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Abstract: The development of wastewater treatment industry has gradually entered the high-
standard period and the wastewater treatment technology needs to be refined for different types of
wastewater. Traditional water quality indicators are not able to explain new problems encountered
in the current wastewater treatment process, especially the potential of removing pollutants via
biological methods. This research proposed a new method of evaluating the biological treatment
process by measuring the oxygen consumption in the biodegradation of pollutants on-the-go and
describing the complete biological oxygen consumption process. The biodegradability of wastewater
from an actual textile wastewater treatment plant was quantitatively evaluated by analyzing the
proportion of different organic pollutions. Results showed that the hydrolytic acidification can
improve the biodegradability of textile wastewater by increasing the content of biodegradable organic
matter (growth of 86.4%), and air flotation has little effect on the biodegradability of the wastewa-
ter. Moreover, the biodegradability of the textile wastewater could be improved by increasing the
nitrogen and phosphorus content, which could come from urea and K2HPO4. Concretely, nitrogen
source mainly increases organic matter of rapid bio-treated and organic matter of easy bio-treated by
14.94% and 70.79%, and phosphorus source mainly increases the organic matter of easy bio-treated by
143.75%. We found that the optimum concentration of additional N and P to the textile wastewater
was 35 mg/L and 45 mg/L, respectively. This approach holds great application prospects such as
risk control, optimizing treatment technology, and management, due to its characteristics of being
simple, easy to use, and rapid online implement action.

Keywords: wastewater treatment; biodegradability; optimized operating conditions; application;
high standard

1. Introduction

In recent years, rapid urbanization has brought about the dual dilemma of water
quality deterioration and water quantity shortage. In order to utilize reclaimed water
as a safe urban “second water source”, more sophisticated and innovative wastewater
treatment technology must be devised to improve the quality of reclaimed wastewater.
As a result, the development of wastewater treatment industry has gradually entered
the high-standard period [1]. However, there is a mismatch between traditional water
quality indicators, such as chemical oxygen demand (COD), biochemical oxygen demand
(BOD), total nitrogen (TN), and total phosphorus (TP), and the new problems in the current
wastewater treatment process [2–5]. Therefore, there is a need to explore the relationship
between quality characteristics and treatment potential of wastewater in order to develop
more efficient water treatment methods [4,6]. Since wastewater contains many types of
pollutants with different physical and chemical properties, the treatment (transformation)
potential of wastewater may be defined by the difficulty of water quality change during
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the process of treatment, storage, distribution, and utilization of wastewater, including
water quality stability and treatment characteristics [7,8]. It can be seen that the biological
method is often chosen to treat wastewater because bio-treatment of wastewater has the
advantage of low cost, relatively simple equipment, providing economic and environmental
benefits [9,10]. Therefore, improving the evaluation capabilities of wastewater biological
treatment characteristics may be able to optimize wastewater treatment processes.

As we know, wastewater is a complex liquid mixture, containing many types of
pollutants with complex physicochemical properties and the concentration of each pollutant
varies widely [11]. During the actual treatment process, the total oxygen demand (TOC) and
dissolved organic carbon (DOC) are also measured, and wastewater treatment plants often
use BOD5/COD, BOD5/TOD, and/or BOD5/DOC to roughly judge the biodegradability of
wastewater (Table 1). However, these comprehensive indicators of organic pollutants only
characterize the total amount of pollutants that are easily oxidized and cannot describe the
feature and degradation potential of wastewater [12]. In addition, wastewater, especially
industrial wastewater, contains not only easily biodegradable substances, but organics that
cannot be degraded or even bio-toxic pollutants [13,14]. Taking the textile industry as an
example, it consumes a lot of water, discharges a large amount of wastewater, and has great
potential for pollution. The common treatment method is to pre-treat in the factory and then
discharge it to a municipal wastewater treatment plant for further purification. However,
these wastewaters still contain a large number of refractory pollutants, some of which
are toxic to microorganisms (more than 1000 µg/L of aniline) or cannot be biodegradable
(more than 100 µg/L of antimony) [15], and these pollutants often result in unsatisfactory
wastewater treatment effects and substandard effluent water quality [16]. When measuring
the treatment characteristics of different dying, coking, and metal processing wastewater,
Hu et al. [17] found that the DOC removal rate of wastewater with the same BOD5/DOC
value is very different, for example, the wastewater with BOD5/DOC was 1.2, and the
DOC removal rate changes between 30% and 80% [17]. In addition, the efficiency of
conventional biotechnology to remove or transform pollutants from different wastewater
treatment plants is also different. Therefore, establishing a systematic and standardized
evaluation method for wastewater biological treatment characteristics is an important topic
for studying the potential of water quality conversion.

Table 1. Simple indicators for evaluation of wastewater biodegradability.

