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Abstract: The discharge exponent is a general index used to evaluate the hydraulic performance of
emitters, which is affected by emitters’ structural parameters. Accurately estimating the effect of
change in structural parameters on the discharge exponent is critical for the design and optimization
of emitters. In this research, the response surface methodology (RSM) and two machine learning
models, the artificial neural network (ANN) and support vector regression (SVR), are used to predict
the discharge exponent of tooth-shaped labyrinth channel emitters. The input parameters consist of
the number of channel units (N), channel depth (D), tooth angle (α), tooth height (H) and channel
width (W). The applied models are assessed through the coefficient of determination (R2), root-mean-
square error (RMSE) and mean absolute error (MAE). The analysis of variance shows that tooth
height had the greatest effect on the discharge exponent. Statistical criteria indicate that among the
three models, the SVR model has the highest prediction accuracy and the best robustness with an
average R2 of 0.9696, an average RMSE of 0.0037 and an average MAE of 0.0031. The SVR model can
quickly and accurately simulate the discharge exponent of emitters, which is conducive to the rapid
design of the emitter.

Keywords: labyrinth channel emitter; hydraulic performance; artificial neural network; support
vector regression

1. Introduction

With the growth of the population, the rapid development of social economy and
global warming, the shortage of water resources is becoming more and more serious [1,2].
Therefore, improving the utilization rate of water resources and saving water resources
are very important for the development of human beings. At present, agriculture is the
field that consumes the most water resources [3], so water-saving irrigation technology
has been advocated around the world to improve the utilization rate of agricultural water
and achieve the purpose of water saving. Drip irrigation is an efficient and energy-saving
irrigation technology, which has been widely used all over the world [4,5]. The drip
irrigation emitter is the core component of drip irrigation systems, which determines the
water supply for and uniformity of each crop, so the performance of entire drip irrigation
systems is ultimately reflected by the performance of drip irrigation emitters. Hydraulic
performance is a major standard to measure the irrigation quality of emitters [6–8]. The
relationship between the discharge and pressure of emitters can be expressed according to
the following empirical formula [9]:

Q = kd Px (1)

where kd is the discharge coefficient, x is the discharge exponent, Q is the emitter discharge
(L/h), and P is the working pressure (kPa).
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The discharge exponent reflects the sensitivity of the discharge of emitters to the
pressure change, and its value is between 0 and 1. The larger the discharge exponent, the
more sensitive the emitter discharge is to the change of pressure. In theoretical analyses and
engineering applications, the discharge exponent has been used as one of the indicators
to evaluate the hydraulic performance of emitters [10,11]. Labyrinth channel emitters are
widely used due to their simple structure and low manufacturing cost [12]. Labyrinth
channel units with different shapes lead to different hydraulic performances of emitters,
and a labyrinth channel with the same shape, but different structural parameters, also
leads to different hydraulic performances of the emitters. Therefore, accurately evaluating
the relationship between the structure of the labyrinth channel emitter and its discharge
exponent is very important for its design and optimization.

At present, the commonly used emitter discharge exponent prediction method needs
to design a single factor or multi-factor orthogonal test first, and then make predictions
according to the established linear or nonlinear regression equations between the emitter
structure parameters and the emitter discharge exponent. Li et al. [13] found that tooth-
shaped spacing had a significant effect on the emitter’s discharge exponent. Niu et al. [14]
studied the influence of the angle of the tooth-shaped labyrinth channel emitter on its per-
formance, and found that the angle was negatively correlated with the discharge exponent.
Al-Alamoud et al. [15] reported that the width and length of flow path, channel unit num-
ber, height, and spacing had a positive correlation with the hydraulic performance of the
emitters. Yang et al. [16] discussed the influence of structural parameters on the hydraulic
performance emitters by a numerical simulation, and found that the channel depth was
positively correlated with the discharge exponent, while the channel height was negatively
correlated with the discharge exponent. The tooth-shaped labyrinth channel emitter is one
of the most common emitters on the market, and many researchers studied the relationship
between its structure and its discharge exponent; however, as far as we know, most of the
current studies only discuss the independent influences of each factor, but do not consider
the interactive influences between the factors. This is because if the interactive influence be-
tween the factors is considered, the number of orthogonal tests will increase exponentially
with the increase in factors, so the interactive influence is usually ignored. However, if the
response surface method is used for experimental designs, the number of experiments is far
fewer than that of the orthogonal test method, while considering the interactions between
the factors, which greatly reduces the experimental time and cost [17–19]. In addition, when
analyzing the experimental results, RSM can describe the influence relationship between
independent variables and dependent variables through a three-dimensional response
surface map and contour map, making the results more intuitive and clear. Therefore,
in this study, the RSM is used to study the influence of the structural parameters on the
discharge exponent of the tooth-shaped labyrinth channel emitter.

