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Abstract: Groundwater is an important water resource that accounts for 30% of the world’s freshwater.
97% of this extracted groundwater is for drinking and human use. Due to anthropogenic activities,
this resource is affected and, consequently, its life cycle is modified, changing its natural state. This
paper aims to analyse the scientific production that deals with the study of groundwater’s Life Cycle
Assessment (LCA), using bibliometric methods. Thus, it contributes to the evolution of knowledge of
this resource in terms of its use (environmental, economic and social). The methodological process
includes: (i) selection and analysis of search topics in the Scopus and Web of Science (WoS) databases;
(ii) application of Bibliometrix and Visualisation of Similarity Viewer (VOSviewer) software to the data
collected; (iii) scientific structure of the relation of the topics groundwater and life cycle, considering
programme lines and relations in their sub-themes; (iv) literature review of Author keywords. A
total of 780 papers were selected, 306 being from Scopus, 158 from WoS and 316 published in both
databases. The time evolution of the analysed data (publications) indicates that groundwater LCA
studies have seen exponential growth (between 1983 and 2021). In addition, it has three development
periods: introduction (years between 1983 and 2001), growth (between 2002 and 2011) and maturation
(between 2012 and 2021). At the country level (origin of contributions authors), the USA dominates the
total scientific production with 24.7%, followed by Denmark with 12.8% and 10.3% for China. Among
the main topics of study associated with LCA are those focused on: the proposal of remediation
methods, the application and development of technologies and the use of water resources by the
urban community. This study allows establishing new trends in agricultural development issues
about irrigation efficiency, wastewater reuse, mining and treatment, climate change in a circular
economy scheme related to sustainability and life cycle assessment.

Keywords: aquifer; lifecycles; sustainability; co-occurrence analysis; scientometric analysis

1. Introduction
1.1. Overview

Freshwater accounts for 3% of the earth’s available water resources [1]. Despite its
small fraction, its contribution is significant in the face of increasing demand for this
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resource worldwide (1% growth since the end of the 20th century) [2], and in some places,
it is the only source of this resource. This global water demand or scarcity is caused by
climate change and poor management strategies [3,4]. Another cause is the unstoppable
growth of the world’s population, the urbanisation of new territories and increasing
industrialisation [5–7]. In general, water is an irreplaceable and fundamental element that
contributes to the development of human life and society, making it a subject of great
interest in the last three decades [8–11].

Freshwater is in diverse ecosystems such as ice caps, lakes, rivers, swamps, soil
moisture and groundwater. Groundwater is a natural resource hidden in the earth’s crust,
representing a not visible ecosystem to life on the surface. It is also considered a sustainable
water resource that is part of the earth’s water cycle, which flows or is recharged by the
natural energy provided by the sun [12–14]. Groundwater has an important role in the
storage or reserve of freshwater, accounting for 30.1% of the planet’s total [15]. These
reservoirs also contribute to lake and river formation by filtering fresh water to the land
surface, forming flora and fauna ecosystems [16,17]. In addition, 97% of this extracted
groundwater is used as a hydrological resource for developing the modern economy,
mainly in human consumption, agriculture, domestic necessity and manufacturing [18–22].
Therefore, groundwater is in high demand worldwide, with approximately 800–1000 km3

of water per year [23].
Physical and chemical methods exist for quality location and interpretation of these

ecosystems in groundwater exploration [24–26]. There are also strategies for exploiting this
resource, like natural production (i.e., springs or underground discharges, lakes, rivers) and
artificial production (i.e., water wells with electric pumps or compressors) (e.g., [27–29]).

Living beings and renewable-non-renewable resources are part of a life cycle that
hosts a start-to-finish process, understood as the whole process “from the cradle to the
tomb” [30–32]. It encompasses conception, birth, adolescence, maturity, senescence and
death [33]. At the beginning of the 20th century, the concept of the life cycle was of great
interest in general biology, with studies focusing on the life cycle of an individual [34,35].
The life cycle is a maturational and general process of natural populations. This criterion
has alternate conceptions such as lifespan and life-course, and they do not share the same
meaning concerning reproduction that transcends an individual [36]. Life cycle theory
is frequently used in production and industry, environmental impact assessment and
has great significance in the mining industry [37]. In the industrial field, the life cycle
considers the phases of a product from extraction, processing, distribution, transport, use
and consumption to recycling and disposal [38].

Environmental problems and the limitation of natural resources strengthened the life
cycle concept through global modelling research and energy audits [39]. Changes in weather
patterns alter groundwater quality, like sea-level leading to saltwater intrusion [40–42]. On the
other hand, anthropogenic activities affect the groundwater’s life cycle, mainly by excessive
fertilisers, animal manure, domestic water and solid waste [43,44]. Another activity is
the industrialisation of mining in the exploration and production stages, which affects
the groundwater environment, reducing the quality of these waters [45,46]. These factors
mark an environmental and human health concern, as polluted water accumulates heavy
metals in linked living systems [47]. Tackling groundwater contamination issues is key to
environmental remediation, considering sources, possible reuse of contaminated resources,
controls and mitigations of pollutant factors [48,49].

