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Abstract: This study investigates the generation of spatially distributed roughness coefficient maps
based on image analysis and the extent to which those roughness coefficient values affect the flood
inundation modeling using different hydraulic/hydrodynamic modeling approaches ungauged
streams. Unmanned Aerial Vehicle (UAV) images were used for the generation of high-resolution
Orthophoto mosaic (1.34 cm/px) and Digital Elevation Model (DEM). Among various pixel-based
and object-based image analyses (OBIA), a Grey-Level Co-occurrence Matrix (GLCM) was eventually
selected to examine several texture parameters. The combination of local entropy values (OBIA
method) with Maximum Likelihood Classifier (MLC; pixel-based analysis) was highlighted as a
satisfactory approach (65% accuracy) to determine dominant grain classes along a stream with
inhomogeneous bed composition. Spatially distributed roughness coefficient maps were generated
based on the riverbed image analysis (grain size classification), the size-frequency distributions of
river bed materials derived from field works (grid sampling), detailed land use data, and the usage of
several empirical formulas that used for the estimation of Manning’s n values. One-dimensional (1D),
two-dimensional (2D), and coupled (1D/2D) hydraulic modeling approaches were used for flood
inundation modeling using specific Manning’s n roughness coefficient map scenarios. The validation
of the simulated flooded area was accomplished using historical flood extent data, the Critical Success
Index (CSI), and CSI penalization. The methodology was applied and demonstrated at the ungauged
Xerias stream reach, Greece, and indicated that it might be applied to other Mediterranean streams
with similar characteristics and flow conditions.

Keywords: HEC-RAS; flood inundation modeling; modeling approach; spatial distributed roughness
coefficient; UAV; remote sensing; image processing; image texture; river bed material mapping

1. Introduction

Several fields of geomorphological research such as sediment transport and deposi-
tion [1–3], the study of flow resistance, and the prediction of flow velocities in open channel
flow (e.g., [4,5]) can be described based on grain size measurements of fluvial sediments [6].
Many studies focused on methods for field measurements of riverbed sediment [7–10],
including the pebble-counting, volume-by-number, grid-by-number, and area-by-number
methods [11,12]. However, those methods are time-consuming and expensive, providing
inadequate, point-like local data. In cases where the composition of the riverbed is highly
mixed and the gravel-dominated bed is transformed into a sand bed, those methods are
not representative enough. River beds characterized by inhomogeneous composition in
conjunction with the growing interest for an increase in the sampled area accompanied
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by reduced field effort require map-like information, which nowadays can be provided
through the combination of digital imagery with image analysis [13].

In particular, river research studies have increasingly initiated utilizing UAV imagery,
which can offer centimeter precision and capture a vast quantity of data points in a short
time, covering large areas [14]. Correspondingly, image processing techniques, developed
in the last decades, were established as highly acceptable methods for automated grain
size data extraction from digital images of river beds [15–20]. Sediment grain size can be
evaluated using remote sensing technologies and image analysis techniques, including pixel
and OBIA [21]. Nowadays, pixel-based classification is limited as it produces inconsistent
classification results dealing with the rich information of high-resolution data, e.g., UAV
imagery [21]. However, OBIA utilizes object features, such as texture, forms, and spectral
information for segmentation and classification, while it was proven that OBIA classification
algorithms are more accurate, precise, and provide a greater estimation probability of the
statistical properties of an image in comparison with pixel-based image processing [14].
One of the first developed local image properties, capable of segmenting image areas, is
the texture evaluated with the co-occurrence matrix [22–24]. A raw image is transformed
through texture-based analysis to a textural image while the regional texture information
corresponds to gray levels [25]. Co-occurrence has the ability to quantify how many pixels
of similar gray levels are neighbors; hence, provided that image resolution is sufficient, it is
considered that image texture facilitates the grain size determination since distinct different
grain sizes are apparent [25].

Input data uncertainty is one of the most important sources of epistemic uncertainties
involved in flood inundation modeling [26]. Two major sources of input data uncertainty in
hydraulic–hydrodynamic modeling applications are the DEM accuracy and the roughness
coefficient value determination [27]. A common methodology followed for indirect estima-
tion of Manning’s n roughness coefficient values at ungauged catchments is the evaluation
of the river bed materials type and size based on field observations and photographs of the
study area [28]. However, the uncertainty associated with the above-mentioned indirect
method of Manning’s n roughness coefficient value estimation has led to the usage of other
techniques such as the Wolman pebble count method [29], grid sampling method [8], and
aerial sampling method [8] that estimates the grain size. It is important to highlight that a
typical approach followed in such cases is using empirical formulas where the particle size
estimation is a key-point parameter. Using particle size estimation methods in combination
with empirical formulas minimizes the objectivity involved in Manning’s n estimation.
The limitation of the methods mentioned above is that the estimated roughness value is
restricted only at the sampling area (e.g., estimation of separate roughness values for each
sample grid). Therefore, even though Manning’s n can be estimated in a better way using
such methods mentioned above, the estimation of spatially distributed Manning’s n values
for an entire stream reach still remains a challenging issue. As mentioned earlier, many
of the limitations can be overcome using Unarmed Aerial Systems (UAS) that allows the
production of high-resolution images and DEMs.

