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Abstract: Water quality is highly affected by riverside vegetation in different regions. To comprehend
this research, the study area was parted into wet and dry regions. The WASP8 was applied for the
simulations of water quality profile over both Waterways selected from each region. It was found
that the Ara Waterway, located in the wet regions, has a higher water quality variation in seasonal
scale than that of the Yamuna Waterway, which is in the dry region. The interrelationship between
river water quality variables and NDVI produce higher association for water quality variables with
Pearson correlation coefficient values of about 0.66, 0.68 and −0.58, respectively, over the annual and
seasonal scales in the energy limited regions. This approach will help in monitoring the seasonal
variation and effect of the vegetation biomass on water quality for the sustainable water environment.

Keywords: WASP8; Ara Waterway; Yamuna River; NDVI; anthropogenic activities

1. Introduction

Water is one of the most important natural assets available to mankind, and its quality
is entirely dependent on the local environment, utilization, treatment and reuse as per
necessities and anthropogenic activities such as industrial, household, agriculture and
mining operations. A rapid surge in population has exponentially intensified the demands
of clean water globally [1–4]. Water quality is a key environmental issue due to its influence
on aquatic life and the general health of the water ecosystem [5,6]. Generally, water
quality management is performed using different water quality models of water channels
and rivers, the point and nonpoint sources playing a vital role in the nitrogen dynamics,
biochemical oxygen demand (BOD), and dissolved oxygen (DO) [7–10]. The surface
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water quality modelling can be an effective means for the simulating and predicting of
contaminants fate and transport in the sustainable water environment [11,12], which can
significantly save an enormous amount of labour cost, material, time, and laboratory
experiments. Furthermore, it is unreachable for the in-situ sampling and experiments in
some situations due to weather, hazardous, or unusual ecological issues. The simulated
results of different water quality models under different contamination levels are imperative
parts of different impact assessment reports and offer a base for the different environmental
agencies and correct decision-making [13–15]. Hence, water quality modelling becomes a
vital tool to recognize the pollution of a surface water environment, as well as the ultimate
fate and behaviors of contaminants in the river environment.

Because of technological advancements, surface water quality (SWQ) modelling tools
have been greatly improved in the twenty-first century, which has led to a wide range
of SWQ models being developed. Several water-quality models are currently in use
for decision-making and policy development in various water ecosystems around the
world [16,17]. In recent years, numerous water quality models (WQM), such as the WASP
model, QUASAR, and WASP-2 models, and the MIKE and BASINS models, have been
developed for simulating the importance of the water quality of water bodies like rivers
and lakes containing contaminants. These models were widely used in the United States,
Europe, Australia, and the rest of the world [17–21]. However, WASP is the best open
source model [22] for modelling the fate and transport of contaminants in rivers, lakes, and
reservoirs, according to a recent analysis of the existing open source models.

The water quality factors were simulated using the SWQ model WASP (water quality
simulation software). To model SWQ, the US Environmental Protection Agency (EPA)
developed the WASP model [23]. The WASP models have undergone numerous iterations
and have been frequently used for SWQ model evaluations during this time span [24–26].
Over the DaHan river, the WASP model has already been used [27] to simulate water quality
profiles and inform policymaking. The WASP was used to model the Love River’s pollutant
transit and fate, and the resulting river safety plans were established [28]. For these
reasons and more, a great deal of research has used the WASP model in various countries
throughout the world to estimate the environmental impacts of various administrative
policies and to estimate pollutant loads in order to develop long-term strategies [29,30].

The water quality has been widely affected by vegetation distribution, from naturally
grown to human cultivated, which is an important determinant of river water quality
and has a dynamic role to play in the water environment. Vegetation distribution can be
estimated using an index called vegetation index, which is a mathematical intermingling
of different spectral bands that highlights the spectral appearances of green vegetation
so that they seem diverse from other image landscapes. Simple and efficient methods
for descriptive and analytical assessment of green cover, robustness, and growth pattern
have been developed using remote sensing-based canopies. There are various vegetation
indices, with many having similar correlation and equaling functions. These indices have
been broadly applied within a remote sensing application using different unmanned aerial
vehicles (UAV) and satellite datasets [31,32].