LCA is an internationally standardised methodology for assessing the environmen-
tal impact of products, processes and activities in all stages of the life cycle [50]. The
relationship of groundwater to the life cycle is a key factor in sustainable development
and special attention by governments, society and the scientific community. According
to Lemming [51], LCA “is becoming an increasingly widespread tool in support systems
for environmental decision-making regarding the cleanup of contaminated sites”. LCA is
considered the most appropriate way to achieve integrated sustainability from remediation
projects like those of wastewater treatment [52,53]. In the case of groundwater, some au-
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thors [54] focus their analysis on a system boundary of the LCA study that contains: the
construction of tube wells, groundwater abstraction, water distribution and disposal of the
material after its useful life. The LCA of groundwater has several stages from the origin to
the end of its use, such as extraction, treatment, consumption and reuse of resources [55,56].
This process has been applied in papers of the agricultural energy sector [57], primary and
wastewater treatment [58] and urban water supply systems [59].

Bibliometric analysis is a field of scientific research that identifies the cognitive struc-
ture and intellectual relationships through quantitative analysis of performance, like docu-
ments, authors, countries, journals and institutions [60,61]. This analysis uses systematic
techniques that make it easier to obtain transparent bibliographic information to know a
specific field [62]. It also explores in-depth the topics that the scientific community considers
relevant in social, economic and environmental sustainability [63]. In addition, bibliomet-
rics has contributed to various academic fields like Earth Sciences [64], sustainability [65],
environment [66], engineering [67] and industry [68].

In bibliometric studies oriented towards environmentally sustainable development
and climate change, similar to those addressed in this paper, the contribution of this system-
atic approach allows for a better characterisation of these issues [40,41,43]. The Scopus and
Web of Science (WoS) databases provide extensive coverage of scientific disciplines, ease
of access and visualisation for the search and collection of scientific information [64,69].
For example, WoS has provided information since the beginning of the last century, host-
ing approximately 1300 prestigious journal articles [70] and 256 disciplines [71,72]. The
database includes more than 8700 academic journals in various fields, like natural sciences,
engineering, biomedicine, social sciences, arts and humanities [73]. In addition, it presents
a wide range of bibliometric studies [74,75].

1.2. Aim and Scope

This paper aims to analyse the scientific production that addresses groundwater’s
life cycle analysis through bibliometric methods to contribute to the knowledge of subject
evolution within the framework of its utilisation (environmental, economic and social).

The bibliometric study seeks to describe the groundwater life cycle from activity
determination, problems and importance of the topic; a detailed description of data mining
and a presentation and analysis of results based on the combination of bibliometric data to
determine the performance, developments and trends in the study field.

2. Materials and Methods

The methodology proposed in this work comprises three phases that allow this analysis
to be carried out (Figure 1): (i) selection and analysis of topics in Scopus and Web of Science
(WoS) databases; (ii) application of Bibliometrix (developed by Massimo Aria, Naples,
Italy) and VOSviewer software (developed by Jan van Eck and Ludo Waltman, Leiden,
Netherlands); (iii) scientific structure; (iv) literature review of Author Keywords.
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2.1. Phase I: Selection and Analysis

The relationship between groundwater and the life cycle has a broad scope in various
fields of science (e.g., Environmental Science and Engineering). The search considered the
topic search “life cycle” AND “groundwater”, searching on titles, abstracts and keywords
in the Scopus and WoS databases [78,79]. These databases have filtering mechanisms that
allow grouping the information based on the criteria considered, such as the terms of
inclusion (i.e., all types of documents, language, years and subject area) and exclusion
(i.e., the current year 2022) [80]. They also allowed the selection of various download
format options. According to the software to be selected, the present study collected files in
Comma-Separated Values (CSV) and BibTex format in Scopus, Excel and Plain Text File in
WoS for the processing-analysis of the information.

Files obtained from Scopus and WoS require cleaning records with inconsistencies
prior to merging and using the information. The data were downloaded after filtering the
information in the databases, obtaining 630 documents from Scopus and 474 from WoS.
The data processing consisted of eliminating records without author names, titles and year
of publication in CSV, Excel, BibTex and Plain Text File, finding eight inconsistencies in the
Scopus formats, resulting in 622 Scopus documents and 474 WoS documents. Subsequently,
this study considered eliminating Scopus publications found in WoS (316 duplicate docu-
ments) due to the diversity of subject areas [69] and the higher quartile quality of journals
in WoS [70]. It also has an important data organisation that allows for complete and less
inconsistent information [81]. After this process, the records were 474 documents in WoS
and 306 in Scopus, generating 780 documents for the graphs of top author production over
time, most relevant sources, country scientific production and keywords frequency, as well
as the analysis of scientific production, Author Keywords and literature review. On the
other hand, the subject area analysis used the 622 Scopus documents and WoS publications
to involve their academic distributions.

2.2. Phase II: Software Application

• Bibliometrix: is an R package that allows analysing bibliometric data using specific
tools [82,83]. This study used RStudio version 4.1.2, setting up the R environment
package. Bibliometrix uses the functions readfile (loads and converts data into UTF-8)
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and convert2df (extracts and creates a data frame). The software processed the infor-
mation through a codification in RStudio, which allowed the automatic cleaning of
the records, considering keeping the WoS archives and eliminating duplicates from
Scopus [84,85]. The data are generated using R’s generic (plot) function [86].