Indicators Values Biodegradability Citations

BOD5/COD 0.4~0.6 Easily biodegradable [18]
BOD5/DOC >1.2 Easily biodegradable [17]
BOD5/COD 0.2~0.4 Difficult to be biodegradable [7]
BOD5/COD <0.1 Non-biodegradable [14]

At present, traditional evaluation methods cannot describe the dynamic process of
organics degradation in wastewater [3], and it is difficult to analyze and distinguish the
difficulty of biodegradation of organic matter accurately without finding out the conversion
mechanism of organics. Therefore, these methods not only fail to guide the application
of biological treatment technology correctly, but are unable to guide the combination of
biological treatment and other treatment processes [19]. Therefore, it is indispensable to
evaluate its biodegradation characteristics comprehensively by determining the compo-
nents of difficult-to-biodegradable organic matter accurately. How to predict the effect of
bio-treatment scientifically and accurately? Is it necessary to join pre- or post-processing
when choosing bio-treatment? How to optimize the operating parameters of the bio-
treatment process? Research on the above questions is the important content of wastewater
quality evaluation, which could provide an important basis for the selection of biological
treatment and combined processes.

To address the above challenges, an experimental platform that can directly measure
the biological treatment process of wastewater was designed in this study, and the operating
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conditions were optimized in this research. The initial time and the difficulty of pollutant
degradation can be accurately judged by on-the-go observation of the oxygen consumption,
thereby evaluating the characteristics of wastewater biological treatment quantitatively.
Finally, we selected the typical textile wastewater with complex organic components as a
case to further verify the accuracy of the method for evaluating the wastewater biological
treatment characteristics and the effectiveness of optimizing the water treatment process.

2. Methodology
2.1. Classification of Wastewater Bio-Treatment Characteristics

Biotechnology, with the advantages of low cost and high treatment efficiency (the
process can remove 90% of pollutants), has been widely used in the wastewater treat-
ment process [20]. Therefore, understanding and evaluating wastewater bio-treatment
characteristics systematically would be an important guideline for selecting and optimiz-
ing the appropriate wastewater treatment process. The initial time and the difficulty of
pollutant biodegradation could be obtained by monitoring the biological treatment pro-
cess of wastewater directly and measuring a complete biological oxygen consumption
process on-the-go [21]. Then, according to the determination of the oxygen consumption
process, different types of wastewaters can be roughly divided into four categories: easy
bio-treatment, easy bio-treatment after sludge acclimation, bio-treatment after sludge ac-
climation, and difficult bio-treatment. The oxygen consumption process and the current
situation of treatment in different types of wastewaters are shown in Figure 1. From the per-
spective of the source of wastewater, the composition of domestic wastewater is relatively
simple, and it is most suitable for biological treatment [22]. The biological treatment of
aquaculture wastewater and textile wastewater with high concentration of organic matter
requires a certain period of biological domestication or adaptation process [23,24].
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2.2. Bio-Treatment Evaluation Process of Wastewater

This paper proposes a new method for evaluating the biological treatment charac-
teristics of wastewater. Figure 2 is the complete biodegradability evaluation process of
wastewater. The following are the specific technical processes:
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(1) Determine BOD5, COD, DOC, and TOD. When measuring BOD5, the DOC and
COD changes in the water should be measured in order to obtain the removal rate of DOC
and COD. The specific measured methods are in Appendix A.

(2) Obtain a complete biological oxygen consumption curve by determining the oxygen
consumption during the biodegradation process, and then classify wastewater preliminarily,
according to the above four categories and comprehensive indicators of organic pollutants.

(3a) If the wastewater is “Easy bio-treatment”, it means that it has excellent biolog-
ical treatment effects. Then, the oxygen consumption curves can be obtained through
experiments. Since the endogenous oxygen consumption process of microorganisms is
constant, the different stages of the biological treatment process can be divided according
to the changes in the oxygen consumption rate curve [25,26]. At the same time, we can
also obtain the ratio and biological treatment time of rapid bio-treated and easy bio-treated
organics [15]. The biological treatment efficiency can be improved by improving the sludge
activity, maintaining the TN/TP balance, and adding appropriate inorganic salts and trace
elements [6,27].

(3b) If the wastewater is “Easy bio-treatment after sludge acclimation”, “Biotreatment
after sludge acclimation” or “Difficult bio-treatment”. It is needed to analyze whether the
biological treatment is inhibited according to the rate of oxygen consumption. In addition,
we can compare the endogenous respiration process of microorganisms to determine the
time when the inhibitory reaction occurs, and then combine the analysis of the pollutant
composition to seek out the pivotal inhibitors [7]. Therefore, pretreatment methods such as
coagulation, adsorption, and oxidation can be selected to improve the biodegradability of
this wastewater [28,29]. If it is not that organisms are inhibited, then we need to determine
what organic matter is difficult to biodegrade [30,31]. According to the characteristics of
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wastewater quality, wastewater treatment plants usually domesticate sludge to improve
the degradation efficiency of pollutants in the sewage [32].

(4) Repeat the above analysis and evaluation procedures to further increase the ratio
of rapid bio-treatment and easy bio-treatment organics or shorten the reaction time. The
final aim of biotreatment suitability evaluation methodology is meeting the real needs of
wastewater treatment plants.