Another epistemic uncertainty involved in flood modeling and mapping is the applied
hydraulic modeling structure (1-D, 2-D, 1-D/2-D) [30]. The simplicity, low computational
power, and limited demands of input data rank the one-dimensional hydraulic models as
the most utilized modeling approach in river flood modeling applications (e.g., [31–34]).
Moreover, the usage of two-dimensional hydrodynamic models has risen dramatically
due to improvements in model parameter estimation methods, model structure, and other
related technological advancements [32,35–37]. Finally, river flood modeling applications
using coupled 1-D/2-D models have gained significant acceptance in the scientific commu-
nity due to the combination of the capabilities of 1D and 2D models [32,38,39].

According to the paragraphs mentioned above, it can be concluded that the objective
determination of roughness coefficient in river flood modeling remains a crucial issue.
Moreover, sensitivity analysis in flood inundation modeling using different hydraulic
modeling approaches and/or combined with spatially distributed roughness coefficient
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maps is a subject that still concerns the scientific community [40–43]. The main purpose
of this paper is to present an objective way to determine Manning’s n roughness values,
remotely-sensed estimated, and indicate how the changes in those values may affect a flood
extent. Both pixel-based and OBIA techniques were investigated to sufficiently classify the
dominant substrate grain sizes by using RGB (Red, Green, and Blue) images, obtained via
UAVs, and ground truth grain size data. Grain size classification accompanied by prede-
fined diameters, land use data, and empirical formulas contributed to the generation of
spatial distributed Manning’s n roughness coefficient maps. Another objective of this work
is to examine the sensitivity of different hydraulic–hydrodynamic modeling approaches
(1D, 2D, 1D/2D) and Manning’s n roughness coefficient scenarios on floodplain mapping
and flood inundation modeling at ungauged gravel-cobble bed streams. The simulated
flooded area validation was accomplished using historical flood extent data, the CSI, and
penalized CSI. The methodological framework was implemented at the ungauged Xerias
stream reach, Volos, Greece.

2. Materials and Methods

Towards the investigation of Manning’s n roughness coefficient estimation followed
by the sensitivity analysis of floods using different hydraulic/hydrodynamic modeling
approaches (1D, 2D, 1D/2D), several methodological approaches followed (Figure 1):
(1) fieldwork including the UAV flight and grid sampling along 11 sampling grids that
were equally distributed in the entire stream reach of 2.2 km in representative locations;
(2) dominant grain size classification along Xerias stream based on local entropy values,
estimated from UAV’s obtained RGB images; (3) generation of the spatial distributed
Manning’s n roughness coefficient maps based on size-frequency distributions of bed-
materials, land use data and empirical formulas; (4) estimation of the flood extent by
adopting 1D, 2D and coupled (1D/2D) hydraulic modeling approaches and its validation
by using historical flood extent data, the CSI, and penalized CSI.
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Figure 1. Flowchart of research methodology steps. Different shades of grey color represent the
distinct methodological approaches (the three grey shades ranging from light to dark grey represent
the grain size classification based on entropy values, the generation of the spatially distributed
roughness coefficient maps, and the estimation of the flood extent, respectively).
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2.1. Study Area

The study stream reach (Xerias stream), with a length of 2.2 km, is located at the
suburban region of Volos city, south-eastern part of Thessaly region, Magnesia prefecture,
Greece (Figure 2a). The stream reach lies between latitude 39.397251 to 39.380332 N and
longitude 22.916315 to 22.929220 E. The stream reach altitude ranges from 22 to 52 m, while
the gradient of the stream reach is approximately 0.014 m/m. There are three (3) bridges in
a row with variable length and width at the specific stream segment. The watershed area
up from the specific stream segment of Xerias is approximately 71 km2. The altitude of the
specific watershed ranges from 52 to 1600 m, and the mean slope of the area is 28%. The
largest part of the specific watershed is covered mainly by forest and semi-natural areas
(80.47%) and agricultural areas (19.54%). The selection of the stream reach is based on the
existence of typical bed material usually observed in mountainous and semi-mountainous
streams and the complexity of the river topography (Figure 2b,c). In particular, Xerias is a
gravel- and cobble-bed stream, which is a typical characteristic of intermittent flow streams
experiencing flash flood events. The torrential character of the specific stream reach and
the river bed is unchanged in the last decades and without severe manmade interventions.
Moreover, the Xerias stream, draining through the city of Volos, has experienced frequent
flood episodes due to intense storms. In October of 2006, the city of Volos in Magnesia,
Greece, was impacted by an extreme flash flood event that damaged several technical
infrastructures, transportation networks, and agricultural areas throughout the Xerias
River watershed. During this flash flood event, the heavy rainfall, equal to 232 mm, that
lasted approximately 12 h caused extended fluvial flooding [41]. It is important to note
that the railway bridge, which is located within the study area, collapsed during this flood
event. Details of the observed historical flood event of 9 October 2006 and the watershed
characteristics can be found in recent studies [30,41,44,45].
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2.2. Data, Ground Truth, and Tools Applied