The extent to which vegetation distribution hierarchically influences water environ-
ment at spatial and temporal scales is a crucial question. Dosskey et al. [33] reviewed
many studies and summarized the major findings by which vegetation influences the
chemistry of surface water quality, as well as how water chemistry varies among a green
vegetation. All the previous studies only focus on the relationship among the water quality
and vegetation indices using random water quality sampling data, which does not explain
the spatial effects of vegetation on the water quality over an entire river profile. This study
focuses on: (1) Analysing the seasonal variation of stream water quality over different
geo-graphical regions such as energy limited (wet) and water limited (dry) regions. (2) To
set up a space-time scale inter-relationship among water quality and vegetation indices.
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2. Materials and Methods
2.1. Study Area

The study was conducted over energy limited and water limited regions on the basis
of the global climatological aridity index (GCAI). Regions were separated using global data
assimilation system (GLDAS) datasets conferring to the concept of a framework known
as Budyko [34,35]. The GCAI is a numerical indicator of the degree of dryness or wetness
(GCAI = PTm/Pm, where PTm = mean annual potential evapotranspiration and Pm =
mean annual precipitation). The regions having an index value GCAI < 1.5 were classified
as “energy limited”, and those with GCAI > 1.5 as “water limited” [36]. Two Waterways
were selected, one from the energy limited regions: Gyeongin Ara Waterway also known as
Ara Canal, South Korea, and the other from the water limited region: Yamuna River, India.
Figure 1 shows a description of the study area, Waterways, and point source locations.
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Figure 1. Study area description.

2.1.1. The Gyeongin Ara Waterway

The Gyeongin Ara Waterway is a recently constructed canal in South Korea. The main
source of the flow in the Ara Waterway is the naturally sourced water from the Han River
and the Gulpocheon River. The Ara Waterway was built to control flood indemnities in the
basin of the Gulpocheon River and also to encourage the socio-economic growth of the area
by reducing logistic expenses. The Waterway connects the Han River to the Yellow Sea.
The Han River passes through Seoul and the western coastline zone of South Korea. There
are two operation gates at both ends of the Waterway. The Han River side has a canal gate
which is situated beside the Haengju bridge downstream of the Han River, while the Yellow
Sea side has another gate that is situated at the Incheon city beside the western coastline
zone of South Korea. The Ara Waterway has an overall length of about 19 km, while the
width of the Waterway channel is about 85 m, and the mean depth of flowing water is
6.3 m. The head water inflow is discharged directly into the Waterway from the Han River,
while there are other point sources, including water inflow from the Gulpocheon River, the
irrigation dam, and the Rubber dam especially, during flood seasons.
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2.1.2. The Yamuna River

The Yamuna Waterway, also primarily known as the Yamuna River, is the main source
of domestic supply for New Delhi, India. It receives a huge volume of pollution in the
stretch between New Delhi and Agra. From Palla, it travels about 10 km to Waziarabd,
where the river’s water is drained to the greatest extent possible for the city of New Delhi’s
domestic use. Thereafter, a small quantity of river water is observed, especially during the
summer seasons.

After the Wazirabad barrage, a major drain known as the Najafghar drain enters the
river. However, after the Najafghar drain, there are a total of thirteen small- to medium-
sized drains that join the Yamuna River downstream. Approximately 39 km downstream
of Palla, the river departs the city near the Okhla Barrage. The Yamuna basin has a total
area of 9500 hectares, of which 8000 hectares are direct runoff [36]. Point sources, which
discharge contaminated materials directly into the Yamuna River, are the most significant
sources of Yamuna water pollution.