2.3. Stage Division of Biological Treatment Process

According to the change characteristics of the oxygen consumption rate curve, the
biological treatment process can be divided into three stages: I. Rapid Degradation Stage;
II. Constant Degradation Stage; III. Slow Degradation Stage. Furthermore, the organic
matter in wastewater can be distinguished as four types: rapid bio-treated, easy bio-
treated, normal bio-treated, and difficult bio-treated, which the calculation methods refer
to Wang et al. [15].

2.4. Bio-Treatment Feature Evaluation Experiment

The experimental test platform for wastewater biological treatment is composed of
four parts: aerobic reaction module, CO2 adsorption module, gas detection module, and
data processing module. The experimental setup is shown in Figure 3. The process of
microbial degradation produces CO2, which is absorbed in the adsorption unit. At the
same time, negative pressure is generated in the reaction unit, and O2 is supplemented
by the trace gas determination unit (the amount of supplementary gas can be recorded
in real time). Among them, the trace gas determination unit has built-in pressure and
temperature sensors, and data acquisition is performed based on pulse signals. The device
can convert different ambient temperatures and pressures into values under standard
conditions, enabling real-time measurement of oxygen consumption. The measured value
is transmitted to the data analysis unit through the Internet, and the data analysis and
result output processes are completed.
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Sufficient hydraulic retention time and the proper dosage ratio of wastewater and
activated sludge can ensure complete contact between microorganisms and pollutants,
improve biological treatment efficiency, and allow activated sludge to perform biodegrada-
tion [33]. The optimum reaction conditions of the evaluation system have been obtained by
analyzing the variation of oxygen consumption using the synthetic wastewater in Appen-
dice B and Appendice C.The mixed liquid of the experimental reaction system is 300 mL,
in which the dosage ratio of wastewater and activated sludge are both 50%, and the sludge
concentration (MLSS) is 4 g/L. In addition, the biological treatment process is also affected
by factors such as the temperature and pH of the reaction system. Therefore, we controlled
the temperature and pH to stabilize at 20~25 ◦C and 7.5 for 10 min, respectively. The
stirring rate is 80 rad/min. Under the above conditions, the sludge and organic matter can
be fully mixed, and the DO in the reaction flask can be kept at 3–5 mg/L, which is beneficial
to the sludge activity. This is consistent with the study by Wu et al. [34], and the reaction
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conditions of the bio-treatment feature evaluation experiment we designed are basically
consistent with the actual biological treatment process of the textile wastewater plant.

3. Application of Quantitative Evaluation for Bio-Treatment in a Wastewater
Treatment Plant
3.1. Water Quality Analysis of Textile Wastewater

Based on the water quality characteristics of textile wastewater and factory supervi-
sion mode, there are two main groups of treating textile wastewater in global: in-plant
and secondary treatment. The countries with scattered textile factories would choose the
in-plant treatment method, like German [35]. If textile enterprises are centrally constructed
and small in scale (the Sewage volume is under 1500 m3/day), secondary treatment is
usually chosen, like China and Romania [15,36]. Specifically, the textile wastewater from
6~10 enterprises was preprocessed in factories and then transported to the nearest WWTP
together. The concentration of COD is about 10,000 mg/L in textile wastewater, and it will
still contain over 300 mg/L COD even using inhouse treatment plants [20]. It cannot be
ignored that textile wastewater also contains a variety of dyes, some of which are even
toxic to microorganisms, resulting in it being difficult to simply degrade by biodegradation.
Therefore, it is necessary to judge the characteristics of textile wastewater quantitatively
by proposing a new way to evaluate the biological treatment process of wastewater. As
mentioned above, we chose a textile wastewater treatment plant in Jiangsu Province, China
as a research case to verify the effectiveness and practicability of the evaluation method
in this paper due to most of the textile enterprises (around 1500) being concentrated in
Jiangsu provinces. The textile wastewater, which was collected from Shengze Wastewa-
ter Treatment Plant in Wujiang District, Suzhou City, China (30◦53′34′′ N, 120◦38′16′′ E),
was chosen for application of quantitative evaluation for bio-treatment. This wastewater
treatment plant accepts industrial wastewater from 8 surrounding textile plants, with a
daily treatment capacity of 7000 m3, and the final effluent enters Taihu Lake. The existing
treatment process combination of the textile wastewater treatment plant [37] is shown in
Figure 4. Textile wastewater has a complex and changeable composition, and the direct
biochemical treatment is prone to inhibit the activity of sludge. The textile wastewater
usually first performs air flotation treatment after the conditioning tank to remove the
emulsified oil that is difficult to settle or the tiny suspended particulate matter. Then, the
hydrolytic acidification process is used to convert the macromolecular substances into
easily biodegradable small molecular substances, thereby improving the biodegradability
of wastewater and providing a good water quality environment for subsequent biochem-
ical treatment. After the biodegradation of Anaerobic-Anoxic-Oxic (AAO) process and
precipitation, the wastewater treatment plant added a biological activated carbon tank
to further degrade the organic matter. Finally, the effluent that meets the water quality
standard will be discharged into the river after ultraviolet (UV) disinfection (Figure 4).
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By collecting and testing the water samples at four locations of the treatment plant
at the front of the conditioning tank, after the air flotation tank, after the hydrolysis and
acidification tank, and after the biological treatment process (Figure 4), we can basically
grasp the changes in water quality throughout the water purification process. Among them,
air flotation and hydrolytic acidification are commonly used pretreatment processes, which
respectively improve the biodegradability of wastewater by physical impurity separation
and extracellular biochemical decomposition of macromolecular organic matter [15,37]. The
pollutant concentrations of textile wastewater in different treatment stages are shown in
Table 2. The B/C of the influent is 0.20, indicating its low biodegradability [38]. Hydrolytic
acidification technology can enhance the high concentrated organic wastewater significantly
(increased by 55%), with a B/C value of 0.31. However, the air flotation technology has little
effect on the biodegradability of the wastewater. After the biological treatment process, the
COD of the textile wastewater is 153 mg/L, and the removal rate can reach 37.3%, which is
consistent with its biodegradability results. The main function of air flotation is to remove
SS, and the removal rate can reach 63.3%, but the substances contained in SS are mainly
flocs and inorganic particles [39], so that the removal rate of COD by air flotation is only
7.1%. Hydrolysis acidification technology can degrade macromolecular organic matter into
small molecular organic matter [40], and the removal rate of COD is 18.7%. In addition, the
BOD content in the wastewater increased by 27.9%, which is conducive to the next stage
of microbial degradation process. However, the absolute content change of biologically
treatable organics in wastewater cannot be merely obtained by the B/C.