The topographic field data in the study area were collected on 18 July 2019 by using a
DJI Phantom 4 V2 Professional UAV. The first stage of the photogrammetric study involved
the installation of Ground Control Points (GCPs) on the land and the flight operations,
while the second one comprised the office work. Thirty-nine GCPs were homogeneously
distributed around the study area and were measured before the UAV flight using the to-
pographical SP60 (Spectra corporation) Global Navigation Satellite System (GNSS) receiver.
During the office work, overlapping pictures were introduced in the Pix4D mapper soft-
ware to apply photogrammetric algorithms and develop the area’s Digital Surface Model
(DSM) and the Digital Terrain Model (DTM). The camera’s resolution was 20 MP, while the
percentage overlap for adjacent pictures was 80%. The area covered during the field survey
was approximately 2200 m × 300 m (length × width) along the river course, and the flight
altitude was 40 m. The Pix4D photogrammetric process steps include the estimation of
the UAV’s camera parameters for image calibration and bundle adjustment, the extraction
of identical image points (tie points) among the overlapping pictures, the estimation of
the 3D point cloud, and the built-up of the DSM. The photogrammetry algorithms are
analytically described in Unger et al. [46], and the mean error of the reconstructed surface
is approximately 1–3 times the ground sampling distance [47]. The cell size of the produced
DTM was approximately 0.013 m, which corresponds to a potential inherent error between
0.013 m and 0.04 m. Finally, some small modifications were implemented in the produced
DTM to better represent the hydraulic works in the study area (three bridges in a row and
some retaining walls) and to eliminate any remaining distortions caused by vegetation or
buildings that were involved in the flood inundation area domain. The overall accuracy
of all photogrammetric products was evaluated using the GCPs, which were identified in
the orthoimages, and their coordinates were compared to the surveyed GNSS coordinates
resulting in a total Root Mean Square (RMS) error of 0.042.

Among the numerous surface sampling methods, the typical grid sampling method [8]
was used because it can provide accurate results [8]. Bed-material sampling in cobble- and
gravel-bed streams, as Xerias stream, is a more complicated task than sampling in sand- and
boulder-bed streams forcing the researcher to pre-decide the sampling method depending on
the study’s objective and the stream condition [6]. The grid sampling method can be used
to estimate predefined particle diameters, which is an essential component in Manning’s
roughness values estimation. Different techniques can be used to sample the surface particles.
In this study, particles were collected along grids, sampling frames covering a surface of
1 m2 [8]. In order to examine the bed material in a sufficient way, 11 sampling grids were
equally distributed in the entire stream reach of 2.2. km (Figure 2) in locations representative
for the under-study stream. In order to minimize the sampling time, the more oversized bed
materials with minimum size 10 to 15 cm were measured within the stream and were picked
off the stream surface (pebble count; Figure 3a–c) while the bed material of smaller size was
collected and measured at the laboratory facilities (Figure 3d). The three mutually perpen-
dicular particle axes that were measured are: the longest (a-axis), the intermediate (b-axis),
and the shortest (c-axis) axis. All length measurements were accomplished using a digital
caliper (Figure 3d). Finally, the grid count data were classified based on the Wentworth scale
(Table 1; [8]) depending on the actual b-axis length (in units of cm), the longest intermediate
axis perpendicular to the a-axis as performed in the Canadian guidelines [48].

Table 1. Grid count data classification based on Wentworth scale [8].

Substrate Type Size (cm)

Sand-mud 0.0062–0.2
Gravel 0.2–6.4
Cobble 6.4–25.6
Boulder 25.6–409.6
Bedrock >409.6
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2.3. Dominant Grain Size Classification via Airborne Image in Streams: Tested Methods

Prior to the primary analysis, the orthophoto mosaic (Figure 2a) was converted from
RGB to HSV (hue, saturation, value), HLS (hue, lightness, saturation), and intensity bands
by using the ENVI v.5.5 software in order each band of R, G, and B as well as H, L, and S be
investigated concerning their contribution to image segmentation. Subsequently, various
image processing methods were explored for substrate classification, specifically applied to
the lower part of the Xerias stream (2.2 km; Table 2). The majority of the increasingly used
methods in river morphology measurements are based on either pixel-based image analysis
or OBIA. Initial experiments on pixel-based image analysis included several supervised and
unsupervised classification methods. The MLC, the ISODATA, and K-Means algorithms
of the ENVI v.5.5 software were investigated to recognize the dominant existing sediment
classes of the orthophoto mosaic, spatially clipped at the main riverbed’s boundaries.

Table 2. Tested methods and approaches for dominant grain size classification applied to the lower
part of Xerias stream.

Approach Method Tool Anticipated Result

Pixel-based image analysis Supervised/Unsupervised
classification

ISODATA, K-means, Maximum
Likelihood Classifier (MLC) Pixel-based classification map

Object-based image analysis
(OBIA)

ENVI feature extraction module
(ENVI v.5.5)

Example and Segment-only
approaches Object-based classification map

Local image texture analysis
(QGIS v.3.18)

Grey-Level Co-occurrence Matrix
(GLCM)