2.2. Data Set

This study used three different types of data sets, GLDAS 2.1 data, point source
inflow, the initial con-centration of water quality variables, and Landsat 8 satellite data.
The GLDAS (global land data assimilation system) datasets have been prepared through
the collaboration of the following international agencies: NOAA, NASA, GSFC, and the
NCEP. The GLDAS simulated datasets were developed to deliver medium resolution
datasets by assimilating satellite-based and ground-based measurements involving the land
surface models and data integration methods. Numerous land surface models have been
created for the simulation of water and energy flux transferences among the ground and
atmosphere interactions [37]. The water quality modelling data included point discharge,
point source pollutant loadings of BOD, DO, T-N, river hydraulics characteristics data,
and environmental parameters used in model simulations as the annual and seasonal
bases for the year 2014. The water quality and river hydraulic characteristics data for the
Yuma River, India, were obtained from various government and private agencies such
as the Ministry of Environment, Upper Yamuna River Board, India River Forum, and
Central Pollution Control Board. While the Water quality and hydraulic characteristics
data of Ara Waterway, Republic of Korea were obtained from different Korean water and
environment agencies such as the Ministry of Environment Korea, KWater, ECOREA, the
national ATLAS of Korea, and Water and Environment Partnership in Asia (WEPA). The
Landsat 8 satellite, cloud free images from Operational Land Imager (OLI) level-1 were
utilized for the calculations of the vegetation index in all four seasons for the year 2014.

2.3. Water Quality Modeling

The US Environmental Protection Agency (EPA) has developed the WASP model for
resolving issues of water quality. The WASP model has been continually developed over
the years, allowing for greater simplicity of use and superior modelling of water quality in
a wide range of water environments [24,38,39]. The WASP model is a water column and
sediment-based dynamic simulation software for rivers and ponds. Toxicant transformation
and advanced eutrophication are two kinetic modules in the WASP8 model employed
in this investigation. One of the most complex modules, the advanced eutrophication
module, incorporates many eutrophication characteristics. Many mass balance equations
are included in this module to calculate the fate, transformations, phytoplankton, BOD,
DO, and nitrification dynamics of pollution. This diagram shows the WASP8 model’s
interconnections, features, and structure (Figure 2). In order to calculate any parameters of
water quality, the equation of mass balance is utilized, which is represented in Equation (1).

dC
dt

= −A
dUC
dx

+
d

dx

(
EA

dC
dx

)
± SC (1)
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Whereas C represents the concentration of different parameters of water quality fac-
tors, U represents the average water velocity, A represents the cross-sectional area, and x
represents the distance in one dimension. SC stands for exterior and internal sinks and
sources, whereas E stands for longitudinal dispersion coefficient.

The model was developed using the required hydraulics and the water quality datasets
from 2014 to 2015. The Ara Waterway longitudinal profile was equally divided into
23 segments, containing headwater inflow from the Han River and two other inflow
sources from the irrigation dam and the rubber dam. The Yamuna Waterway longitudinal
profile was divided into 34 segments. The inflow drains include Najafghar, Khyber Pass,
Drain No 14, Magazine Road, Metcalf House, Sweeper Colony, Mori Gate, Tonga Stand,
Sen Nursing, Civil Military Drain, Drain No 14, Barapulla, Power House, Maharani Bagh
Drain, Hindon Cut, and the Agra Canal Abstraction. Boundaries, which included the most
upstream segments of the Ara Waterway (segments 1 to 23), while the Yamuna Waterway
includes point source inflow and obstructions throughout the Waterway longitudinal
profile (segments 1 to 34), and was added as an initial concentration to the simulation for
all the water quality variables.

2.4. Vegetation Indices

The vegetation indices are spectral transformations of two or more spectral bands com-
bined to improve the involvement of plant properties, permit appropriate space time scale
inter and intra-comparisons of global photosynthetic activities and vegetation structure
distinctions. In this study, we calculated vegetation index, entitled normalized difference
vegetation index (NDVI). A commonly applied vegetation index, the NDVI has long been
used in ecology, remote sensing, and geography to assess the characteristics of green vegeta-
tion, including its amount (biomass), nature, and status. NDVI is a benchmark for spectral
band ratio applications [40]. The NDVI monitors the vegetation state, density, and intensity
of plant growth, and can be calculated from the reflectance values of the red (RED) and the
infrared band (NIR). The NDVI values range from −1.0 to +1.0, lower values indicating
sparse vegetation while higher values indicate lush green land. The NDVI was obtained
from the reflectance values of Landsat 8 scenes by means of ArcGIS. Prepossessing of
Landsat 8 scenes was performed using ENVI 5.2 software and metadata information. The
following equation used to calculate the NDVI values was expressed as Equation (2):

NDVI =
(NIR− RED)

(NIR + RED)
(2)
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2.5. Model Accuracy Assesment

The model’s accuracy was assessed by contrasting the actual results with those pre-
dicted by the model. It was determined that the calibrated and validated results from the
prior experiments were accurate using the following five statistical estimators:

Goodness-of-fit between observed and expected data can be measured using the
coefficient of determination (R2). The R2 has a value of 0 to 1. If R2 is near to 1, then the
model’s predictions match the actual data quite well.