• Visualisation of Similarity Viewer (VOSviewer): the clean CSV file was entered into the
program for the generation of the Author Keyword map, indicating the link between
the most frequent words related to the life cycle of groundwater. In recent years,
this software has been applied in several different areas (e.g., [66,78]). This software
made it possible to analyse the intellectual structure of this research field through the
construction and visualisation of a comprehensive bibliometric mapping [87,88].

2.3. Phase III: Scientific Structure

This work is made up of two sections, the scientific development, which contains the
intellectual approach, and the academic structure, which shows the intellectual links. The
first one develops a knowledge analysis of scientific production, top author production over
time and main journals-subject areas [89,90]. On the other hand, the academic structure
makes it possible to visualise the intellectual environment to characterise the links between
various disciplines and countries [91,92].

2.4. Phase IV: Literature Review of Author Keywords

This section is based on a systematic search and classification related to Author
Keywords clusters analysis, considering all types of documents, such as scientific articles,
books and conference papers. The review details the studies’ importance or scientific
interest on the same topic. Although the research results reflect various documents (780),
the review compiles the publications based on the Author Keywords.

3. Results

The first phase of the search allowed the identification of 622 documents in Scopus
and 474 in WoS that individually belong to this field of study. However, this information
presents 316 duplicates that are eliminated, considering 780 publications in the processing
or analysis. Therefore, this information corresponds to 306 documents only from Scopus
and 158 from WoS, and 316 from both databases (Figure 2).
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Table 1 shows an overview of the information used in the corresponding analyses,
based on the data fusion obtained in the two databases’ compilation.
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Table 1. General information based on the two bases merger.

Items Quantity

General Information
Documents 780

Sources (Journals, Books, Conferences) 450
Average years from publication 7.72

Average citations per documents 23.76
Average citations per year per documents 2.906

Author’s Keywords 2104

Authors’ information
Authors 2672

Authors of single-authored documents 61
Authors of multi-authored documents 2611

Authors’ collaboration
Single-authored documents 66

Documents per Author 0.292
Co-Authors per Documents 4.17

3.1. Scientific Development
3.1.1. Scientific Production

Figure 3 shows a distribution of publications over time. According to Price’s Law [93],
the subject presents an exponential growth due to the significant production in the last
16 years (2006–2021), marking the peak of this research field (86.5% of production).
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The scientific production comprises three periods of development: introduction
(1983–2001), linear growth (2002–2011) and exponential growth (2012–2021).

• Introduction period. The first period consists of 55 publications, representing 7.05%
of the total. The results show that the interest in the groundwater theme with the
life cycle started from the environmental problem–solution relationship and water
trade, presenting studies of life cycle alterations in water ecosystems [94,95], contami-
nated resources treatment [96] and water desalination for urban distribution [97]. In
subsequent years, research has concentrated on biological analyses in water ecosys-
tems [98–100], hazardous waste transport [101], water abstraction mechanism [102]
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and groundwater risk assessment [103]. In addition, the first studies related to LCA of
environments polluted by industrial and urban activities are starting [104,105].

• Linear growth period. This period shows 192 documents representing 24.6% of the
total, with a growth that marks the scientific interest in this field of research. The infor-
mation shows the importance of implementing LCA in groundwater ecosystems and
related environments (river formation, lakes, lagoons), which are affected by climate
change and anthropogenic activity [106–109]. Technological innovation has a relative
contribution to solving these problems, like simulation programmes that project the
behaviour of anthropogenic factors on natural resources [110,111]. Subsequently, it
allows the generation of a detailed analysis for environmental remediation [112,113].

• Exponential growth period. The last period represents the key to exponential growth,
grouping 533 documents (68.3% of the total). The year 2019 presents the highest num-
ber of publications (with 82 documents), followed by the year 2021 (with 64), making
it a constant growth field (Figure 2). This period shows the strengthening of research
in this academic field with various topics, like trichloroethene contaminated areas
assessment [114–116], surface to groundwater transition [117], acid rock drainage to
glacial ecosystems [118]; as well as LCA related to brine treatment [119], dispersed al-
kaline substrate technology [120], electrokinetic in situ remediation [121] and filtration
systems [122]. In addition, there are many studies related to environmental problems
caused by mining and agriculture (major share of world trade today) [123–126].

3.1.2. Top Author Production over the Time

The scientific field shows a total of 2672 authors since 1983. This analysis shows the
top 20, ranked by production time, paper numbers and total citations (Figure 4). These
authors have a remarkable contribution to papers and citations, with publications dating
back to 2004.

• Time of production: some of the prominent researchers have a long time of production.
However, other authors have a shorter time of scientific development with outstanding
production (e.g., Verones F., Liu Y., Manfredi S., Bjerg P.L., Godskesen B.). These authors
generate publications related to ecotoxic impacts assessment of heavy metal leach-
ing [127–129], ecosystem problems due to water consumption [125,130,131], wastewater
and water use sustainability in the context of environmental impacts [132–134] and
landfills environmental assessment [135–137].