Reclassified entropy values (Band 2)
interpreting grain size classes

As far as the OBIA is concerned, trials initially adopted the ENVI feature extraction
module, which extracts information from high-resolution imagery based on spatial, spec-
tral, and texture characteristics using an object-based approach. Among the available
approaches that the ENVI feature extraction module offers, the example-based (based on
supervised and unsupervised classifications) and the segment-only ones were investigated.
Significant parameters that were repeatedly modified and tested are the type of segment
(segment bands) and merge algorithms (merge bands), the scale and merge levels, the
type of Lambda schedule, and the texture kernel size in pixels. A crucial role in image
segmentation analysis plays the pre-definition of the mentioned above parameters’ because
user judgment is involved in the process. Thus, the definition of certain characteristics
such as features boundaries (distinct or not), features merging (small features with larger
or with other features with similar colors and border sizes, etc.), and further delineation
(properly delineated features) are based on the user judgment and experience. Equally
significant is the final selection of the classification method; either the K Nearest Neighbor
(KNN) or the Support Vector Machine (SVM). Especially in the SVM classifier, the kernel
type should be defined, and the available selections are the polynomial, sigmoid, and the
radial basis function.
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Final attempts were made to segment and classify the Xerias stream-bed substrate
based on Local image texture analysis. Second-order textures are based on the grey-
level co-occurrence matrix (GLCM) [49], and according to this method, the texture is
developed on a set of statistics derived from a greater group of local image properties.
The respective literature [14] has indicated the GLCM method as the main technique to
analyze the texture; therefore, in this study, a second-class texture measure of a GLCM
was conducted. The Simple Haralick Texture file was extracted by using the QGIS V.3.18
software, including the following eight texture measures represented by bands: energy,
entropy, correlation, inverse difference moment, inertia, cluster shade, cluster prominence,
and Haralick correlation. Moreover, Ricard and Bercovici [50] affirmed that the continuous
and discontinuous processes of grain size distribution are determined by nonequilibrium
thermodynamics. In particular, entropy production can interpret the phenomenological
laws for grain growth and reduction. Based on this rationale and taking into consideration
that in similar efforts [14,25], the texture measure of entropy was utilized to map surface
grain size in bed rivers, in this study, the band of entropy was reclassified to interpret
the grain size classes along the Xerias stream. Furthermore, it should be noted that all
the above-mentioned trials in several parameters and their multiple combinations were
applied either on RGB image, or HLS/HSV images, or separate red and intensity bands.

The qualitative capability of the developed method to classify and map the stream
bed’s sediment was evaluated in two ways. First, according to field measurements,
240 random points were created and equally distributed through the common QGIS tool
among the three known grain classes (boulder, cobble, gravel). Concerning the assess-
ment of classification accuracy derived from remote sensing techniques, creating random
points is widely used [51]. Followingly, checks were carried out to estimate the percentage
agreement between the coincident field measurements and the respective remotely sensed
sediment classes. The second way of validation involves the grain shape assessment of the
field measurements and the usage of typical sediment area shape formulas to estimate each
grain class’s area percentage for each grid. The comparison between the estimated area
percentage based on the field measurements and the generated surface grain size classified
map provided the percentage of correct classification.

2.4. Manning’s n Roughness Coefficient Estimation Methodology

A typical approach followed for determining Manning’s roughness values is the
combination of field observations, personal judgment, photographic roughness estimates,
and typical values retrieved from the literature [28]. However, this approach involves major
uncertainties that enter in flood inundation modeling due to the objectivity of the user and
the fact that photographic roughness estimates are intended for a given depth of flow (can
be inappropriate for all settings) [29]. Therefore, to minimize the limitations mentioned
above, the grid sampling as shown in Figures 2a and 3 is used for the estimation of the
final Manning’s n values. As already mentioned, the grid sampling method is a common
approach followed for assessing particle size in gravel-bed and cobble-bed torrents [8].

Table 3 presents the empirical equations proposed in the international literature for
estimating Manning’s roughness coefficient. Details on the parameterization of the se-
lected empirical relationships and their usage can be found in previous works of the
authors [27,30]. According to the selected empirical equations, the predefined diameters of
D50, D65, D84, and D94 were estimated based on the grid sampling methodology [8]. All
empirical relationships (Table 3) were used to determine the river bed Manning’s roughness
values. Therefore, boulder, cobble, and gravel Manning’s roughness values were estimated
based on the combination of the grid sampling results with all empirical relationships.
Thus, the riverbed roughness coefficient was defined for each category using the minimum,
median, maximum values, and the maximum value increased by 20% derived from the
process mentioned above.

The estimation of Manning’s n roughness value for the areas adjacent to the river bed
and the floodplain were based on the common approach of using land cover data and
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roughness coefficient tables (e.g., [52–54]). The Greek Payment Authority of Common Agri-
cultural Policy Aid Schemes (OPEKEPE, in Greek) land cover data (1:5000 scale) [55] were
used to classify the adjacent river and floodplain areas. Finally, the spatially distributed
roughness coefficient was derived by using the estimated roughness coefficient values
in combination with the classified river bed and the land cover data. In this study, four
different roughness coefficient scenarios were set up based on the minimum, median, maxi-
mum, and maximum value increased by 20% (from now on referred to as debris scenario).
For comparison reasons, a fifth scenario demonstrated using a single roughness value for
the entire riverbed and a single roughness value for the entire floodplain. Therefore, the
Manning’s n roughness values of the fifth scenario were defined based on the median
roughness values of the optimum scenario that derived from the analysis of the four basic
scenarios mentioned above. The examined scenarios aimed to quantify the uncertainty
induced by the estimation of the roughness coefficient.