In recent years, machine learning methods have been greatly expanded to solve mul-
tivariate, nonlinear and prediction problems, and they have been widely used in various
fields, such as finance, education, medicine, construction, agriculture, e-commerce, robotics,
information search and weather forecasting [20–29]. At present, the application of machine
learning in agriculture mainly lies in the soil parameter prediction, crop yield prediction,
detection of pests and weeds, intelligent harvesting, intelligent irrigation and livestock
management [30–35]. In intelligent irrigation, some scholars applied machine learning
methods to predict the hydraulic performance of drip irrigation emitters. Li et al. [36]
obtained the relationship between the path area and length of the fractal path and the
discharge coefficient of the fractal flow path emitter by using a support vector machine.
Guo et al. [37] employed the support vector machine to predict the discharge of a two-
way mixed-flow emitter, and the model inputs were the emitter’s structure parameters
and working pressure. The work concluded that the average relative error between the
predicted value of the support vector machine model and the actual value was 1.91%.
Lavanholi et al. [38] used the structural parameters of the trapezoidal labyrinth channel
emitter and the working pressure as the inputs of the artificial neural network model,
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and the discharge as the output. The results showed that the maximum relative error
of the predicted results was 9.5%. Mattar et al. [39] compared the prediction results of
the artificial neural network model and the gene expression programming model for the
emitter discharge variation and manufacturer’s coefficient of variation, and the structural
parameters of the tooth-shaped labyrinth channel emitter, water temperature and working
pressure were used as the model inputs. They found out that the artificial neural network
model was better than the gene expression programing model. Seyedzadeh et al. [40]
applied the artificial neural network, neuro-fuzzy sub-clustering, neuro-fuzzy c-means
clustering, and least-squares support-vector machine to predict the drip irrigation tape’s
discharge with working pressure, water temperature, discharge coefficient, discharge expo-
nent and nominal discharge as the model inputs. The results revealed that the least-squares
support-vector machine model had the lowest error. The above literature review confirms
the feasibility of machine learning methods in predicting the hydraulic performance of
emitters, such as the discharge, discharge coefficient, manufacturing coefficient error, and
discharge variation. However, there is no literature on predicting the discharge exponent
of drip irrigation emitters. Hence, the machine learning methods (artificial neural network
(ANN) and support vector regression (SVR)) are used to establish the models for predicting
the discharge exponent of tooth-shaped labyrinth channel emitters, with their structural
parameters as the model inputs in this study, and compared these with the results predicted
by the traditional RSM model. The predicted performance of the three models (RSM,
ANN, and SVR) was evaluated via a statistical comparison between the discharge exponent
obtained from the models and the experimental measured results.