• Number of papers: some authors contribute consistently with an average of two papers
per year (e.g., Christensen T., Hauschild M., Hellweg S.). These present authors’ studies
on sustainable transport using reusable equipment [138], environmental simulation
systems and solid waste assessment models [139,140] and environmental impact
assessment [141–143]. Other authors have an average production of 1 to 1.6 papers per
year (e.g., Pfister S., Verones F., Bjerg P., Bayer P., Rygaard M., Chen Y.), with studies
analysing future water limitation by uncontrollable consumption [144,145] and urban
water supply alternatives [146,147].

• Total Citations (TC): the most cited authors received up to 38.67 citations per year
(Hellweg S., Pfister S., Verones F.), marking an important contribution to the scientific
field. Researchers with lower productivity have a significant number of citations,
averaging 13.58 and 32.89 citations per year (e.g., Bjerg P., Margni M., Lemming G.).
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3.1.3. Most Relevant Sources

The analysis provides a general overview of the journals related to this academic
field and the knowledge topics [148]. In general terms, the total output (780 documents)
shows 450 journals from various subject areas. This section presents the top 20 sources
from various subject areas with 249 papers (31.9% of the total) (Figures 5 and 6).

The groundwater and life cycle research rise are in journals, like Journal of Cleaner
Production, International Journal of Life Cycle Assessment, Science of the Total Environ-
ment, Environmental Science & Technology, Waste Management and Water Research. These
sources generate publications related to the areas of “Environmental Science”, “Engineer-
ing” and “Chemistry” [149–151]. Other journals, like Sustainability, Water, Agricultural
Systems and Resources, Conservation and Recycling, have a prominent participation
in “Agricultural and Biological Sciences”, “Social Sciences”, “Energy” and “Economics,
Econometrics and Finance” [152–155]. In addition, there are sources with less scientific
production, like Energies and Applied Energy, belonging to the “Energy” area. However,
these studies have an important collaboration in energy innovation, like biomass and
friendly energy [156,157].
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3.2. Academic structure
3.2.1. Author Keyword Co-Occurrence Network

This analysis allows the intellectual structuring of knowledge through a network of
frequently occurring terms using the VOSviewer software [158]. The programme handled
2109 keywords using processing conditions through a thesaurus, such as similar words
reduction, plural words and the number of keywords occurrences (five times) [159]. There-
fore, 58 nodes comply with the variables mentioned above, forming seven clusters in total
(Figure 7).
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Cluster 1-“climate change and water use” (red colour), has the highest number of
nodes (12 keywords) with 107 occurrences. This cluster presents studies related to water
resources use, environmental issues and water distribution for energy production. Some
researchers study the water supply mix in LCA [160], cause-effect to human health from
contaminated water use [161], water footprint inventories [162,163] and Amazonian per-
cussion by land and water use [164]. Other authors focus their studies on strengthening
environmental impact assessment [133], environmental impact analysis for pollution and
water consumption [145], ecosystem services assessment [165], biomass supply [166], eco-
nomic decision-making [167], circular economy in water use [168] and environmental
sustainability in agriculture [169].

Cluster 2-“sustainability” (green colour) is the second-largest cluster with 11 keywords
and 74 occurrences. This node set presents municipal solid waste management and water
treatment costs publications [170–172]. There are authors with studies characterising
new perspectives for sustainable development, like the application of solar water heating
systems [173], algal biodiesel [174], food system strategies [154] and multi-objective mixed
integer linear programming [175].

Cluster 3-“mining and treatment” (blue colour), represents a set of nine nodes (60 oc-
currences). Topics are focused on water treatment for human consumption (bottling and
drinking water system), like water quality analysis surveys [176], water footprint reduc-
tion [177], groundwater contamination by engineered nanoparticles [178], environmental
impact assessment of water supplies [179] and primary water treatment for human con-
sumption [180]. In addition, studies related to mining activity and its environmental
consequences appear for the first time on a large scale [58,181,182].

Cluster 4-“water consumption and reuse” (yellow colour), integrates a total of nine
nodes (69 occurrences) detailing a sequence of works on water pollution, remediation,
reuse and scarcity. The researchers apply remediation systems for waste regeneration [183],
potable water reuse for environmental and social benefits [184], technology assessment
methods for water supply [185], nanotechnological remediation [186] and urban water
management decision making [146]. Other studies present a monetary costs analysis of
secondary impacts during environmental remediation [187].

Cluster 5-“wastewater reuse and groundwater pollution” (lilac colour), consisting of
seven nodes (118 occurrences), deals with groundwater and the importance of protecting
its life cycle, as well as topics related to wastewater, pollution and irrigation. Papers
relate water reuse methods and agricultural-urban water use, such as tertiary treatment
of wastewater in urban consumption [56,188], the water-energy nexus in energy-intensive
systems and environmental impact [59] and absorption of nutrients from wastewater for
agricultural irrigation [126]. On the other hand, there is work that focuses on sustainability
in groundwater extraction through artificial production (submerged pumps) [189] and the
application of sustainable adsorbents for wastewater defluorination [190]. Other studies
analyse contaminant adsorption methods [132,191], the economic benefits of wastewater
use [192] and Multiple Inlet Rice Irrigation [193]. In addition, some authors use simulators
in agriculture for the water supply and anthropogenic control analysis [194].

