as a prototype for Iraqi greenhouses to automatically control and monitor
WCR, IT, T, and RH levels.

The developed models are simple, efficient, and easily applied. The models indicated
that the regression equation well represented 96.9% of the variability in weekly WCR.
A linear relationship between actual and predicted weekly WCR shows that the correla-
tion = 0.984, which is a strong positive association. Additionally, the linear model was
chosen as the best model to use in greenhouses, with the average accuracy percentage
simulation and mean square error being 92.038 and 0.01988%, respectively. The researchers
suggest conducting experiments with other crops under the same conditions to verify the
accuracy of the proposed equations. Future research could develop a raspberry pi micro-
controller system and compare it with the Arduino microcontroller system. Additionally,
the Arduino microcontroller system used in this study could be applied to other types of
crops, thus increasing the general applicability of the method presented in this article.
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