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Abstract: With regard to environmental facilities, blindness and the subjectivity of site selection
lead to serious economic, engineering and social problems. A proper siting proposal often poses a
challenge to local governments, as multiple factors should be considered, such as costs, construction
conditions and social impact. How to make the optimal siting decision has become a topical issue in
academic circles. In order to enrich the framework of site selection models, this study combined GIS,
AHP and Remote Sensing (RS) technologies to conduct siting suitability analysis of sewage treatment
plants, and it was first applied in the Liao River basin in Jilin Province in China. The enriched model
is able to reveal blindness in the former site selection of sewage treatment plants and explore optimal
siting areas, involving an effective quantification method for summer dominant wind direction and
urban stream direction. In a case study, it was found that local governments need to be cautious of
the distance of sites from rivers and residential areas and the impact of these sites on downwind
and downstream residents. Additionally, siting suitability has obvious regional characteristics, and
its distribution varies significantly between towns. Huaide Town shows the largest optimal siting
areas and can be given priority for the construction of new sewage treatment plants. This paper
developed a more scientific approach to site selection, and the outcome can provide a robust reference
for local governments.

Keywords: site selection; siting suitability; spatial analysis; GIS; sewage treatment plant

1. Introduction

The urbanization of town areas will inevitably cause environmental pollution [1],
as the expansion of environmental facilities is far behind the production of industrial,
agricultural and domestic wastes [2]. In 2015, over 30% of the population still lacked
effective sewage treatment facilities, especially in the town areas of developing countries [3].
When promoting water pollution treatment projects, local governments encounter site
selection challenges for environmental facilities. Multiple factors should be considered,
such as costs, construction conditions and social impact. A reasonable layout can meet the
requirements of relevant laws and regulations, and realize sewage collection and treatment
at low costs [4]. Conversely, an improper site selection decision will hinder the process of
water pollution control projects due to high overall investment (e.g., difficult construction
and high cost of pipe networks). Even worse, it may lead to the closure of sewage treatment
facilities, such as Sanya Xincheng Sewage Treatment Plant and Shenyang Jinjiawan Sewage
Treatment Plant, which were closed as they had serious impacts on local residents, i.e.,
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causing visual, odor and downstream water pollution. This issue has drawn increasingly
more researchers’ attention, reflected by the growing quantity of site selection papers from
2008 to 2018 [5]. Note that there are a growing number of sewage treatment facilities
oriented to chemical or thermal recovery in developed countries, such as the Netherlands
and Finland [6]. However, sewage treatment plants tend to be regarded as disposal facilities
in China, as the national reclamation rate is less than one-tenth of wastewater, and energy
recovery is even less common [7], except for in key cities, such as Beijing. Hence, the
authors omitted indicators relating to resource recovery in this study, under the scope of
the Liao River basin in Northeast China.

The methodology of site selection can be roughly divided into two categories: one
is the spatial overlay analysis method based on Geographic Information System (GIS)
technology [8] and the other is the multi-objective optimization method based on heuristic
algorithms [9,10]. The former was mainly applied in this study, as it is able to analyze the
trade-offs between many factors and then visualize them; however, constraint equations
in an optimization model cannot reveal factors intuitively. As mentioned, GIS technology
has the advantage of digitizing the spatial information of regions, providing a scientific
basis for planning and decision making [11]. Recently, a GIS-based site selection model was
applied to siting suitability analysis of waste disposal sites [12–15], power plants [16–19]
and hospitals [20–23]. With regard to sewage treatment facilities, some scholars applied
GIS-based technology and presented their siting results. Gemitzi et al. [24] calculated the re-
quired area of stabilization ponds according to urban population, temperature and sewage
discharge standards, and then they analyzed whether there was enough optional area in the
urban area to build them. Considering soil and groundwater pollution, Shabou et al. [25]
selected appropriate locations to build evaporation ponds for olive mill wastewater man-
agement. Anagnostopoulos and Vavatsikos [26] combined the fuzzy Analytic Hierarchy
Process (AHP) method to conduct site suitability analysis of natural treatment technologies
in northeastern Greece. Nigusse et al. [2] considered the distance between roads and
rivers, sewage pipe networks, soil depth, etc., and provided the site selection decision for
stabilization ponds in cities. However, there are few studies on the site selection of sewage
treatment plants. Many existing papers did not reveal the blindness in the former site
selection of facilities in their study areas, so targeted policy implications may not have been
well provided. Additionally, they did not verify the accuracy and applicability of the site
selection models used, possibly leading to misleading or unpractical results [27]. Some
indicators, i.e., summer dominant wind direction and urban stream direction, are difficult
to quantify and visualize using GIS technology.