Cluster 6-“environmental cycle” (light blue colour), has six nodes in total (82 occur-
rences). The works detail a similar content to other clusters (1 and 2), oriented to desalina-
tion, quality and environmental impact of water resources from groundwater ecosystems.
Studies focus on ecological desalination with renewable sources [151,195], the environmen-
tal impact of industrial waters [196], economic-environmental development [128], shale gas
development analysis [197], water footprint [198], life cycle inventory [199], expansion of
urban water infrastructures [200] and dual-purpose pressure retarded osmosis desalination
plants [201].

Cluster 7-“life cycle assessment” (orange colour) is the cluster with the smallest
number of nodes (three). However, it has the highest frequency keyword in terms of
the groundwater relationship with the life cycle, with 164 occurrences out of the total
group (177). The section shows a variety of studies regarding LCA in an environmental,



Water 2022, 14, 1082 11 of 26

economic and social framework [202–206]. In addition, it presents studies of groundwater
environmental remediation through various sustainable methods [183,207,208], the water-
energy nexus in energy intensity and environmental impacts terms [59].

3.2.2. Country Scientific Production

The analysis presents an association rule between three variables that determine the
relationship of an investigation [82,209]. This analysis shows the author-country-keyword
intersection with a limit of 12 variables per category (Figure 8). A total of 72 countries have
conducted scientific research on the life cycle of groundwater, led by the USA, Denmark,
China, Germany and Switzerland:

• The USA has a contribution of 193 publications with the relevant participation of
five authors and a presence of important keywords like “life cycle assessment” (in
62 papers), “groundwater” (54), “water quality” (19) and “water footprint” (7). This
nation generates a work variety that focuses on the life cycle assessment of water
resources in environmental impact areas, water quality, desalination and irrigation in
agriculture.

• Denmark presents a contribution of 100 documents with the strong participation of
six authors and seven main keywords. Like the USA, Denmark has an academic
contribution to the life cycle and environmental impact assessment, contaminated
water remediation and conventional desalination processes for urban and industrial
consumption.

• China has 80 publications involving a contribution of 10 keywords and two relevant
authors. In the academic literature, there are a variety of studies like those in the USA
(e.g., life cycle assessment, groundwater, water footprint, remediation, water quality).
However, the research boom began in 2015, determining its recent strength in this
scientific field.

• Germany contributes with 67 papers featuring five main authors and seven highly
related keywords. This nation shows a remarkable production (behind the USA),
which determines the interest in studies on the environmental problem solutions and
the groundwater life cycle protection.

• Switzerland presents a contribution of 59 publications with prominent authors (five)
and keywords (three). This nation shows strength in sustainability studies linked to the
environmental impact of water ecosystems, strongly involving assessment methods.

• Other countries also contribute to this scientific field (e.g., France, Canada, Australia,
United Kingdom) and other remarkable production nations.

3.2.3. Keyword Frequency

This analysis presents the frequency of the main topics that allowed the selected study
field’s evolution (Figure 9). This section considers keywords that appear in at least three
studies, placing the node in the year of the highest frequency. The information shows that
scientific development begins with water treatment and biological studies of insects found
in this resource. Subsequently, the work focused on pollution problems in groundwater
ecosystems due to increasing socioeconomic demand at the global level. The issue involved
the concepts of sustainable development, the management of toxic waste and the life
cycle to ensure a balance between the protection of ecosystems and socioeconomic growth.
However, the results were not significant, which allowed maintaining the environmental
impact assessment processes and proposing new analysis strategies, such as life cycle
assessment for water quality studies and decision making. This criterion is related to
agricultural activities and urban water consumption, belonging to the keywords “water
supply”. On the other hand, water scarcity, water quality issues and energy demand have
strengthened carbon, water footprint reduction studies, renewable energies implementation
and wastewater reuse through water treatment methods. The information present in the
last years (2020–2021) reflects a strong interest in the environment, wastewater reuse and
circular economy issues.
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3.3. Literature Review of Author Keywords Clusters

This section identifies the findings of scientific works related to the keywords with the
highest occurrence in each cluster. In general, the review presents the most representative
papers of each cluster (1 to 3 publications), examining a total of 41 papers (Table 2). In
addition, it is considered that the papers should respond to environmental, economic and
social aspects.
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Table 2. Literature review of Author Keywords in an environmental, economic and social aspect.

Clusters Aspect Author/Secondary Keywords Description of Results References

C 1 1

Environmental

Water footprint/water
supply mix

Water supply mix (WSmix) benefits
environmental profile and energy linkage,

feasible in countries with different
socio-economic conditions.

Leão et al. [160]

Water foot-
print/amazonian percussion

The assessment methods identified that
impacts from agricultural activity increase

atmospheric and terrestrial fluxes. This study
determined a lower impact intensification and

the benefits of the water resources.

Lathuillière et al. [164]

Economic

Water footprint/economic
decision-making

Strengthens decision-making for growers and
plant producers on the relationship between

water resources and economic sustainability in
terms of savings and financial gains.