R2 =

{
N
∑

i=1

(
Oi −Oi

)(
Si − Si

)}2

N
∑

i=1

(
Oi −Oi

)2 N
∑

i=1

(
Si − Si

)2
(3)

When comparing observed and expected results, the MAE assesses the absolute
quantitative deviation. The formula for MAE is as follows:

MAE =
1
N

N

∑
i=1
|Oi − Si| (4)

An index known as the mean absolute percentage error (MAPE) was calculated to
appraise the precision of the modelled outputs. The fewer the errors, the closer the fittings
of the modelled results [41], which were defined as four different stages of fitting levels,
each conferring to model evaluations such as excellent, good, reasonable, and poor. If
MAPE value <10%, fitting level is excellent, if MAPE value is 10–20%, fitting level is good,
if MAPE value: 20–50%, fitting level is reasonable, and if MAPE value >50%, fitting level
is poor.

MAPE =
1
N

N

∑
i=1

∣∣∣∣Oi − Si
Oi

∣∣∣∣ (5)

Here, S is a modeled outcome for a similar profile place where field observations
were made for calibration and validation processes, and O is the observed value obtained
from the mainstream sampling point. The total number of all the measurements were
represented by N, and i is ith comparison. An observational average and a model-based
simulation average are used to calculate O and S, respectively, for each location.

3. Results
3.1. Evaluation of the WASP8 Model for Its Reliability

Assessment of the WASP8 consists of a model calibration and validation investigation
to establish its applicability for involvement analysis.

The WASP8 Calibrations and Validations

The surface water quality model WASP8 was primarily calibrated through the mea-
sured data attained from the four sampling locations (M1–M4) along the longitudinal
stream of the Yamuna river and three sampling stations of the Ara Canal (m1–m3) Water-
way on March, 2014 (spring) using the same measured coefficients (Figures 3 and 4). Then,
the data collected from June (summer), September (autumn) and December (winter) were
used to validate the model also by means of the same estimated reaction constants and
model coefficients (Figures 5 and 6). Calibrated and validated results of the longitudinal
pro-file of T-N, BOD, and DO, agreeing well with the measured values at monitoring
stations and both measured and simulated, had the analogous trend of variations. The Ara
Waterway shows comparatively large seasonal variation, which might be due to higher
mean annual rainfall in the wetter region [42].
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The mean absolute percentage error (MAPE) evaluation shows that the values were
enclosed among 3.5–22.61% (excellent–reasonable) (Table 1). The mean absolute error
(MAE) shows overall estimator errors are less and agreed well with the measured data
both in model calibration and validation processes (Table 2). The values of coefficient of
determination R2 had good agreement with measured data and appeared to be very close
to 1 (Table 3). Moreover, all applied statistical estimators show high value of R2 (close
to 1) and lower values of errors of estimators. Overall, longitudinal profile of Yamuna
Waterway shows small seasonal variation among water quality variables. At the headwater,
water quality was comparatively better. However, after addition of point inflow through
Najaf-garh drain water quality was further deteriorated. While, Ara Waterway showed
large noticeable variation in water quality variables among each season. Total nitrogen
shows a decreasing trend as it moves toward a downstream end in all seasons, while BOD
and DO show further deterioration in water quality as they go toward a downstream end
of the waterway profile in winter and summer seasons. In spring and autumn, BOD and
DO both show improvement in water quality profile as higher rate fresh water point inflow
is incorporated in waterways.
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Table 1. Fitting level assessment of the WASP8 outcomes with MAPE process.