To fill the above research gaps, this study combined GIS, Remote Sensing (RS) and
the AHP method together to construct a site selection model for siting suitability analysis
of sewage treatment plants, exploring an effective quantification method for summer
dominant wind direction and urban stream direction. In addition, the accuracy and
applicability of this model were subsequently demonstrated using location assessment
of existing sewage treatment plants and satellite image analysis in the study area. This
paper can enrich the framework of site selection models, making them more scientific and
effective. In terms of practical significance, this model was first applied to the Liao River
basin in Jilin Province, aiming to reveal possible blindness in former site selection processes
and explore future optimal siting areas. Many towns in this basin lack sewage treatment
facilities, which has led to ecological and environmental pollution in the water body. This
paper can provide technical support and a robust reference for local governments to make
future siting decisions, which can also be applied as a decision-making framework for site
selection analysis in other industries.

2. Methodology

This section introduces the process of establishing a GIS-based site selection model
for sewage treatment plants, which was applied to the study area with some supplements
and adjustments.
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2.1. Geospatial Database
2.1.1. A Set of Criteria and Indicators

In this study, the frequently used indicators in previous site selection studies were
taken as the reference for this model, where the indicator system was divided into restricted
indicators (IR) and selective indicators (IS) [28]. Restricted indicators, called constraint
or exclusion indicators in some papers [5], were used to classify restricted areas where
construction was not allowed according to laws, regulations, experience, etc., as sewage
treatment plants would seriously affect the local environment and society. Selective indica-
tors were composed of three criteria, namely, economic cost (C1), construction conditions
(C2) and social impact (C3), which were key factors used to optimize selective areas [27],
reflecting the degree of meeting the target expectation. The above restricted and selective
areas can be used for spatial overlay analysis to create siting suitability maps [29], as shown
in Figure 1.
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Figure 1. Technology roadmap.

With regard to buffer indicators, this study mainly designed restricted areas of roads
(IR1), rivers (IR2), water sources (IR3), lakes (IR4), residential areas (IR7) and built-up areas
(IR8) in order to avoid the serious environmental and social impact of sewage treatment
plants [30]. In addition, considering the cost of transporting residual sludge and building a
new pipe network [31], plants should keep a relatively close distance to the nearest road
(IS1) and river (IS2), which were listed in the criterion of economic cost (C1). The selective
indicator of distance from residential area (IS7) was listed in the criterion of social impact
(C3). These distances above should be neither too far nor too close; somewhere in the
middle works best.

For slope indicators (IR5, IS4), a large slope will cause difficulties to construction, earth
excavation and subsequent transport [26]. An area with a slope greater than a certain
value was regarded as terrain slope restriction (IR5), while others were selective areas (IS4),
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where the smaller the slope, the more it met the decision expectation [32]. For soil texture
indicators (IR6, IS6), soil texture was divided into sand, silt and clay. Because sand and
silt cannot bear the foundations well, the area with a low ratio of clay to the other two
substances was regarded as soil texture restriction (IR6), while the others were selective areas
(IS6), where the higher the clay ratio, the more it met the decision expectation. The above
two selective indicators (IS4, IS6) were listed in the criterion of construction conditions (C2),
and the rest of this criterion was land-use type (IS5), related to construction difficulty [30].

The remaining selective indicators were pipe network coverage (IS3), dominant wind
direction (IS8) and urban stream direction (IS9). The first indicator was listed in the eco-
nomic cost (C1) criterion, and the second and third indicators were listed in the social
impact (C3) criterion. Different from other indicators, these three indicators only have
applicability in developed urban areas. This model needed to artificially divide urban areas
of administrative zones above town level, as these areas have a large population density
with a certain degree of pipe network coverage (IS3), while other areas, such as village-level
administrative zones and non-residential areas, have almost no pipe network. Similarly,
odor pollution and sewage outlet pollution from sewage treatment plants through domi-
nant wind direction (IS8) and urban stream direction (IS9) only have a significant effect on
residents living downwind or downstream of those areas and have little impact on other
areas with a low population density.

2.1.2. Data Preprocessing

After collecting relevant hydrology, topography and other data, the authors needed
to process and sort out the above data on the ArcGIS platform due to the inconsistency of
original data sources with different formats [33]. Firstly, the data were projected into the
same projection coordinate system and then were clipped and unified to the scope of the
study area. Due to the different levels of accuracy of each data source, spatial correction
and geographical registration were applied to make the error between each layer within
tens of meters. Before the overlay operation between layers, they were converted into
a raster format to store the indicator value information. Finally, raster source data were
uniformly divided into 30 m × 30 m cells. In this case, the practical application effect is
ideal from two aspects of accuracy and operational efficiency.

2.2. Indicator Quantification

With regard to restricted indicators, the attribute value of the cell was quantified as
the Boolean value (0 or 1). Vk(IRi) represents the Boolean value of the kth cell in the ith
restricted indicator layer. If the value is 0, then this cell is regarded as the restricted area;
otherwise, it is the selective area.