Table 2. Concentrations of pollutants in textile wastewater at different treatment stages.

Water Quality COD
(mg/L)

BOD5
(mg/L)

SS
(mg/L)

TN
(mg/L)

TP
(mg/L) B/C C:N:P

Raw textile wastewater 323 64 215 12.8 0.33 0.20 979:39:1
Textile wastewater after air floatation 300 61 79 11.6 0.31 0.20 968:37:1

Textile wastewater after hydrolysis acidification 244 78 63 10.5 0.25 0.32 976:45:1
Textile wastewater after AAO process 153 15 32 3.5 0.17 0.10 423:21:1

It can be seen from Table 2 that the C/N/P of textile wastewater is generally much
higher than 100:5:1, indicating that the lack of nitrogen and phosphorus is not conducive to
biological treatment. This conclusion stays in step with the study of Wang et al. [15]. The
case study also shows that the COD in the secondary effluent of the existing textile wastew-
ater treatment process is 153 mg/L, which is higher than the requirement (100 mg/L)
in the “Water Pollutant Discharge Standard for Textile Dyeing Industry” (GB 4287-2012)
and the emission limit of 60 mg/L required by the first level B standard of the “Pollu-
tant Discharge Standard for Urban Wastewater Treatment Plants” (GB 18918-2002), which
cannot be directly discharged into natural receiving water bodies. The current treatment
method adopted by the wastewater treatment plant is to add a sedimentation tank after the
secondary effluent to ensure the separation of mud and water, and then use a biological
activated carbon filter to further adsorb and remove the organic matter in the wastewater,
and finally reduce the COD concentration to about 30 mg/L [41]. It is worth noting that a
series of processes added by the water plant after AAO are all because the pretreatment
process fails to adjust the biodegradability of wastewater to the best state, which undoubt-
edly increases the risk of uncertainty for the effluent quality [42]. Therefore, the effect
of each stage of the water treatment process, especially the pretreatment stage, needs to
be evaluated. Based on this, the wastewater treatment plant can improve the operating
conditions in a targeted manner, thereby reducing costs and improving the stability of
effluent quality.

3.2. Effect of Existing Treatment Processes on the Wastewater Biodegradability

The oxygen consumption rate and cumulative oxygen consumption of textile wastew-
ater in different biological treatment stages can be determined through the experiment



Water 2022, 14, 1038 8 of 17

platform. According to the oxygen consumption rate curve in Figure 5a, the organic matter
in wastewater can be divided into the four types introduced in Section 2.3.
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According to the cumulative oxygen consumption curve in Figure 5b, the distribution
of the difficulty in degradation of organic matter in sewage is obtained (Table 3). The
textile wastewater that has not been treated by air flotation and hydrolysis acidification
cannot be rapidly degraded by activated sludge. Combining the ratio of BOD and COD
concentration, it can further illustrate that the biodegradability of textile wastewater is
poor. This is because the wastewater contains many difficult-to-degrade organics such
as synthetic slurries, dyes, and surfactants with complex molecular structures [15]. Dyes
containing polar auxochromic groups are difficult to decolorize and mineralize, and it
may need advanced oxidation processes to remove them [43]. High-salt dyeing auxiliaries
will affect cell osmotic pressure and inhibit microbial growth [44]. In addition, the higher
the solubility of the dye, the more difficult it is to decolorize wastewater. Materials with
higher adsorption efficiency are required to participate in the treatment process [45]. The
colloids in textile wastewater are destabilized under the action of air flotation technology,
forming small granules, which then gather into larger granules and deposit, removing the
superfluous pollutants [5]. The air flotation treatment can remove most of the SS and part
of COD in wastewater, increasing the biodegradable organic matter (from 17.6% to 20.7%).

