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Groundwater models are powerful tools for purposes such as quantifying groundwater
systems, examining various management scenarios, and for protection against contamina-
tion. In the first few decades of the last century, groundwater models have experienced a
big leap from analog models, to simple one-dimensional models then three-dimensional
regional models with millions of cells/nodes. With the increase in the computational capa-
bilities of computers, groundwater models have become more sophisticated and capable of
handling more complex problems than ever.

Analog models appeared long before the development of any analytical or numerical
models. Although the analytical flow-to-well solution was developed in 1935 [1], it was not
until 1940 that Hubbert [2] provided a clear understanding of flow problems and identified
its potential. Toth [3] derived an analytical solution from the problem conceptualized
by Hubbert [2]. Freeze and Witherspoon [4,5] developed numerical models, for the first
time, for a steady-state hypothetical case. In the 1980s the rapid development of numerical
models was achieved due to the increase in computers’ capabilities. In the 1990s, the
acknowledgment and statistical treatment of uncertainty started to garner attention in
numerical modelling. The past twenty years have witnessed advancement in modelling
capabilities, with special attention paid to inverse problems and data science. With the
increase in big data and their availability, the focus has now shifted to the application of
artificial intelligence and data science to train models.

This Special Issue, “Applied Groundwater Modelling for Water Resource Manage-
ment and Protection”, contains nine papers covering various topics and applications of
groundwater modelling.

Ramboug et al. [6] used Adaptive Multiscale Triangulation for model inversion in
a case study on alluvial aquifers in southern France. The results showed this method
produces plausible values of the calibrated parameters, with low standard deviation.

Almuhaylan et al. [7] used an artificial neural network with MODFLOW to test various
scenarios of groundwater pumping.

Cui and Hao [8] compared two unstructured grid-refinement methods—quadtree
(Q-tree) and nested grid refinement—to simulate groundwater flow under recharging
rivers. They found that Q-tree produces higher precision than the nested grid.

Baalousha et al. [9] compared vulnerability assessments using two models—one based
on fuzzy logic, and the other using a DRASTIC approach—and compared the results with
a contaminant transport model. The results showed that fuzzy logic is likely to produce a
better vulnerability map than DRASTIC.

Shawaqfah et al. [10] used GIS and groundwater-flow modeling to assess various
scenarios and land suitability for groundwater recharge of treated wastewater. The results
identified the most suitable areas for artificial recharge.
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Le et al. [11] used a modified DRASTIC model to explore the susceptibility of soil to
salinization in the Mekong Delta in Vietnam. They combined the DRASTIC model with
anthropogenic indicators to produce a vulnerability map.

Kapoor et al. [12] used a pilot-point approach to calibrate a groundwater model, with
a focus on the placement and quantity of the calibration points.

Tabrizinejadas et al. [13] developed a reactive transport model based on the Nernst–Planck
and Poisson (NPP) equations, which produced a better representation of the chemical migration.
The developed model was validated using comparisons to benchmark problems.

Jacob et al. [14] developed a regional model for Qatar aquifers. Several scenarios were
tested to artificially recharge the aquifer.

The above-mentioned studies cover a wide range of modelling applications and tools
which, in most cases, are applied to real problems. This demonstrates the usefulness and the
power of modelling to solve actual problems, which vary from water resource management
to contaminant transport and groundwater protection.
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