Majsztrik et al. [167]

Ecosystem
services/circular economy

The study determines the importance of
promoting the circular economy in water

market initiatives, as it favours the reduction of
the environmental footprint of

water consumption.

Sauvé et al. [168]

Social

Life cycle impact assessment,
water footprint/

water consumption

It analyses the effects of water consumption,
focusing on impact assessment methods: water
scarcity, human health, ecosystem quality and

resource depletion.

Pfister [145]

Water footprint/human health,
cause-effect

Cause-effect modelling improves the
assessment of the harm to human health in the

water footprint caused by polluted
water consumption.

Mikosch et al. [161]

C 2 2

Environmental

Life cycle cost,
renewable energy/solar water

heating systems

In aquaculture, solar water heating systems
have a less environmental impact in cold

climates than electric power and other climates.
Kim & Zhang [173]

Sustainability, life cycle
cost/tertiary treatments

Tertiary wastewater treatment with favourable
results and opportunity for

groundwater recharge.
Akhoundi & Nazif [56]

Economic

Sustainability/food system
The study shows that some current trends

threaten the socio-economic and environmental
sustainability of the US food system.

Heller & Keoleian [154]

Life cycle
cost/renewable systems

Wind energy use shows advantages in water
scarcity problem areas, low economic resources

and civil strife.
Bouzidi [171]

Social

Sustainability/algal biodiesel
Analysis determines that algae biodiesel

production improves energy security and
creates new job opportunities.

Zhu et al. [174]

Municipal solid waste/linear
programming model

The development of multi-objective
mixed-integer linear programming allows the
design of an integrated municipal solid waste

network, avoiding social and
environmental problems.

Yousefloo & Babazadeh
[175]

C 3 3

Environmental

Water treatment/nanoparticle
concentrations

The artificial nanoparticles impact
groundwater quality, so ultrafiltration

techniques are needed to remove nanoparticle
contamination in waters.

Troester et al. [178]

Mining/environmental
consequences

The water risk assessment showed that regions
with nickel, copper and lead-zinc production

alter the water balance, water quality and
mining infrastructure.

Northey et al. [181]

Water consumption/water
footprint reduction

The production of algae feedstock for biofuel
reduces the water footprint by 18%, presenting

energy potential and salinity tolerance.
Mayer et al. [177]

Economic

Water consumption/
water quiality

Social surveys indicate the importance of tap
water quality in urban consumption, as it

would reduce bottling, protect the environment
and implement good circular

economy practices.

Gambino et al. [176]

Water consumption/
food balance

Using a balance of food consumption in
countries worldwide would mean saving
freshwater and developing the economy.

Blas et al. [152]

Social Risk assessment/
mining pollution

Abandoned mining areas pollute water
resources for urban consumption, affecting the
social and environmental relationship, and it is

important to apply the LCA.

Feng et al. [45]
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Table 2. Cont.

Clusters Aspect Author/Secondary Keywords Description of Results References

C 4 4

Environmental

Remediation/waste
regeneration

The comparative evaluation of water treatment
methods defines the importance of

understanding the harmful substances’ fate
during incineration and the need for

technologies to dispose of these substances.

Boyer et al. [183]

Water reuse, water
supply/environmental impact

Environmental impact assessment is crucial
during water management decision-making in

environments experiencing new
urban settlements.

Rygaard et al. [146]

Economic

Water supply/technology
assessment method

The multi-criteria evaluation method argued
that groundwater abstraction is the most

sustainable supply technology in an economic
or social framework.

Godskesen et al. [185]

Remediation/decision
support, secondary impacts

of remediation

The probabilistic model indicates that the
secondary impacts of remediation are

converted into monetary costs. The
methodology facilitates decision-making in

remediation interventions.

Lemming et al. [187]

Social
Remediation/nanotechnology

The analysis found that nanotechnology in
agricultural products provide a controlled

release of chemicals, preventing contamination
of water sources.

Iavicoli et al. [186]

Water supply, water scarcity,
water reuse/environmental

and social benefit

Quantitative and qualitative assessments
showed that potable reuse has environmental

and social benefits.
Haak et al. [184]

C 5 5

Environmental

Life cycle/
sustainable adsorbents

The study evaluates three adsorbents in water
defluorination, presenting lower energy

intensity by reducing the carbon footprint
between two and 20 times concerning

activated alumina.

Pan et al. [190]

Groundwater, pollution,
irrigation/simulator

The simulators make it possible to determine
that it is necessary to create an optimal balance
between the number of chemical fertilisers and

water applied to crops.

Marinov & Marinov
[194]

Wastewater/adsorption
method

The adsorption assisted by activated carbon,
biochar, nanomaterials and clay minerals

demonstrates a highly effective and
environmentally friendly treatment.

Rasheed et al. [191]

Economic

Wastewater reuse/
economic benefits

The reuse of treated wastewater benefits the
economy of a territory. Sites with unsustainable

exploitation of natural resources.

López & Rodríguez
[192]

Groundwater, irrigation/
Multiple Inlet

Multiple Inlet Rice Irrigation benefits
agricultural activities, like reducing water
consumption and production cost savings

by 128%.