Table 3. Empirical relationships proposed by the international literature for assessing Manning’s
roughness coefficient (n) values.

A/A Equation Reference

1 n = 0.0431D1/6
90 [56]

2 n = 0.0439D1/6
90 [56]

3 n = 0.0593D0.179
50 [57]

4 n = 0.0561D0.179
65 [57]

5 n = 0.0495D0.16
90 [57]

6 n =
D1/6

90
15.29

[58]

7 n =
D1/6

90
16

[58]

8
Gravel, n = 0.028–0.035
Cobble, n = 0.03–0.05
Boulder, n = 0.04–0.07

[59]

9 n =
0.1129R1/6

1.16 + 2 log(R/D84)
[29]

10 n =

[
0.183 + ln

(
1.762S0.1581

f

Fr0.2631

)](
D0.167

84√
g

)
[60]

11 n =

[
0.183 + ln

(
1.7462S0.1581

f

Fr0.2631

)]
(D84)

1/6

√
g

[61]

12
n =

0.183 + ln


1.3014S0.0785

f

(
R

D84

)0.0211

Fr0.1705


 (D84)

1/6

√
g

[61]

13
n =

0.219 + ln


1.3259S0.0932

f

(
R

D50

)0.026

Fr0.2054


 (D50)

1/6

√
g

[61]

n = Manning’s n roughness coefficient (m3/s), R = hydraulic radius (m), Di = characteristic size of bed material,
which is larger than i% of particles (m), Sf = energy slope (m/m), Fr = Froude number, g = acceleration due to
gravity (m/s2).

2.5. Hydrodynamic Modeling Configuration

HEC-RAS (Hydrologic Engineering Centers River Analysis System) is a worldwide
acknowledged hydraulic–hydrodynamic model with much scientific literature and practi-
cal applications. A plethora of studies used HEC-RAS 1D for flood inundation modeling
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applications [27,40,62–65]. Recent updates of HEC-RAS allow two-dimensional (2D) and
coupled (1D/2D) modeling with many successful applications [36,45,66–72]. The capa-
bilities and the efficiency of the two-dimensional (2D) HEC-RAS model were tested by
Brunner and CEIWR-HHT [53,73]. Therefore, the sensitivity analysis of floods using differ-
ent hydraulic/hydrodynamic modeling approaches (1D, 2D, 1D/2D) was implemented
using the HEC-RAS v.6.1 hydraulic–hydrodynamic model.

The upstream boundary conditions in all modeling approaches are based on Papaioan-
nou et al.’s previous work [30,44] and concern the extreme flash flood event in 2006. Thus,
the flood hydrograph used in this study (Figure 4) is based on the Clark Instantaneous Unit
Hydrograph (CIUH) methodology, which is a typical methodology followed for streams
without flow records (ungauged catchments) [30,41,44,45]. The maximum value of the flood
hydrograph is 490.43 m3/sec. Several other configurations and model parameters, such
as the downstream boundary conditions, were determined in agreement with HEC-RAS
standards [53,74].
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River and adjacent areas’ geometry representation is crucial in flood inundation mod-
eling and mapping, especially in areas with complex terrain and limited floodplain [75–78].
In this study, a high-resolution UAV-derived DEM was used to represent the river and
riverine area accurately for river flood modeling (Figure 5). The roughness coefficient con-
figuration is based on the methodology presented in Section 2.4. It is noteworthy to mention
that due to software limitations in 1D modeling, the maximum available roughness value
per cross-section is twenty. In addition, the resolution of the generated spatial distributed
roughness coefficient maps was set to 0.5m for simulation stability issues. Therefore, five
different flood modeling scenarios are configured for each modeling approach based on
the spatially distributed roughness coefficient maps. In the one-dimensional modeling
approach, both steady and unsteady flow simulations are implemented.

Some other significant characteristics of the HEC-RAS 2D model configuration are:
(1) two-dimensional flow area computational point spacing set from 5 to 10 m with average
cell 8m (Around the bridges and the retaining walls a denser mesh was generated); (2) the
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default modeling solutions were used for all flood inundation modeling applications;
(3) advanced time step control using adjust time step based on Courant was used with
initial time step one (1) second; (4) several breaklines were used for better representation of
the hydraulic structures, the banks, and the main stream; (5) all bridges (Figure 5) were
configured as structure type bridges, even in two-dimensional modeling approach; (6) the
cross-sectional spacing was set to 60m (Figure 5) due to stability issues and in accordance
to the HEC-RAS standards [53,74]; (7) In coupled (1D/2D) modeling approach the normal
2D equation domain was selected in overflow computation method due to stability issues
and in accordance to the HEC-RAS standards [53,74].
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Typical indices based on flood extent were used for the evaluation of flood inundation
modeling performance [79–81]. A validation polygon (Figure 5) that is based on historical
records and data was used in the modeling performance process. Specifically, since the
authors did not find any Judicial reports or other flood-related data sources for the study
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flood event, the validation polygon was derived from several interviews with local people
who experienced the flood event (no interviewee was able to provide accurate water depth
values) (details for the flood extent data can be found in [27,30,41,45]). Thus, the Critical
Success Index (CSI) or threat score (TS) [80–83] and the penalized CSI [68,79–81] were
chosen for the assessment of the simulated inundated areas against the validation polygon.
From now on as F1 and F2 will be denoted the CSI and penalizing CSI, respectively. The
estimation of both F1 and F2 is based on the 2 × 2 contingency table for all grids areas
as follows:

F1 =
A

A + B + C
(1)

F2 =
A− B

A + B + C
(2)

A is the correctly predicted flooded area (hits), B is the flooded area false prediction
(false alarms), C is the flooded area that is not predicted by the model (misses). The term B
at the numerator in Equation (2) is used to penalize the model’s overprediction [79].