River Season
T-N (%) BOD (%) DO (%)

Calibration Validation Calibration Validation Calibration Validation

Yumna River

Spring 17.07 16.25 10.22 9.14 8.11 9.21
Summer 10.37 9.36 8.33 8.43 6.34 6.56
Autumn 7.54 8.34 6.91 7.25 6.08 6.73
Winter 14.67 16.32 15.5 13.94 6.62 6.94

Ara Water Way

Spring 22.61 22.24 7.55 8.92 15.34 16.31
Summer 9.70 9.56 5.75 4.95 8.53 8.94
Autumn 12.4 13.1 3.50 4.31 7.41 7.64
Winter 16.71 15.93 7.73 6.72 11.79 12.45

MAPE value, excellent; <10%, good; 10–20%, reasonable; 20–50%, bad; >50%

Table 2. Fitting level assessment of the WASP8 outcomes with MAE estimator.

River Season
T-N (%) BOD (%) DO (%)

Calibration Validation Calibration Validation Calibration Validation

Yumna River

Spring 0.15 0.16 0.62 0.58 0.12 0.13
Summer 0.11 0.12 0.35 0.27 0.08 0.07
Autumn 0.09 0.11 0.31 0.35 0.06 0.08
Winter 0.17 0.15 0.78 0.66 0.14 0.12

Ara Water Way

Spring 0.13 0.14 0.44 0.51 0.10 0.11
Summer 0.09 0.11 0.29 0.25 0.06 0.07
Autumn 0.11 0.11 0.31 0.28 0.08 0.08
Winter 0.16 0.14 0.52 0.47 0.13 0.11

Table 3. Fitting level assessment of the WASP8 outcomes with R2 estimator.

River Season
T-N (%) BOD (%) DO (%)

Calibration Validation Calibration Validation Calibration Validation

Yumna River

Spring 0.81 0.84 0.85 0.88 0.87 0.84
Summer 0.89 0.83 0.88 0.92 0.87 0.82
Autumn 0.88 0.93 0.90 0.89 0.93 0.89
Winter 0.84 0.81 0.86 0.91 0.92 0.94

Ara Water Wa

Spring 0.82 0.80 0.86 0.88 0.85 0.81
Summer 0.87 0.94 0.90 0.89 0.91 0.88
Autumn 0.92 0.96 0.91 0.88 0.93 0.91
Winter 0.86 0.89 0.88 0.93 0.94 0.89

3.2. Spatial Scale Interrelationship between the Water Quality and Vegetation Indices

In the following study, we calculated vegetation index of both the Yamuna and the
Ara Waterway basins at an annual and seasonal scale for the year 2014. For the case of
the Ara Waterway, the vegetations are distributed sparsely along the coastline region, the
Yellow Sea, while, the Yamuna Waterway has a dense vegetation beside the upstream and
downstream regions. The NDVI values around −0.26 or less depicts a water body, values
near −0.046 show snow, values near 0.002 show clouds, values near 0.025 show bare soil
and values greater than 0.6 show dense vegetation. Table 4 shows the interrelationship
among the vegetation index and water quality variables during the different seasons. At
an annual and seasonal scale, both waterways showed higher interrelationship among
vegetation index, T-N and BOD.
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Table 4. The value of correlation coefficient among vegetation index and water quality variables.

Stream Period T−N_ NDVI BOD_ NDVI DO_ NDVI

Ara

R2 R2 R2

Annual 0.66 0.68 −0.58
Spring 0.69 0.68 −0.59

Summer 0.52 0.62 −0.57
Autumn 0.62 0.66 −0.42
Winter 0.42 0.47 −0.39

Yamuna

Annual 0.55 0.51 −0.5
Spring 0.58 0.41 −0.5

Summer 0.42 0.48 −0.4
Autumn 0.35 0.44 −0.39
Winter 0.41 0.45 −0.37

However, vegetation cover has negative and the lower correlation coefficient values
with DO. Overall, the water quality of the Ara Waterway has a higher correlation coefficient
value than the Yamuna Waterway. From these results, we can interpret that there is some
relationship between river water quality and vegetation bio-mass, and the relationship is
stronger when it comes to the case of the wetter region. So, the vegetation results in more
effects on stream water quality located in wetter regions.

Over basic relationships between vegetation and random point data, the use of long-
term profiles provides advantages over the use of point-based water quality data. The
vegetation index values take into account all green vegetation. NDVI values, for example,
illustrate the effect of grassland, as well as agricultural and residential land values in a
largely vegetated area. These values may be more or less associated with environmental
conditions as a whole than they would be individually.