Shew et al. [193]

Social Wastewater/adsorption
method

Wastewater treatment with adsorption
methods presents quality results concerning

other methods (reverse osmosis) for
ammonium capture, sustaining the current

social demand for water.

Zhang et al. [132]
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Table 2. Cont.

Clusters Aspect Author/Secondary Keywords Description of Results References

C 6 6

Environmental

Desalination/renewable
resources

Geothermal presents benefit that could meet
current demand, as it is not dependent on

weather conditions and the heat flow is
constant relative to other renewable sources.

Prajapat et al. [195]

Desalination/ecological
desalination

The technological advances and renewable
energies allow implementing green

desalination methods, replacing conventional
desalination and reducing
environmental problems.

Ihsanullah et al. [151]

Economic

Environmental impact/
shale gas

The analysis showed that shale gas is not an
option for development, as it presents polluting

factors, such as methane gas, groundwater
contamination and increased seismicity.

Melikoglu [197]

Environmental
impacts/economic

development

The water harvesting alternatives
demonstrated that ultrafiltration plants have a

reduced added value than the conventional
system, demonstrating new

urban development.

Faragò et al. [128]

Social

Desalination, water
resource/retarded osmosis

Dual-purpose pressure retarded osmosis
desalination plants offer a potential solution, as
they provide water security at a lower cost and

incentivise renewable energy, meeting the
social tdemand.

Sahin et al. [201]

Water resources/water
infrastructure

Through a strategic planning methodology, it is
possible to expand urban water infrastructure

to balance temporary water supply and
demand.

Hao et al. [200]

C 7 7

Environmental

Life cycle assessment/
water-energy nexus

Analysis in 20 regions and four countries
demonstrated the importance of understanding

the water-energy nexus and water
supply-quality systems, and a

policy formulation.

Lee et al. [59]

Life cycle assessment/concrete
Concrete has some benefits over conventional

cement in terms of reducing
environmental impact.

Dandautiya & Singh
[203]

Economic

Life cycle
assessment/non-potable reuse

Mixed wastewater bioreactor systems showed
a lower cost of potable water reuse for drinking

water consumption in urban buildings.
Arden et al. [204]

Life cycle assessment/solar
photovoltaic energy

Solar photovoltaic energy in agriculture has
economic and environmental benefits, as it

reduces the cost and consumption of electricity
and the emission of greenhouse gases.

Lago et al. [205]

Social Life cycle assessment/urban
management

Renewable energy impacts meeting energy
demand in countries with large urban water

distribution areas and are important in urban
planning and management.

Wakeel & Chen [206]

1 Cluster 1; 2 Cluster 2; 3 Cluster 3; 4 Cluster 4; 5 Cluster 5; 6 Cluster 6; 7 Cluster 7.

4. Interpretation of Results and Discussion

The Scopus and WoS databases made it possible to obtain information on this field of
study based on the following search keywords. However, these databases present certain
inconsistencies in the downloaded documents, necessitating a detailed cleaning of each
format. Some studies have implemented cleaning mechanisms to obtain reliable data
removing inconsistencies in the records, like duplicated and missing records (e.g., authors,
titles) [78,210]. Our work generated a reliable analysis of the results. The information
had a rigorous cleaning process, obtaining records of relation more proximity with the
groundwater life cycle for quality literature use.

This study analyses the scientific production that deals with groundwater’s LCA
through bibliometric methods, broadening knowledge in an environmental, economic
and social framework. Several studies have used bibliometric models in LCA of water
ecosystems to understand the basic concepts and theories related to water supply sources.
For example, Vander Wilder & Newell [211], developed a robust bibliometric review,
integrating deep and broad content on ecosystem services. This bibliometric analysis shows
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the intellectual interaction, thematic strengths and evolving interest of various focus groups
integrating scientific methods to solve groundwater and related ecosystem problems.

In the fields linked to groundwater, there is research showing the global status of
sustainable water use, finding that agriculture is the main consumer of water resources with
trends starting from 2000 [212,213]. Our study determines that from 2012 onwards, there is
a greater influence of LCA studies, mainly in agricultural consumption and urban water
supply, in a framework of groundwater resources’ treatment and distribution/consumption
and related ecosystems (e.g., [59,126,188]). Determining that it is fundamental to apply this
tool (i.e., LCA) in the assessment processes of contaminated sites, allowing the generation
of study strategies that strengthen LCA processes and decision making [51].

In general, the bibliometric results indicate the participation of 2672 authors, where
Christensen T., Hauschild, Hellweg S., Pfister S. and Bayer P. show a predominance of
production in the scientific field, affiliated with countries with an exceptional number of
documents and citations. The literature indicates that 60% of publications belong to the
areas of “Environmental Science”, “Engineering” and “Chemistry”, most frequently pub-
lished by the Journal of Cleaner Production, International Journal of Life Cycle Assessment,
and Science of the Total Environment.