For buffer restricted indicators (IR1, IR2, IR3, IR4, IR7, IR8), the attribute value of the kth
cell (Fk) represents the nearest distance of this cell to a specific subject (road, water body,
residential area, etc.), as shown in Table 1. Then, thresholds can be set for the indicators.
Taking road restriction (IR1) as an example, if the distance from the kth cell to the nearest
road (i.e., attribute value Fk) is less than the threshold, then the Boolean value of this cell
(Vk(IRi)) is 0; otherwise, it is 1. Note that the indicator of built-up area restriction (IR8)
should only be considered when proposing building a sewage treatment plant; it is not
considered when evaluating the location of an existing sewage treatment plant. Because
the location will be classified as a built-up area by the model, the Boolean value of the cell
(Vk(IR8)) in this location is 0, making the evaluation result meaningless.
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Table 1. Quantifying specification of indicators.

Restricted Indicators Quantification into Boolean Values Vk(IRi) = 0 Vk(IRi) = 1

Road restriction (IR1) Distance to road, m <100 ≥100
River restriction (IR2) Distance to river, m <100 ≥100

Water source restriction (IR3) Distance to water source, m <1000 ≥1000
Lake restriction (IR4) Distance to lake, m <100 ≥100

Terrain slope restriction (IR5) Slope, degree >10 ≤10

Soil texture restriction (IR6) Vk(IS6) referring to
Equations (1) and (10) <0.2 ≤0.2

Residential area restriction (IR7) Distance to settlement, m <200 ≥200
Built-up area restriction (IR8) Distance to building, m <100 ≥100

Selective Indicators Quantification into Indicator Values Vk(ISj) ∈ (0, 1)

Distance from road (IS1) Normalized score
referring to Equation (1), Equal to normalized score

where Fa = 100 m,
Fb = 200 m and Fc = 1000 m

Distance from river (IS2) Normalized score
referring to Equation (1), Equal to normalized score

where Fa = 100 m,
Fb = 200 m and Fc = 1000 m

Pipe network coverage (IS3) Based on the prosperity
of its urban area Positive correlation

Terrain slope (IS4) Normalized score
referring to Equation (1), Equal to normalized score
where Fa = Fb = 0 degree

and Fc = 10 degrees
Land-use type (IS5) Artificial surfaces,

water bodies, wetland, 0.0, 0.0, 0.1, 0.3, 0.6, 0.9

cultivated land,
forest, grassland, bareland and 1.0, respectively

Soil texture (IS6) Normalized score referring
to Equations (1) and (10), Equal to normalized score

where Fa = min(Fk), Fb = Fc = max(Fk)
Distance from residential area (IS7) Normalized score

referring to Equation (1), Equal to normalized score
where Fa = 200 m,

Fb = 300 m and Fc = 1000 m
Dominant wind direction (IS8) Method referring to Section 3 From 0 to 1

Urban stream direction (IS9) Method referring to Section 3 From 0 to 1
Study area: Liao River basin in Jilin Province (30 m resolution).

For the indicator of terrain slope restriction (IR5), the attribute value of the kth cell (Fk)
represents the slope on this cell. If the slope of the kth cell (i.e., attribute value Fk) is higher
than a certain threshold, then the Boolean value of this cell (Vk(IR5)) is 0; otherwise, it is
1. For the indicator of soil texture restriction (IR6), Fk represents the weighted value of
the proportion of sand, silt and clay in the kth cell, where the weighting method should
be determined according to the study area, and then Fk can be quantified as F̃k by the
following equation:

F̃k =


0 Fk< Fa, Fk >Fc

Fk−Fa
Fb−Fa

Fa ≤ Fk ≤ Fb
Fc−Fk
Fc−Fb

Fb ≤ Fk ≤ Fc

(1)

where F̃k ∈ [0, 1], and the parameters Fa, Fb and Fc can be determined according to indicator
characteristics of the study area. If the quantified attribute value (F̃k) of the kth cell is lower
than a certain threshold, then the Boolean value of this cell (Vk(IR6)) is 0; otherwise, it is 1.

With regard to selective indicators, the attribute value of the cell was quantified as the
indicator value (from 0 to 1). Vk

(
ISj
)

represents the indicator value of the kth cell in the jth
selective indicator layer, reflecting the siting suitability of a sewage treatment plant, where
the larger the index value, the more it conforms to the decision expectation.

For some of the selective indicators (IS1, IS2, IS4, IS6, IS7), the attribute value of the kth
cell (Fk) should be quantified as F̃k using Equation (1), where F̃k ∈ [0, 1], representing the
indicator value of the kth cell (Vk(IS)). For the indicator of land-use type (IS5), Vk(IS5) is
related to the land-use type (e.g., grassland, water bodies), where the kth cell is located.
The value should be assigned according to construction difficulty of building a sewage
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treatment plant at this location. Finally, the remaining selective indicators (IS3, IS8, IS9) need
to be quantitatively analyzed in divided urban areas with a high population density.