The NDVI value can, however, indicate the health of crop vegetation at various
phonological growth stages, including lowered status or enhanced vegetation in a farming
watershed, which may be a result of fertilizer use. Alternatively, one can examine the
physical link between quality of water and a vegetation index by analyzing a regulated
set of water quality and the average value of nearby vegetation indexes. Although other
factors affecting the water quality include increased vegetation, greenness and moistness
are related to the activities of plant physiology. Water consumption and enhanced nutrient
uptake, such as oxygen and nitrogen demand, could be linked to the vegetated area, which
may result in even less chemicals entering the water stream via non-point source linkage. In
order to discover the root reason of the correlation between quality of water and vegetation
indicators, more research is needed.

3.3. Study Limitation

In the following study, we tried to illustrate the importance of seasonal and regional
based water quality management and a connection with vegetation and stream water
quality. Understanding the variability in vegetation index values, of course, will depend
on the mixture of different vegetation types. Because higher values of vegetation indices
are not necessarily the only reason for higher interrelationship, water quality might also
be affected with several degrees to different types of vegetation such as riverside forest
or bushes.

Human errors introduced in this study might include errors in river boundary and
general errors in the WASP modelling development. Any small variation in the segment
length and vegetation index area of interest could result in a large percentage error in setting
the interrelationship between the water quality and vegetation indices. In some cases, no
equal number of Landsat 8 cloud free scenes is available in each season for vege-tation
index acquisition. However, the study applied the average of all the available image indices
for each season, and then a similar methodology was also performed with the water quality
data for model simulation.
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More than only vegetation biomass may have contributed to stream pollution, as
evidenced by the lower R2 values observed. Types of vegetation, land cover, soils, and
other contaminant sources are all examples of these elements in play. It is possible to
gain insight into the factors affecting the relations of interest by performing this type
of interrelationship analysis. Future research that incorporates extensive water quality
modelling with a variety of vegetation assessments and land cover classifications could be
helpful in addressing this issue.

The outcomes presented in the following study showed an interrelationship among
the water quality and the vegetation indices, which revealed that there must be a connection
between the green vegetation biomass and the stream water quality. Furthermore, in the
spring season, correlations were highest for the case of total nitrogen and biochemical
oxygen demand due to the presence of higher vegetation [30]. This study also supports
the theories of [31], who hypothesized that vegetation indices have the potential to some
extent in illustrating stream water quality. This work is the first of its kind to use advanced
water quality modelling to show how plant indices and stream water quality are linked at
the spatial scale of river segments. Furthermore, this is also the first time that geographical
regions were divided into a wetter and a drier region on the basis of the global climatological
aridity index to investigate in a broad context.

4. Conclusions

Stream water quality was predicted using the WASP8 model in this study, which was
applied to the longitudinal profile of both waterways. The modelling results were appraised
through the assessment of fitting levels with MAPE analysis over both average and seasonal
scales. The results showed a large temporal variation of the water quality concentration
among seasonal scale in the Ara Waterway, which comes in the wet region, while in the
dry region Yamuna Waterway showed small-scale seasonal variation in a longitudinal
profile of the river water quality. Furthermore, an interrelationship was investigated among
vegetation indices and water quality variables.

The Ara Waterway, which comes in wetter regions, showed relatively better connection
between water quality variables and vegetation indices on the annual scale for T-N, BOD
and DO with Pearson correlation coefficient values at about 0.66, 0.68 and −0.58, respec-
tively. The seasonal scale interrelationship between water quality and NDVI also showed
strong linkage in the energy limited region over the Ara Waterway than that of the water
limited region, with a maximum correlation coefficient value occur in the spring season.

The seasonal variation of water quality variables over different geological locations
will help us to understand the water quality management over different climatic regions.
The management of water quality dynamics and its relationship with vegetation indices
over different climatological regions will help us in monitoring and managing water quality
with different strategy levels. The results of this research are advantageous for water quality
management and waterway restoration, as they highlight the effects of vegetation and the
relationship between water quality and vegetation indices. The variance in water quality
may vary with the variation in season and vegetation biomass. Thus, better water quality
of sustainable water environment could be achieved by making management strategies
conferring to the different geographical region’s specific vegetation patterns.
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