On the other hand, the literature review of the Author Keywords allowed us to analyse
various works related to the life cycle of groundwater based on an environmental, economic
and social framework:

• Environmental. Groundwater ecosystems and related environments have shown de-
pletion of water resources, mainly caused by conventional energy consumption, such
as hydropower and traditional pumping methods (agricultural and urban) [172,206].
Zhang [214] indicates the great interest in remediating pollution in groundwater
ecosystems, finding 5486 papers with significant growth in the last 15 years. The
present study proves that, since 2003, several scientists have valued the importance of
implementing sustainable methods for water management, benefiting the environment
and energy profile, like water supply mix [160], solar water heating systems [173],
algal feedstock [177], water treatment adsorbents [190,191] and simulators [194]; as
well as a variety of physical-chemical processes that ensure water quality through ul-
trafiltration techniques [178] and wastewater treatment [56]. In general, LCA methods
have allowed strengthening the knowledge of water resources decision-making in
various activities, like agricultural production [164], industrial production of raw ma-
terials [181], urban settlements in new natural areas [146], desalination processes [195]
and water supply-quality analyses [59].

• Economic. Over the last decades, economic growth has increased the demand for
groundwater sources [18,19]. This market development leads to new sustainable
strategies that maintain the balance between economic progress and water availabil-
ity, like decision-making for growers and agricultural producers [167], food system
monitoring in countries around the world [154], technology assessment method [185]
and food production cost reduction through Multiple Inlet Rice Irrigation [193]. On
the other hand, water harvesting and treatment techniques have been implemented to
reduce value-added costs in industrial and urban consumption [128]. Renewable en-
ergy systems (e.g., photovoltaic and wind energy) have an essential role in the energy
supply for water pumping, as they have lower investment costs than conventional
systems (e.g., diesel and petrol engines) [171,205]. These renewable sources provide
a favourable energy supply in areas with financial problems requiring wastewater
treatment processes (e.g., mixed wastewater membrane bioreactors and integrated
anaerobic) [132,204].

• Social. Population growth conducts to new social development objectives that cer-
tify water and food quality. In the last decade, the LCA has played a considerable
role in the quality analysis of urban drinking water sources [145]. This scientific
interest determines methods of solving urban problems (e.g., health damage and
water scarcity) caused by agricultural and mining pollution [45,58,126]. In detail,
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cause-effect modelling methods [161], multi-objective mixed integer linear program-
ming [175], nano-technology in agricultural products [186], adsorption methods [132]
and dual-purpose pressure retarded osmosis desalination plants [201].

In general terms, the work aims to maintain a balance between socio-economic de-
velopment and the protection of groundwater ecosystems [103,117,215], through vari-
ous sustainable strategies or methods that encourage the development of a future with
available natural resources for industrial, agricultural and urban consumption [48,49,216].
Another important aspect is the future challenges of the LCA technique. According to
Goglio et al. [217], a better determination of the boundary conditions would favour a better
estimation of life cycle analysis. In addition, Finkbeiner et al. [218], highlight the low fre-
quency of challenges such as allocation, uncertainty and biodiversity in inventory studies,
impact assessment, generic aspects and evolution related to LCA.

5. Conclusions

The analysis of groundwater life cycle scientific production in the Scopus and WoS
databases shows a 38-year evolution of the scientific field with a linear production in the
first 27 years (1983–2010) and exponential growth since 2011. This scientific development
deduces a boom in the last 16 years (2006–2021), grouping 86.5% of the scientific production.
We also note the collaboration of 2672 authors and 450 journals from various subject areas.
On the other hand, the academic structure indicates an intellectual focus of 2109 keywords
and a scientific contribution from 72 countries, led by the USA and Denmark.

The LCA of groundwater is an important factor in environmental, economic and
social development, linked to ecosystems that present the relationship with water resources
used in industrial and municipal mechanisms for agricultural irrigation systems and
urban supply. LCA is central to decision-making processes and water resources quality
analyses, defining water use controls, like urban water security, water treatment-reuse,
irrigation, reduction of conventional systems, calculation of water footprint and carbon
footprint in the context of an environmental system. These strategies would strengthen
the modern economy and meet the global demand for water in both developed and
developing countries. Promoting new sustainable methods in industrial, agricultural and
urban activities is crucial for groundwater life cycle and linked water environments (rivers,
lakes, lagoons).

The field’s intellectual structure also provided insight into various research topics to
strengthen scientific interest:

• Applying LCA assessment methods benefits socio-economic systems.
• LCA strengthens decision-making according to savings and financial gains during

agricultural and industrial activities with water requirements for energy and food
supply.

• Renewable energies presented favourable results in energy supply, substituting the
water need and balancing the water sources available for distribution to sectors with
high demands.

• Agricultural nanotechnology contributes to the environmental and social profile,
reducing chemical substance emissions and improving the quality of food products.

• Environmental remediation through LCA integrates sustainable methods for water
reuse, like adsorbents, geothermal processing and biomass.

This study contributes to the academic literature in terms of: (i) the possibility of
knowing different subject areas and relationships with the keywords through the link
between nodes; (ii) to know the scientific approaches that various authors and countries
contribute to environmental problems solution currently faced by groundwater ecosystems;
(iii) the study used as a guide for researchers that wish to understand the general outline of
the scientific field in an environmental, economic and social framework; (iv) review the
techniques and technologies used and tested as reference knowledge applicable in similar
cases. It may also allow the creation of a new process to preserve groundwater and its
relationship with LCA.
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