After quantifying all the above indicators on the ArcGIS platform, the indicator value
or Boolean value distribution map of each indicator layer can be drawn for later spatial
overlay analysis.

2.3. AHP Method

Before the spatial overlay analysis, the weight of each selective index was determined
based on the AHP method. This method was proposed by the famous American operations
researcher Saaty [34], making decision making clearer. It has gained a high degree of
popularity and has been widely used due to its understandability in theory and simplicity
in application and the robustness of its outcomes [5]. Based on expert opinions, the pairwise
comparison matrix (CM) of indicators can be constructed as follows:

M = [aij]n×n =

I1 I2 · · · In
I1 1 a12 · · · a1n
I2 1/a12 1 · · · a2n
...

...
...

. . .
...

In 1/a1n 1/a2n · · · 1

(2)

where aij represents the degree of importance of Ii relative to Ij, ranging from 1 (indiffer-
ence or equal importance) to 9 (extreme preference or absolute importance), while 1/aij
represents the degree of importance of Ij relative to Ii.

By calculating the maximum eigenvalue (λmax) and the corresponding eigenvector
of the matrix based on the MATLAB platform, the weights of the indicators (wj) can be
determined. Finally, a consistency check of the matrix should be carried out according to
the Consistency Index (CI) and Consistency Ratio (CR) as follows:

CI =
λmax − n

n− 1
(3)

CR =
CI
RI

(4)

where n represents the order of the matrix, and the Random Average Index (RI) of the third-
order matrix is 0.58 [34]. If CR ≤ 0.1, the comparison matrix is verified to be consistent;
otherwise, it needs to be readjusted until it passes the consistency check.

2.4. Spatial Overlay Analysis

After the spatial information of each indicator was digitized on the ArcGIS plat-
form, restricted indicator layers were overlaid as the restricted area (RA) layer by the
following equation:

Vk(RA) =
m

∏
i=1

Vk(IRi) (5)

where Vk(IRi) represents the Boolean value of the kth cell in the ith restricted indicator layer,
and m is the number of restricted indicator layers to be overlaid.

When m is equal to 7, layers IR1–IR7 are overlaid as the Restricted Area for Evaluation
(RAE) layer (Equation (6)), used to assess the location of existing sewage treatment plants,
and the score of the kth cell of this layer is represented by Vk(RAE).

Vk(RAE) =
7

∏
i=1

Vk(IRi) (6)
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Then, selective indicator layers were overlaid as the selective area (SA) layer based on
their weights by the following equation:

Vk(SA) =
n

∑
j=1

wjVk
(
ISj
)

(7)

where Vk
(
ISj
)

represents the indicator value of the kth cell in the jth selective indicator
layer, wj represents the weight of the jth selective indicator, and n is the number of selective
indicator layers to be overlaid. When n is equal to 9, layers IS1–IS9 are overlaid, and the
score of the kth cell of this selective area layer is represented by Vk(SA).

Finally, overlaying the above restricted area layer and the selective area layer provides
a Siting Suitability Map (SSM). In this study, the map was classified into two categories:
one category is the Siting Suitability Map for Evaluation (SSME), used to assess the location
of existing sewage treatment plants, as shown in Equation (8), and the other category is the
Siting Suitability Map for Optimization (SSMO), used to divide optimal siting areas of a
proposed sewage treatment plant, as shown in Equation (9), where the indicator of built-up
area restriction (IR8) should be considered.

Vk(SSME) = Vk(RAE)×Vk(SA) =
7

∏
i=1

Vk(IRi)×
9

∑
j=1

wjVk
(
ISj
)

(8)

Vk(SSMO) = Vk(SSME)×Vk(IR8) (9)

The scores of the kth cell in the above SSM are Vk(SSME) and Vk(SSMO), respectively,
based on which the subsequent siting suitability analysis of sewage treatment plants can be
conducted in the study area.

3. Case Study

The Liao River basin is located in the southwest in Jilin Province, covering an area of
more than 15,000 km2 and accounting for 8.4% of the province’s total area, with a large
number of water bodies classified as water source protection areas in the southeast, as
shown in Figure 2. The basin is also an important commodity grain production base in
Jilin Province, playing a strategic role in China [35]. However, this region is economically
underdeveloped, suffering from river basin pollution of domestic sewage and industrial
wastewater caused by gradual economic growth, and many densely populated town
areas lack sewage treatment facilities. According to the watershed water pollution control
plan, many sewage treatment plants will be constructed in town areas. This study can
provide technical support and a robust reference for local governments to make future
siting decisions.