3. Results
3.1. Sediment Grain Size Analysis and Classification
3.1.1. Sediment Grain-Size Distributions (Field Measurements)

Figure 6 presents the cumulative grain-size distributions obtained by grid sampling of
11 grids. According to the grid sampling analysis, the river bed materials are categorized
as very coarse gravel with a median value of 32.4 mm. Therefore, the river bed materials
are basically dominated by gravels followed by cobbles (Figure 6). Table 4 presents the
estimated predefined diameters for each river bed class which are essential parameters in
the roughness coefficient estimation.
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Table 4. Estimated predefined diameters for each river bed class.

Predefined
Diameters ds, (m) Predefined

Diameters ds, (m) Predefined
Diameters ds, (m)

Gravel

D50 0.028

Cobble

D50 0.062

Boulder

D50 0.219
D65 0.031 D65 0.073 D65 0.230
D84 0.039 D84 0.100 D84 0.244
D90 0.041 D90 0.115 D90 0.249

3.1.2. Sediment Grain Size Classification via Image Analysis

The majority of the numerous classification trials resulted in ambiguous results, while
the following experiments (Table 5) presented are those characterized by the greater clas-
sification accuracy based on sampled, ground truth grain size data. Tested unsupervised
classification algorithms (i.e., ISODATA, K-MEANS) tried to automatically group pixels
of similar spectral features into unique clusters without reliable classification as identified
by visual inspections. On the other hand, spectral signatures of well-known classes were
created based on high-resolution photos taken at the field and were utilized as training
data for the MLC. Based on them, MLC managed to distinguish with great reliability both
riparian vegetation and the vegetation detected in the middle of the stream–bed. A little less
accuracy was ascertained concerning the detection of boulders and bedrock classes. More
specifically, MLC succeeded in detecting the location of those classes but not providing
their full areal extent.

Table 5. Pixel- and object-based image analysis methods that indicated better classification results.

Approach/Method Bands Results and Set Parameters

Pixel-based image analysis/
Maximum Likelihood Classifier

RGB
Riparian vegetation and the vegetation detected

in the middle of the stream-bed
Boulders and Bedrock classes

Object-based analysis (OBIA)/ ENVI
feature extraction module

RGB Boulders (full lambda; 35 scale value; 50 merge
value; SVM)

Cobbles (polynomial kernel type/ radial basis
function)

Red and Intensity Gravels (SVM; radial or polynomial kernel type)

Object-based analysis (OBIA)/GLCM Haralick Texture file (Entropy band) Cobbles, Gravels, and Sand-mud

Stream-bed classifications originating from the ENVI feature extraction module also
presented results characterized by low accuracy. The application of mainly edge segment
algorithm accompanied by the various scale and merge values ranging from 20 to 40
and from 30 to 80, respectively, applied separately on RGB (Figure 7a), HSV, red, and
intensity bands were explored. In particular, among them, better classification results were
retrieved with full lambda merge algorithm, scale value 35 and merge value 50. Those set
parameters yielded even better results concerning the class of boulders when they were
accompanied by the SVM classification method and polynomial kernel type or radial basis
function regarding the class of cobbles. Gravels were better classified when only the red
and the intensity bands were inserted and accompanied by the SVM classification method
and radial or polynomial kernel type, respectively. HIS and RGB images’ segmentation
associated with SVM and radial or polynomial kernel type gave poor classification results.
Even though the aforementioned classifications were superior to the rest ones, they still do
not constitute a reliable means for grain size classification.

Final experiments included the reclassification of the entropy band retrieved from the
Haralick Texture file, which proved to be the most optimal way to interpret the grain size
classes along the lower part of Xerias stream (Figure 7b). Microstructure entropy values
managed to constitute a function of the grain sizes, particularly of cobble, gravel, and
sand-mud classes (Figure 7c). Unfortunately, the boulder class was not interpreted with
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adequate accuracy by entropy values; thus, this class was established based on MLC results
and further digitization in ArcMap. Final classification results based on entropy values
indicated the cobbles and gravels as the most dominant classes along the study area (by
percentages of 45.7% and 50.5%, respectively). The class of sand-mud constituted 1.6% of
the total studied area while the boulder and bedrock classes (based on MLC and further
digitization) represented 0.84% and 1.4%, respectively, of the lower part of Xerias stream.
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The accuracy of the applied hybrid classification method was assessed using a total of
240 random points, which were equally distributed across the 11 sampling grids while the
class values were attributed according to ground truth data concerning the three known
grain classes (boulder, cobble, gravel). The total accuracy achieved is 65%, accompanied by
156 points correctly classified. In particular, it was observed a 0 out of 16 coincident points
in boulders, 143 out of 152 coincident points in cobbles, and 13 out of 72 coincident points
in gravels, according to field measurements. The second evaluation method involved a
shape analysis implemented to define the dominated particle shape in the entire study area
(Figure 8). The results from the grain shape assessment analysis (Figure 8) showed that
based on the categorization method of Zingg [84], the study site consists of disk-shaped
sediments. The average b/a and c/b values of the dataset were 0.69 and 0.53, respectively
(Figure 8, black +). Then, the typical sediment area shape formulas were used to estimate
the area percentage of each grain class for each grid (field), and their comparison with the
generated surface grain size based on the classified map provided an average overall 52%
correct classification.