Table 3. Degradability of organic matter (calculated as COD) in wastewater among treatment process.

Type of Organic Pollutions Rapid
Bio-Treated

Easy
Bio-Treated

Normal
Bio-Treated

Non-Biological
Treatment

Raw textile wastewater 0 5 52 266
Textile wastewater after air floatation treatment 2 7 53 238
Textile wastewater after hydrolysis acidification 5 24 51 164

Textile wastewater after AAO process 0 3 17 133

In addition, after being hydrolyzed and acidified, the biodegradability of textile
wastewater has been significantly improved. The content of biodegradable organic matter
increased from 17.6% to 32.8% (growth of 86.4%), of which the rapid bio-treated organic
matter increased from 2 mg/L to 5 mg/L, the content of easy bio-treated organic matter
increased by more than 3 times, from 7 mg/L to 24 mg/L. This is because in the process
of hydrolysis and acidification, some facultative anaerobic bacteria (such as Clostridium,
Anaerobic peptococcus, Escherichia coli, etc.) decompose the difficult-to-degrade high molec-
ular polymers and heterocyclic organics in the wastewater into easy-to-degrade organic
alcohol or acid with small molecule [46,47]. The increase of these small organic molecules
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greatly promoted the respiration rate of microorganisms, which increased the respiration
rate from 0.32 mg/(L·h) to 1.86 mg/(L·h).

3.3. Effect of Extra Nutrition on Bio-Treatment of Textile Wastewater

According to the results in Section 3.2, the hydrolysis acidification cannot improve
the biodegradability of wastewater obviously, and there are only 32.8% of the pollutants
that can be degraded by microorganisms, and the total degradation time is up to 80 h.
Because textile wastewater is deficient in nitrogen and phosphorus, which is not conducive
to biological treatment, we add urea with concentration gradients of 20, 35, and 50 mg/L
as the supplement nitrogen source, and added K2HPO4 with concentration gradients of
15, 30, and 45 mg/L as the supplement phosphorus. The addition of different types of
nutrient sources are shown in Table 4. Nitrogen and phosphorus are typically chosen for
improving biological treatment characteristics, and traditional research focuses on the effect
of nitrogen and phosphorus on the microorganism of activated sludge [27,47]. However,
traditional evaluation methods cannot describe the dynamic process of organic degradation
in wastewater under different external nutrients [3]. It is indispensable to evaluate the
effect of nitrogen and phosphorus on biodegradation characteristics comprehensively by
determining the organic matter degradation difficulty accurately.

Table 4. Types of nutrient sources of test.

Nutrient Sources
Dosing Concentration

(mg/L)

Concentration after Input into Textile
Wastewater (mg/L)

TN TP

Urea
20 16.54 — a

35 23.88 — a

50 30.35 — a

K2HPO4

15 — a 2.72
30 — a 6.04
45 — a 7.89

a No this type of additional nutrient sources was added to the wastewater.

The rate and the accumulation of oxygen consumption change characteristics of the bi-
ological treatment process under different external nutrient sources are shown in Figure 6,
and the distribution results of the organic matter degradation difficulty are shown in
Table 5. It can be seen from Table 5 that the supplementation of nitrogen and phosphorus
sources significantly affects the biological treatment process, especially improving the
treatment effect in the rapid and easy bio-treated organic matter. As the nutrient concentra-
tion increases, the content of organic matter that can be biologically treated in the textile
wastewater gradually increases, which can be increased from 18.13% to 29.06%, and the
increase rate can reach 53.45–60.34%.

In the case of using nitrogen source alone, the average oxygen consumption rate of
the 35 mg/L concentration group is the highest at the stage I, which is 2.68 mg/(L·h),
33.18% higher than the 45 mg/L concentration group. The blank group and the 20 mg/L
concentration group do not have a rapid degradation stage. After 5 h of reaction, the oxygen
consumption rate of all the treatment groups with the addition of nitrogen source further
increased. The oxygen consumption rate of the 35 mg/L concentration group reached
its peak at the 16 h, which was 3.42 mg/(L·h), 92.31%, 4.17%, and 5.63% higher than the
peak oxygen consumption rate of the blank group, 20, and 50 mg/L concentration group,
respectively. After 57 h of reaction, the oxygen consumption rate of wastewater stabilized at
0.33~0.86 mg/(L·h), which means the microorganisms entered the endogenous respiration
stage and no longer degraded organic matter. In addition, it can be seen from Table 5 that
compared with the blank group, the use of nitrogen sources increased the content of rapid
and easy bio-treated organics. Among them, the 35 mg/L concentration group had the
highest proportion of rapid bio-treated organics, which was 14.94%, which was 30% higher
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than the 50 mg/L concentration group. The 50 mg/L concentration group had the highest
proportion of easy bio-treated organics, which was 70.79%, which are 36.13% and 8.04%
higher than the 20 mg/L and 35 mg/L concentration groups, respectively.
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Table 5. Degradability of organic matter (calculated as COD) after adding different nutrients.