3.1. Data Sources

The location data of existing sewage treatment plants were obtained through a field
investigation conducted by the authors, while the other databases in this study were offered
by many institutions. DEM data (30 m resolution covering Jilin Province) were provided by
the Geospatial Data Cloud Site, Computer Network Information Center, Chinese Academy
of Sciences. Soil texture data (proportion of sand, silt and clay) were provided by the
Resource and Environment Science and Data Center, Institute of Geographic Sciences and
Natural Resources Research, Chinese Academy of Sciences. Land-use data were obtained
from the Global Geo-Information Public Product (GlobeLand30), provided by China to
the United Nations with extensive use. The distribution data of roads, rivers, residential
areas, etc., were obtained from the National Catalogue Service for Geographic Information,
National Basic Geographic Information Center. The data concerning county, city and
provincial administrative divisions were provided by the National Earth System Science
Data Center, National Science & Technology Infrastructure of China.
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3.2. Specific Indicator Quantification

The site selection model was applied to the Liao River basin, and then quantification
rules for restricted and selective indicators were formulated, as shown in Table 1. By
quantifying restricted indicators on the ArcGIS platform, Boolean value distribution maps
of layers IR1–IR7 were created, as shown in Figure 3a–g, respectively.
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Figure 3. Layers of restricted indicators and Restricted Area for Evaluation (RAE): (a) road restriction
(IR1); (b) river restriction (IR2); (c) water source restriction (IR3); (d) lake restriction (IR4); (e) terrain
slope restriction (IR5); (f) soil texture restriction (IR6); (g) residential area restriction (IR7); and (h) RAE.
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Regarding the selective indicators, the distance from road (IS1), distance from river
(IS2), terrain slope (IS4) and distance from residential area (IS7) were directly quantified by
Equation (1), as shown in Figure 4a,b,d,g, respectively.
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direction (IS9).

For land-use type (IS5), the Vk(IS5) of the kth cell in the area of artificial surfaces, water
bodies, wetland, cultivated land, forest, grassland and bareland was defined as 0.0, 0.0,
0.1, 0.3, 0.6, 0.9 and 1.0, respectively, as shown in Figure 4e. The higher the value, the
lower the construction difficulty and cost, and the more conducive to building sewage
treatment plants.

For soil texture (IS6), the attribute value of the kth cell (Fk) was calculated as follows:

Fk = 3Pk(Sand) + 5Pk(Silt) + 10Pk(Clay) (10)

where Pk (Sand), Pk (Silt) and Pk (Clay) represent the percentage of sand, silt and clay in this
cell, respectively, complying with Pk(Sand) + Pk(Silt) + Pk(Clay) = 100%. Then, Fk was
quantified as F̃k, namely, Vk(IS6), the distribution of which is shown in Figure 4f.

In addition, this study divided 12 urban areas of administrative districts above town
level in the Liao River basin in Jilin Province. For pipe network coverage (IS3), the indicator
values of cells (Vk(IS3)) within above urban areas were assigned between 0.2 and 1.0, related
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to their prosperity and population density, and in other areas, Vk(IS3) was set to 0, as shown
in Figure 4c.

With regard to the indicators of dominant wind direction (IS8) and urban stream
direction (IS9), this study explored an effective quantification method applied in the above
divided urban areas. Taking the urban area of Siping City as an example, 24 Attribute
Points (APs) were evenly arranged around the urban area, as shown in Figure 5b.
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(c) distribution of Vk(IS8) in Siping City; and (d) distribution of Vk(IS9) in Siping City.

The indicator values of APs were assigned in accordance with the following principles:
in the direction of summer dominant wind and urban stream, Vk(IS8) and Vk(IS9) gradually
increase from 0 to 1, respectively, as shown in Table 2. The summer dominant wind
direction (IS8) in the study area is south-southwest, and the urban stream direction (IS9) can
be determined by DEM difference.
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Table 2. Vk(IS8) and Vk(IS9) of Attribute Points (APs).

Attribute Points AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8

Vk (Dominant wind direction) (IS8) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Vk (Urban stream direction) (IS9) 1.00 0.95 1.00 0.70 1.00 1.00 0.95 0.85

Attribute Points AP9 AP10 AP11 AP12 AP13 AP14 AP15 AP16

Vk (Dominant wind direction) (IS8) 0.95 1.00 1.00 1.00 0.95 1.00 1.00 1.00
Vk (Urban stream direction) (IS9) 0.85 0.85 0.85 0.05 0.05 0.05 0.00 0.00

Attribute Points AP17 AP18 AP19 AP20 AP21 AP22 AP23 AP24

Vk (Dominant wind direction) (IS8) 0.80 0.60 0.00 0.00 0.20 0.35 1.00 0.95
Vk (Urban stream direction) (IS9) 0.00 0.00 0.00 0.10 0.50 0.70 0.70 0.90

Then, the above APs were processed using interpolation analysis on the ArcGIS plat-
form, as shown in Figure 5c,d. By repeating the above operation in the other 11 urban areas,
the indicator value distributions of layers IS8 and IS9 are shown in Figure 4h,i, respectively.