3.2. Manning’s Roughness Coefficient Estimation

In this study, the river bed roughness coefficient was estimated using the stream-bed
substrate classification and several empirical formulas. The roughness coefficient of the
adjacent river areas and the floodplain was determined using detailed land cover data
(OPEKEPE) and values estimated from the literature. The spatially distributed land cover
and stream bed map is presented in Figure 9. Table 6 presents the estimated Manning’s
roughness coefficient values from both classification procedures and the four basic rough-
ness scenarios that were used in river flood modeling. Finally, the combination of data
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presented in Figure 9 and Table 6 generated the four basic different spatial distribution
maps that were used in the flood inundation modeling application. Specifically, according
to Table 6 and field CODE, 1 to 5 categories concern the estimation of roughness coefficient
based on the combination of empirical equations and the remote sensing methodology,
while in the rest categories (from 6 to 17), the roughness coefficient was estimated based
on the OPEKEPE land uses and values estimated from the literature. It is noteworthy to
mention that the Bedrock class received the value of 0.013 because the observed bedrock
parts are constituted of concrete. The roughness coefficient values of the fifth scenario
were defined as the median values of the riverbed components and floodplain components,
respectively, of the high roughness scenario that seems to have a better response according
to the evaluation criteria presented in the following paragraphs. Therefore, for the fifth
scenario, the riverbed roughness was set to 0.068, and the floodplain roughness was set
to 0.055.
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Table 6. Manning’s n roughness values for all scenarios and all classification categories.

CODE Classification Category Manning’s n Scenarios
Low Median High Debris

1 * Bedrock 0.013 0.013 0.013 0.013
2 Boulder 0.0301 0.0414 0.082 0.0984
3 Cobble 0.0265 0.035 0.073 0.0876
4 Gravel 0.0223 0.0297 0.068 0.0816
5 Sand-Mud 0.026 0.0305 0.035 0.042
6 Medium size vegetation 0.04 0.06 0.08 0.096
7 Low vegetation 0.025 0.0375 0.05 0.06
8 River banks (cobble and gravel) 0.0223 0.0341 0.0731 0.08772
9 Bare land with low vegetation 0.03 0.035 0.05 0.06
10 Cobble with low vegetation in some places 0.0318 0.042 0.0878 0.10536
11 * Continuous urban fabric 0.06 0.09 0.12 0.12
12 Discontinuous urban fabric 0.03 0.04 0.05 0.06
13 * Road and rail networks and associated land 0.013 0.013 0.013 0.013
14 Green urban areas 0.017 0.025 0.033 0.0396
15 Non-irrigated arable land 0.025 0.035 0.045 0.054
16 * Olive groves 0.06 0.08 0.1 0.1
17 Light brush and trees 0.035 0.05 0.06 0.072

* Classes that do not change from high to debris due to the already high value or because the category remains
unchanged for all scenarios.
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3.3. Hydraulic Simulation Results

Figure 10 presents the F1 and F2 scores for all possible combinations. From the two
examined sensitivity factors (roughness coefficient and modeling approach), the most
important one is the roughness coefficient (Figure 10) (F1 varies from 0.31 to 0.716 and
F2 varies from −0.281 to 0.664). This finding shows that the methodology followed to
determine roughness coefficient values can be very important in flood modeling and
mapping efficiency. As expected, the two-dimensional model prevailed among the other
modeling approaches with small differences against the coupled (1D/2D) one. On the
other hand, one-dimensional modeling approaches provided acceptable solutions relatively
close to the other two modeling approaches. An important finding revealed from Figure 10
is that the higher roughness coefficient values provided better results according to F1
and F2 skill scores. Moreover, by considering both validation criteria, we can see that all
modeling approaches provided acceptable solutions for the high and debris roughness
coefficient scenarios. Finally, the comparison of the F1 and F2 values retrieved from the
fifth roughness coefficient scenario against the high roughness coefficient scenario showed
that both scores concerning the fifth scenario are approximately lower by 3.6% and 9% from
the high scenario, respectively (Figure 10).
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Figure 11 presents the optimum solutions of simulated maximum water depth and
flood extent based on F1 scores. Finally, both 1D modeling approaches, steady and unsteady
state simulations, receive the highest F1 score using the debris roughness scenario (0.668
and 0.682, respectively) and the highest F2 score using the debris roughness scenario
(0.585 and 0.614, respectively). Concerning the 2D modeling approach and the coupled
modeling approach, the highest F1 score is observed when using the high roughness
scenario (0.716 and 0.708, respectively), and the highest F2 score is observed when using
the debris roughness scenario (0.664 and 0.646, respectively).
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Figure 11. Optimum solutions of simulated maximum water depth and flood extent based on F1
scores: (a) 1D—steady-state modeling approach using debris roughness scenario; (b) 1D—unsteady
state modeling approach using debris roughness scenario; (c) Coupled (1D/2D) modeling approach
using high roughness scenario; (d) 2D—modeling approach using high roughness scenario.
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4. Discussion