Type of Organic Pollutions Rapid Bio-Treated
(mg/L)

Easy Bio-Treated
(mg/L)

Normal Bio-Treated
(mg/L)

Non-Biological
Treatment (mg/L)

KB a 0 16 42 262

Supplement dosage of
nitrogen (Urea)

15 0 39 36 245

30 13 57 17 233

45 10 63 16 231

Supplement dosage of
phosphorus (K2HPO4)

14 0 26 25 269

28 0 35 42 243

42 0 39 54 227
a The blank group, that is, no nutrient source has been added.

In the case of using a phosphorus source alone, the oxygen consumption rate of the
microorganisms is maintained at about 1.71 mg/(L·h) during 0–10 h, which indicates that
the microorganisms are in the endogenous respiration stage at this time and are adapting to
the phosphorus source. After 10 h, the oxygen consumption rate of all phosphorus source
treatment groups increased rapidly, reaching a peak at the 12 h. Among them, the 45 mg/L
concentration group had the largest oxygen consumption rate, which was 5.76 mg/(L·h),
23.47%, and 18.63% higher than the 15 and 30 mg/L concentration groups, respectively.
After 55 h, the oxygen consumption rate of wastewater stabilized at 0.67–1.90 mg/(L·h),
and the microorganisms entered the endogenous respiration stage and no longer degraded
organic matter. In addition, it can be seen from Table 5 that compared with the blank group,
the use of phosphorus sources increased the content of easy bio-treated organics. The
45 mg/L concentration group had the largest increase, with an increase of 143.75%, which
was 50.00% and 11.43% higher than the 15 and 30 mg/L concentration group, respectively.

The above results indicate that the textile wastewater lacks sufficient nitrogen and
phosphorus sources to react in biological treatment process. The ideal C:N:P ratio required
by microorganisms is 100:5:1 [48], but the actual ratio of the textile wastewater is 979:39:1, so
it should be supplemented by nitrogen and phosphorus sources to improve the microbial
activity, and then improve the biological treatment effect, which can be proved by the
experimental results. Meanwhile, in this study, the optimum concentration of urea (nitrogen
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source) and K2HPO4 (phosphorus source) added to textile wastewater was 35 mg/L and
45 mg/L.

The final concentration of TN and TP also had been measured and the results of
continuous monitoring for 38 days are shown in Figure 7. The concentrations of TN and
TP were lower than 14 mg/L and 0.5 mg/L, respectively, which both met the discharge
standards of wastewater treatment. It shows that adding nitrogen and phosphorus nutrient
sources to the wastewater will not have a negative impact on the final effluent quality. The
research results of supplementing nitrogen and phosphorus to optimize the efficiency of
biological treatment have been applied to the Shengze Wastewater Treatment Plant.
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4. Conclusions

In order to make reclaimed water a safe urban “second water source”, wastewater
treatment has gradually entered the high-standard stage and the wastewater treatment
technology need to be refined for many kinds of wastewater. The source of wastewater
is complex and changeable, resulting in constant new problems that plague the water
purification process of sewage treatment plants, which seriously affects the quality of
effluent water. Firstly, the component characteristics of the pollutants themselves have
an impact on the microbial activity of sludge. Secondly, the organic pollutants will be
transformed into each other, and the biological treatment process of different pollutants may
have cooperation or competition due to the transformation of raw materials and products.
The traditional water quality indicators not only fail to guide the application of biological
treatment technology correctly, but are unable to guide the combination of biological
treatment and other treatment processes. To meet the above challenges, the evaluation of
the biological treatment characteristics of wastewater needs to be quantified and accurate.
This research proposed a new biological treatment characteristic evaluation method by
using the oxygen consumption measurement results of pollutants in the biodegradation
process to find out the complete biological oxygen consumption process, the starting and the
consuming time of the biological treatment equipment, and then analyzing the proportion
of different biodegradable organics in wastewater. The optimum reaction conditions of the
evaluation system have been obtained by analyzing the variation of oxygen consumption
using the synthetic wastewater. This evaluation method not only improves the accuracy
of the evaluation results but also remedies a defect of the traditional method that cannot
be quantified by BOD5/COD, BOD5/TOD, and BOD5/DOC. Therefore, the quantitative
evaluation for bio-treatment of wastewater can be used as a step in the evaluation of
water characteristics to help relevant staff or scholars to deepen their understanding of
wastewater treatment processes and water quality standards, adjust operating parameters,
optimize existing processes, or develop new processes.