It can be seen that Vk(IS8) and Vk(IS9) show an obvious fan increasing distribution
along the south-southwest wind direction and urban stream direction, respectively, which
indicates that this analysis method is scientific and feasible, providing an effective quantifi-
cation method for site selection models.

3.3. Indicator Weights

Combined with the background of the study area, comparison matrices of the selective
indicators were established, as shown in Table 3. This process was supported by relevant
experts from the water pollution prevention and control project.

Table 3. Weights of selective indicators.

Goal Criterion C1 C2 C3 Weights wj CR

Economic cost (C1) 1 1 2 0.413
Construction conditions (C2) 1 1 1 0.328

Social impact (C3) 1/2 1 1 0.260 0.046

C1 Selective Indicator IS1 IS2 IS3

Distance from road (IS1) 1 1/2 1/6 0.111 0.046
Distance from river (IS2) 2 1 1/3 0.222 0.092

Pipe network coverage (IS3) 6 3 1 0.667 0.275 0.000

C2 Selective Indicator IS4 IS5 IS6

Terrain slope (IS4) 1 1/4 1/2 0.149 0.049
Land-use type (IS5) 4 1 1 0.474 0.155

Soil texture (IS6) 2 1 1 0.376 0.123 0.046

C3 Selective Indicator IS7 IS8 IS9

Distance from residential area (IS7) 1 3 1 0.443 0.115
Dominant wind direction (IS8) 1/3 1 1/2 0.169 0.044

Urban stream direction (IS9) 1 2 1 0.387 0.101 0.016

Since the Consistency Ratios (CRs) of the above matrices are less than 0.1, the weights
of each indicator (wj) can be calculated based on MATLAB. It was found that the economic
cost (C1) is the most important criterion in this study area due to the underdeveloped
economy and limited water pollution control funds, and it was found that the social
impact (C3) criterion has a low weight, indicating a low return on investment in this aspect.
The influence of pipe network coverage (IS3) on site selection is particularly significant
(w3 = 0.275) due to the high cost of building pipe networks, and it is a decisive indicator of
the model. According to the town governance plan, the estimated investment in rainwater
and sewage diversion pipe networks is nearly 500,000 yuan/km. The indicators of distance
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from road (IS1), terrain slope (IS4) and dominant wind direction (IS8) have low weights
(wj < 0.050), and they have little impact on site selection.

3.4. Siting Suitability Analysis

After conducting the process outlined in Section 2.4, the RAE layer, SSME and SSMO
are shown in Figures 3h and 6b,c, respectively.
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In general, a large part of the Liao River basin in Jilin Province is regarded as a
restricted area, mainly concentrated in the northwest and southeast. This is mainly because
the soil texture is poor in the northwest, and there are many water source areas in the
southwest, which should be avoided in site selection. Suitable areas with high scores
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are scattered around urban areas and rivers, which is in line with this fact, as the cost of
building pipelines in these sites is relatively low.

As shown in Figure 6b, this study randomly selected ten sewage treatment plants that
were constructed before September 2019 in order to calibrate the site selection model to test
its applicability in the whole basin and to evaluate the location of the plants. In addition,
according to the water pollution control plan, Maolin Town, Yang Town, Huaide Town, Qin
Town and Shijiapu Town lacked effective sewage treatment systems, as shown in Figure 6c,
posing a serious threat to the local aquatic environment. Therefore, this study carried out
site selection research on sewage treatment plants in the above towns, which has certain
guiding significance for the local government’s site selection decision.

4. Results and Discussion
4.1. Existing Sewage Treatment Plants

Based on the spatial locations of ten sewage treatment plants, the assessment results of
each plant are shown in Table 4, where V(SSME) was divided into intervals and transformed
into natural language, namely, VG (Very Good) ∈ (0.50, 1.00], G (Good) ∈ (0.42, 0.50],
M (Medium) ∈ (0.35, 0.42], P (Poor) ∈ (0.00, 0.35] and R (Restricted) = 0.00. These
intervals are obtained and adjusted according to the Natural Breaks method (Jenks).

Table 4. Location assessment of existing Sewage Treatment Plants (STPs).

Sewage Treatment Plants STP1 STP2 STP3 STP4 STP5 STP6 STP7 STP8 STP9 STP10 VAR

V (Distance from road) (IS1) 0.985 0.800 0.616 0.609 0.998 0.237 0.448 0.500 0.897 0.621 0.061
V (Distance from river) (IS2) 0.932 0.977 0.957 0.873 0.082 0.500 0.964 0.616 0.361 0.851 0.096

V (Pipe network coverage) (IS3) 0.000 0.700 0.000 0.800 0.600 0.400 1.000 0.900 0.900 0.900 0.137
V (Terrain slope) (IS4) 0.784 0.831 0.743 0.865 0.803 0.761 0.818 0.925 0.818 0.728 0.003