In this study, two methods were evaluated for the semi-automated classification
of dominant sediment size along the lower part of Xerias stream based on UAV high-
resolution data: the first method applied pixel-based and the second OBIA classifications,
which implemented texture measures. This research highlighted the segmentation through
OBIA as the most effective method of grain size analysis, whereas pixel-based methods
presented resolution limitations. According to classification results, the Xerias river bed
consists of mixed gravel (50.5%) and cobble (45.7%) bed material with sharp edges, whereas
most relevant studies are applied in the different river reach types with more homogeneous
compositions [84]. The hereby classification results are in accordance with those derived by
several researchers [21,85–87] who reported that OBIA is superior to pixel-based technique,
especially for high and very high spatial resolutions, as in our case. The most controversial
zones where pixel-based analysis was proven inferior were those dominated by fine sand
fractions. On the other hand, it should be noted that those fractions were sufficiently
detected by the herein developed hybrid classification method since it employed images
with a spatial resolution of a few square centimeters and sufficient image texture [25].
Reclassified microstructure entropy values yielded classification accuracy of approximately
65%, a value similar to other studies [14], which applied GLCM for segmentation-based
classification of the dominant substrate in a river bed. Regarding the performance of the
classification method based on image texture from the point of view of particles’ size, Arif
et al. [14] reported that although the accuracy of the algorithm increases with increasing
grain size, it resulted in a higher number of misclassified regions for larger grain sizes such
as the class of boulders. Respectively, in our case, entropy values managed to estimate a
function of the grain sizes, particularly of cobble, gravel and sand-mud classes but not of
boulder and bedrock classes. Carbonneau and Lane [25] delineated as the main explanation
for not succeeding a higher classification accuracy illumination pattern that can occur
as a result of changes in daylight or camera exposure times. Some other widespread
fundamental sources of errors hindering greater classification accuracy rates, which were
also detected in this study, are the hiding effect of neighboring particles with overlapping
classes, the presence of light-dark contact zones created by particles and their shadow,
and the high computational capacity that is required when images with the great spatial
resolution are elaborated.

The second part of this study presented a subjective way to determine Manning’s
n roughness values while exploring how the changes in those values may affect the
flood extent. Usually, river bed roughness is measured from a small area; the mea-
sured value is regarded as the average roughness and is assumed as spatially homo-
geneous, while a uniform roughness coefficient is determined per river channel and flood-
plain category [41,66,67,69,88–90]. Few studies in flood inundation modeling, such as
Dimitriadis et al. [40], Sharma and Regonda [91], and Papaioannou et al., [36,42], have
examined the usage of variable roughness coefficient values, but the channel roughness
values were assumed spatially homogeneous. Even fewer works in flood inundation mod-
eling have examined the usage of variable spatial distributed roughness coefficient values
for the river bed (e.g., [92]). It should be mentioned that based on F1 and F2 skill scores, the
high roughness coefficient scenario provided slightly higher values than the fifth roughness
coefficient scenario. This is probably due to the heavy sediment transport processes and
even debris flow that occurred during the specific flood event. Concerning the results of
this study, the high and debris roughness coefficient scenarios provided the best solutions
based on F1 and F2 skill scores. This is probably related to the fact that the topography
of the river bed and riverine area is complex because usually, the water in extreme flash
flood events is affected by heavy sediment transport processes. The determination of
roughness coefficient for an entire stream reach and large areas still remains a demanding
process [66,69,88–90], and that is the gap that this study attempted to fill [66,69,88–90].
Especially at ungauged catchments, the implementation of flood inundation modeling and
mapping is still a difficult but very important task [30,41,68].
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5. Conclusions

Based on this research, it was demonstrated that reliable grain size estimations of a
stream reach with inhomogeneous gravel and cobble dominated bed composition can be
obtained from digital airborne imagery, provided that image resolution and ground truth
grain size measurements are in a fine scale, to capture the actual particle sizes. If properly
adjusted, the methods presented in this study allow for semi-automated mapping of at
least a smaller grain size (sand-mud, cobble, gravel) with an error of ±35% at a spatial
resolution of 1.3 cm.

Furthermore, the evidence from this study indicates that based on the skill scores F1
and F2, the uncertainty induced by the roughness coefficient dominates against the mod-
eling approach. The higher roughness coefficient values provided better approximations
of the flood extent. Moreover, the spatially distributed roughness coefficient provided a
more accurate model output in relation to the single roughness coefficient. According to
the modeling approach selection, this study supports using the 2D modeling approach
for ungauged gravel and cobble bed-dominated streams. The overall results also proved
that sensitivity analysis should be mandatory in flood modeling and mapping. The pro-
posed methodological approach presented in this study, combining remote sensing and
flood modeling, could be a valuable tool for river flood risk management also in other
gravel and cobble bed streams (hydrological basins) with similar terrain complexity and
hydrological conditions.
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