We took a real wastewater treatment plant in Suzhou, Jiangsu Province as a research
case to evaluate the biodegradability of wastewater further quantitatively and improv-
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ing methods. On the one hand, the hydrolytic acidification technology can increase the
biodegradability of textile wastewater by increasing the proportion of easy bio-treated
organics, and air flotation has little effect on the biodegradability of the wastewater. On the
other hand, the condition of nitrogen and phosphorus in wastewater is very unfavorable
for biological treatment. The content of biodegradable organic matter could be increased
by increasing the nitrogen source and phosphorus source in the textile wastewater. The
optimum concentration of urea (nitrogen source) and K2HPO4 (phosphorus source) added
to the textile wastewater was 35 mg/L and 45 mg/L, respectively. Nitrogen source mainly
increases the proportion of rapid and easy bio-treated organics by 14.94% and 70.79%, and
phosphorus source mainly increases organic matter of easy bio-treated by 143.75%. The
result of this research has been put into practice in Shengze Wastewater Treatment Plant for
optimizing the reaction time and the supplement dosage of nitrogen or phosphorus in the
biological treatment process.
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Appendix A

Table A1. Measured Methods of Common Biochemical Indicators.

Pollutant Indicators Measured Methods Standard/Instrument

COD Dichromate oxidation ISO6060
BOD Differential pressure detection Automatic BOD Tester
TOC Combustion TOC Analyzer

SS Weigh after filtration 0.45-micron filter, balance
TN Potassium Persulfate Oxidation, Spectrophotometry Spectrophotometer
TP Ammonium molybdate, spectrophotometry

Appendix B

When microorganisms in activated sludge degrade organic matter in wastewater,
sufficient hydraulic retention time is required to ensure the complete contact between
microorganisms and pollutants to improve biological treatment efficiency. In addition, the
biological treatment process is also affected by factors such as the temperature and pH of the
reaction system. In this test system, mechanical agitation is selected to increase the mixing
degree of wastewater and activated sludge. In the optimization experiment, artificially
synthesized wastewater is used, and the formula is as shown in Table A2. Among them,
COD = 510 ± 12 mg/L, BOD = 387 ± 17 mg/L. The mixed liquid of the experimental
reaction system is 300 mL, in which the dosage ratio of wastewater and activated sludge
are both 50%, the sludge concentration (MLSS) is 4g/L, and the other operating conditions
are shown in Table A3.

The activated sludge suspension was collected from the outlet of the aeration tank
of the biological treatment unit, and then it was cleaned in the laboratory immediately.
The cleaning steps were the following: (1) After centrifuging the suspension (4000 r/min,
10 min), the supernatant was discarded following a clear muddy water boundary appearing.
(2) The bottom sludge was resuspended three times with tap water, which had been
dechlorinated by aerating with air. After cleaning, a small part of sludge was dried in
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the equipment at 105 ◦C, and then its dry weight was measured to get the mixed liquid
suspended solids (MLSS). Most of the activated sludge suspension was stored at 4 ◦C for
refrigeration, and the storage time should not exceed 3 days. Before the experiment, the
researcher adjusted the MLSS of the refrigerated activated sludge to an inoculum with the
required MLSS.

Table A2. Composition and concentration of synthetic wastewater.

Ingredient Concentration
(mg/L) Ingredient Concentration

(mg/L)

Glucose 500 CaCl2 60
Starch 400 (NH4)2SO4 250
Petone 200 K2HPO4 60
Urea 60 MnSO4 8

NaHCO3 300 FeSO4 1.2
NaCl 400

Table A3. The reaction condition parameters of experimental system.

Reaction Condition Parameter

Stirring rate 10, 40, 80, 100 rad/min
Temperature 10 ◦C, 15 ◦C, 20 ◦C, 25 ◦C, 30 ◦C

pH 5, 7, 9

Appendix C. System Optimization Results of Evaluation for Wastewater
Bio-Treatment

Appendix C.1. Effect of Temperature on the Bio-Treatment Process

The oxygen consumption process of wastewater under different temperature condi-
tions is shown in Figure A1, and as a whole, there is a three-stage change from a slow
increase to a rapid increase to a slow linear increase. From 0 to 8 h, the cumulative oxygen
consumption increases slowly, reaching 17–59 mg/L, indicating that microorganisms are
adapting to the wastewater environment in this stage. From 8 to 28 h, it is in a stage of
rapid growth, and the cumulative oxygen consumption can reach 63–214 mg/L, indicating
that microorganisms are accelerating the degradation of organic matter in wastewater.
After 28 h, the oxygen consumption shows a slow linear growth trend, at this time most
of the organic matter in wastewater has been degraded, and microorganisms are in an
endogenous respiration stage.
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Peculiarly, in the stage of organic matter rapid degradation, when the reaction tem-
perature increases from 10 ◦C to 25 ◦C, the oxygen consumption increases, and when the
temperature is higher than 25 ◦C, the oxygen consumption decreases. At 28 h, the cumula-
tive oxygen consumption in 25 ◦C was the largest (214 mg/L), which was 239.68%, 62.33%,
18.56%, and 42.51% higher than that under 10 ◦C, 15 ◦C, 20 ◦C, and 30 ◦C, respectively.