V (Land-use type) (IS5) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
V (Soil texture) (IS6) 0.456 0.339 0.456 0.681 0.399 0.681 0.681 0.456 0.456 0.456 0.016

V (Distance from residential area) (IS7) 0.398 0.786 0.000 0.656 0.285 0.000 0.940 0.913 0.810 0.000 0.152
V (Dominant wind direction) (IS8) 1.000 0.532 1.000 0.998 0.656 0.152 0.769 0.965 0.513 0.532 0.082

V (Urban stream direction) (IS9) 1.000 0.855 1.000 0.821 0.840 0.821 0.702 0.840 0.154 0.114 0.101
V (SSME) 0.416 0.602 0.354 0.657 0.453 0.390 0.721 0.661 0.540 0.000 0.044

Evaluation G VG M VG G M VG VG VG R -

Since the land-use data are from the year 2020, the above sewage treatment plants
have all been built, and they are located on artificial surfaces of land-use type (IS5), so
V(IS5) of all plants should be 0 according to Table 1. This indicator is mainly used for the
siting suitability analysis of proposed sewage treatment plants, and it has no influence on
the location assessment of existing plants. Therefore, this factor is not considered in the
following analysis.

The location assessment results are able to calibrate the model. If the results of the
above plants are all poor or have no significant differences, the accuracy and applicability
of this model should be reconsidered. However, Table 4 shows that there are certain
differences in the assessment results of the sewage treatment plants, most of which are G or
VG, indicating satisfactory applicability in the whole basin.

Overall, the scores in some indicators have large variances (over 0.080), such as dis-
tance from river (IS2), pipe network coverage (IS3), distance from residential area (IS7),
dominant wind direction (IS8) and urban stream direction (IS9), which means that local gov-
ernments’ blindness and subjectivity exist in these aspects when selecting sites. However,
differences in pipe network coverage (IS3) between sites are unavoidable in some cases,
especially when these sites are located in towns with different levels of development, as
the level of pipe network coverage (IS3) is almost uniform in the urban areas of a given
town. It can also be seen that the government has a certain awareness of terrain slope
(IS4) and soil texture (IS6), as the variances in the site scores of these indicators are not
significant (0.003 and 0.016, respectively). However, the overall score of soil texture (IS6) is
obviously lower than that of terrain slope (IS4), so there remains room for improvement of
later site selection.
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Regarding Northeast Hosiery Base Sewage Treatment Plant (STP10), the model deter-
mined that the plant was located within the residential area restriction (IR7), which was
less than the safety distance. Therefore, V(SSME) = V(IR7) = 0, and then, this site was
classified as R. After investigation, this plant was less than 200 m away from residential
areas, and there were odor, visual and other pollutions, which were reported by local
residents, further demonstrating the accuracy of this model.

Among the other sewage treatment plants, five of them were highly evaluated (VG),
indicating that the site selection decision in this basin was not terrible to some extent.
However, Gong City Sewage Treatment Plant (STP3) and Guo Town Sewage Treatment
Plant (STP6) were classified as M, both of which are far from residential areas (IS7) and
have a low pipe network coverage (IS3), leading to a high pipeline cost. In addition, the soil
texture (IS6) of the former’s position is poor, while the latter’s position is far from the road
and river (IS1, IS2), and it is susceptible to odor pollution brought by summer dominant
wind (IS8). These account for the poor scores, and this analysis could give the government a
signal to avoid making similar mistakes the next time a new sewage treatment plant is built.

4.2. Proposed Sewage Treatment Plants

After verifying the applicability and accuracy of the model in the whole basin, siting
suitability analysis of the proposed sewage treatment plants was carried out in the towns
of the basin. By cropping the urban areas of the five towns in Figure 6c, detailed SSMs were
created, as shown in Figure 7.
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(c) Huaide Town; (d) Qin Town; and (e) Shijiapu Town.

Then, the percentage of the scoring interval (R, P, M, G, and VG) was calculated, as
shown in Table 5. These five towns lacked sewage treatment facilities as of Septem-
ber 2019. It is of great significance to conduct SSM analysis in these towns for the
government’s reference.
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Table 5. Siting suitability analysis in towns.

Grade Maolin Town Yang Town Huaide Town Qin Town Shijiapu Town

R 53.66% 74.18% 56.33% 64.67% 63.01%
P 12.34% 0.29% 1.56% 4.38% 18.46%
M 18.60% 6.35% 14.87% 8.86% 14.65%
G 13.04% 14.51% 16.58% 15.33% 3.75%

VG 2.36% 4.67% 10.67% 6.75% 0.13%
Max value 0.633 0.603 0.608 0.580 0.540

It was found that restricted areas (R) are located in the very center of each town,
accounting for a large proportion in all towns, especially in Yang Town (74.18%), followed
by Qin Town (64.67%) and Shijiapu Town (63.01%). This is because there are many built-
up areas, residential areas, roads and rivers in urban areas, where large buffer zones are
required. Cells graded G or VG are areas where it is suitable to construct sewage treatment
plants, and proportions of them vary obviously from 0.13% to 10.67% and from 3.75% to
16.58%, respectively. After classification, specific sites of construction can be determined
by the decision makers’ understanding of local conditions only around these satisfactory
areas. As such, this study can lessen the considerable workload of decision makers.