Appendix C.2. Effect of pH on the Biological Treatment Process

The oxygen consumption process of wastewater under different pH is shown in
Figure A2, and as a whole, there is a three-stage change from a slow increase to a rapid
increase to a slow linear increase. From 0 to 4 h, the cumulative oxygen consumption
increases slowly, reaching 15–34 mg/L, indicating that microorganisms are adapting to the
wastewater environment in this stage. From 4 to 40 h, it is in a stage of rapid growth, and the
cumulative oxygen consumption can reach 205–355 mg/L in the end of the stage, indicating
that microorganisms are accelerating the degradation of organic matter in wastewater.
After 40 h, the oxygen consumption shows a slow linear growth trend, at this time most
of the organic matter in wastewater has been degraded, and microorganisms are in the
endogenous respiration stage.

Water 2022, 14, x FOR PEER REVIEW 15 of 18 
 

 

temperature is higher than 25 °C, the oxygen consumption decreases. At 28 h, the cumu-

lative oxygen consumption in 25 °C was the largest (214 mg/L), which was 239.68%, 

62.33%, 18.56%, and 42.51% higher than that under 10 °C, 15 °C, 20 °C, and 30 °C, respec-

tively. 

Appendix C.2. Effect of pH on the Biological Treatment Process 

The oxygen consumption process of wastewater under different pH is shown in Fig-

ure A2, and as a whole, there is a three-stage change from a slow increase to a rapid in-

crease to a slow linear increase. From 0 to 4 h, the cumulative oxygen consumption in-

creases slowly, reaching 15–34 mg/L, indicating that microorganisms are adapting to the 

wastewater environment in this stage. From 4 to 40 h, it is in a stage of rapid growth, and 

the cumulative oxygen consumption can reach 205–355 mg/L in the end of the stage, indi-

cating that microorganisms are accelerating the degradation of organic matter in 

wastewater. After 40 h, the oxygen consumption shows a slow linear growth trend, at this 

time most of the organic matter in wastewater has been degraded, and microorganisms 

are in the endogenous respiration stage. 

 

Figure A2. Accumulation of oxygen consumption under different pH conditions. 

In the stage of organic matter rapid degradation, when the pH increases from 5 to 7, 

the oxygen consumption increases, and when the pH increases from 7 to 9, the oxygen 

consumption decreases. At 40 h, the cumulative oxygen consumption reaches the largest 

(355 mg/L) at pH = 7, which was 19.89% and 6.47% higher than that under pH = 5 and pH 

= 9 respectively. 

Therefore, the optimum reaction conditions of the evaluation system have been ob-

tained by analyzing the variation of oxygen consumption using the synthetic wastewater 

(25 °C, pH = 7, stirring rate with 80 rad/min). 

Appendix C.3. Effect of Stirring Rate on the Biological Treatment Process 

The oxygen consumption process of wastewater under different stirring rate condi-

tions is shown in Figure A3, and as a whole, there is a three-stage change from a slow 

increase to a rapid increase to a slow linear increase. From 0 to 4 h, the cumulative oxygen 

consumption increases slowly, reaching 5–29 mg/L, indicating that microorganisms are 

adapting to the wastewater environment in this stage. From 4 to 36 h, it is in a stage of 

rapid growth, and the cumulative oxygen consumption can reach 277–367 mg/L in the 

end of the stage, indicating that microorganisms are accelerating the degradation of or-

ganic matter in wastewater. After 36 h, the oxygen consumption shows a slow linear 

Figure A2. Accumulation of oxygen consumption under different pH conditions.

In the stage of organic matter rapid degradation, when the pH increases from 5 to
7, the oxygen consumption increases, and when the pH increases from 7 to 9, the oxygen
consumption decreases. At 40 h, the cumulative oxygen consumption reaches the largest
(355 mg/L) at pH = 7, which was 19.89% and 6.47% higher than that under pH = 5 and
pH = 9 respectively.

Therefore, the optimum reaction conditions of the evaluation system have been ob-
tained by analyzing the variation of oxygen consumption using the synthetic wastewater
(25 ◦C, pH = 7, stirring rate with 80 rad/min).

Appendix C.3. Effect of Stirring Rate on the Biological Treatment Process

The oxygen consumption process of wastewater under different stirring rate conditions
is shown in Figure A3, and as a whole, there is a three-stage change from a slow increase to a
rapid increase to a slow linear increase. From 0 to 4 h, the cumulative oxygen consumption
increases slowly, reaching 5–29 mg/L, indicating that microorganisms are adapting to the
wastewater environment in this stage. From 4 to 36 h, it is in a stage of rapid growth, and the
cumulative oxygen consumption can reach 277–367 mg/L in the end of the stage, indicating
that microorganisms are accelerating the degradation of organic matter in wastewater. After
36 h, the oxygen consumption shows a slow linear growth trend, at this time most of the
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organic matter in wastewater has been degraded, and microorganisms are in endogenous
respiration stage.
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