Among these towns, Shijiapu Town is the least conducive to building sewage treatment
plants, with a max value of only 0.540, where only 0.13% and 3.75% of areas were rated
as VG and G, respectively, while 14.65% and 18.46% were rated as M and P, respectively.
Optimal siting areas are quite limited and distributed in the north and west, as shown in
Figure 7e. This is due to the low pipe network coverage (IS3), undulating terrain (IS4) and
poor soil texture (IS6) in the urban area, leading to the low overall score of this town. In this
case, a comprehensive investigation around optimal sitting areas is highly recommended
before building sewage treatment plants.

For Maolin Town, although the max value is the highest at 0.633, only 2.36% of areas
were rated as VG, and they are distributed in the south and west, as shown in Figure 7a.
However, 18.60% and 12.34% of areas were rated as M and P, respectively. Taking this town
as an example, this study analyzed the SSM using RS technology, aiming to intuitively
illustrate suitable areas to build sewage treatment plants. This approach can further reduce
the site survey workload of decision makers. There are three optimal siting areas, as shown
in Figure 8. The geographical feasibility of these areas on satellite images also strongly
proves the robustness of the methodology.

There are sufficient areas classified as VG or G in Yang Town and Qin Town, 19.18% and
22.08%, respectively. Although a high proportion of restricted areas exist, the percentages
of poor areas in the two towns are quite low, 0.29% and 4.38%, respectively. The positions
of optimal siting areas are quite different. The siting areas in Yang Town are distributed
in the west, north and southeast corner, while the north, east and south of Qin Town are
suitable for new constructions, as shown in Figure 7b,d.

As the remaining town, Huaide Town is the most conducive to building sewage
treatment plants, with 16.58% and 10.67% of areas rated as G and VG, respectively, and
they are distributed around the urban area, as shown in Figure 7c. This is due to the gentle
terrain (IS4) and suitable soil texture (IS6) in the urban area, resulting in the high overall
score of this town. The high siting suitability means that the government can set up a
sewage treatment plant in Huaide Town as a pilot site, followed by Qin Town, Yang Town,
Maolin Town and Shijiapu Town.
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5. Conclusions

A reasonable layout of environmental facilities can maximize their functions and
reduce the negative impact on the environment and society at a small cost, but many
developing countries are not aware of this issue. Sewage treatment plants are one of
the most commonly used facilities for water pollution prevention and control. With the
increasing acknowledgement of the significance of site selection, more research will be
conducted in this field. In order to enrich the framework of site selection models, this
study developed a combined multi-criteria site selection model with GIS, AHP and Remote
Sensing (RS) technologies, revealing blindness in former site selections of sewage treatment
plants and exploring optimal siting areas. This model explored an effective method to
quantify summer dominant wind direction and urban stream direction, and it was first
applied in the Liao River basin in Jilin Province in China.

The research shows that local governments should handle blindness and subjectivity
existing in the following aspects when selecting sites in the Liao River basin: distance from
river and residential area (IS2 and IS7), dominant wind direction (IS8) and urban stream
direction (IS9). Later, the site selection of sewage treatment plants could also be optimized
overall by comprehensive analysis of local soil texture (IS6). Although the location of
many sewage treatment plants is highly evaluated, the assessment of Gong City Sewage
Treatment Plant and Guo Town Sewage Treatment Plant is not ideal due to defects in
various indicators. Additionally, problems exist in the location of the Northeast Hosiery
Base Sewage Treatment Plant, which is less than 200 m away from residential areas, leading
to odor, visual and other pollutions. In this model, the influence of pipe network coverage
(IS3) on site selection is strong. This indicator, together with terrain slope (IS4) and soil
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texture (IS6), gives SSMs regional characteristics. Huaide Town has the largest optimal siting
areas because of its gentle terrain and acceptable soil texture. This town can be considered
as a pilot site for the construction of sewage treatment plants. On the contrary, in Shijiapu
town, the optimal siting areas are quite limited and are distributed in the north and west.
To build sewage treatment plants in this town requires various aspects of investigation
with considerable caution. In addition, combined with RS technology, Maolin Town was
divided into three optimal siting areas, distributed in the west and south. This approach
can make the areas more visible and reduce the investigation workload of decision makers.
It can be seen that this enriched site selection model consisting of GIS, AHP and RS can
effectively divide optimal siting areas of sewage treatment plants, providing a scientific
and robust decision-making support framework for local governments.
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