2. Materials and Methods
2.1. The Geometry of the Drip Irrigation Emitter

The physical model of the tooth-shaped labyrinth channel emitter studied in this
paper and its tooth-shaped structure is shown in Figure 1. The five structural parameters
of the tooth-shaped labyrinth channel emitter (i.e., number of channel units (N), channel
depth (D), tooth angle (α), tooth height (H) and channel width (W)) are extracted for the
parametric design.
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method was used to manufacture the emitter samples. A total of 5 drip irrigation tapes 

Figure 1. Physical model and structural parameters of the tooth-shaped labyrinth channel emit-
ter. (a) Physical model and (b) structural parameters of the tooth-shaped labyrinth channel unit.
N indicates the number of channel units, D indicates the channel depth, α indicates the tooth angle,
H indicates the tooth height, and W indicates the channel width.

2.2. Experiment Layout and Procedures

The hydraulic performance experimental platform of the drip irrigation emitter layout
is shown in Figure 2. The tap water was used as experimental water. The 3D-printing
method was used to manufacture the emitter samples. A total of 5 drip irrigation tapes
were installed on the hydraulic performance experimental platform, and 20 emitter samples
were installed on each drip irrigation tape, so a total of 100 emitter samples was installed
on the hydraulic performance experimental platform.
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Figure 2. Layout of the hydraulic performance experimental platform.

In this study, the discharge of each emitter model was measured under the water
pressures (P) of 10 kPa, 20 kPa, 30 kPa, 40 kPa, 50 kPa, 60 kPa, 70 kPa, 80 kPa, 90 kPa, and
100 kPa. The test for each emitter model was repeated four times. The average value of the
four tests was taken as the discharge of each emitter model at each pressure condition. At
each pressure stage, an already-weighed measuring cup was placed under each sample to
measure the discharge, and after 5 min, the measuring cup was removed for weighing. The
emitter discharge (Q) was calculated as follows:

Q =

50
∑

j=1

4
∑

k=1

[(
mT

jk −mjk

)
× 60× 10−3

]
100× 4× T

(2)

where j is the number of emitter samples, k is the number of tests, T is the measure time
(min), mjk

T is the total weight of the water within the time T and empty measuring cup (g),
and mjk is the weight of the empty measuring cup (g).

2.3. Response Surface Methodology (RSM)

In this study, the effect of the five structural parameters of the emitter and their
interaction on its discharge exponent was studied by the response surface methodology
(RSM) applying the Box–Behnken Design (BBD). The factor variables (dependent variables)
were the number of channel units (N, 12–20), channel depth (D, 0.8–1.2 mm), tooth angle
(α, 30–60◦), tooth height (H, 0.8–1.2 mm), and channel width (W, 0.6–1.0 mm), and the
response variable (independent variable) was the emitter discharge exponent. The code and
levels of the factor variables are listed in Table 1. According to the statistical requirements
of the Box–Behnken experimental design, a total run of 45 experiments was carried out,
and the experimental design and results are shown in Table 2.
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Table 1. Levels and code of the five structural factors.

Code
Levels

N (mm) D (mm) α (◦) H (mm) W (mm)

Low (−1) 12 0.8 30 0.8 0.6
Central (0) 16 1.0 45 1.0 0.8

High (1) 20 1.2 60 1.2 1.0

Table 2. The coded and actual values of the structural factors.

Run
Structural Factors Discharge

ExponentN (mm) D (mm) α (◦) H (mm) W (mm)

1 16 1 60 1 0.6 0.4497
2 16 0.8 45 1 0.6 0.4443

3 (C) 16 1 45 1 0.8 0.4523
4 20 1 60 1 0.8 0.4460
5 16 1.2 45 0.8 0.8 0.5070
6 12 1 45 1.2 0.8 0.4780
7 16 0.8 45 0.8 0.8 0.5160
8 16 1.2 45 1 0.6 0.4512
9 16 1 45 0.8 1 0.5126

10 16 1.2 60 1 0.8 0.4503
11 16 1 60 0.8 0.8 0.5077
12 12 1.2 45 1 0.8 0.4587
13 12 1 45 1 1 0.4695

14 (C) 16 1 45 1 0.8 0.4556
15 16 0.8 45 1 1 0.4621
16 16 1 60 1 1 0.4599
17 12 0.8 45 1 0.8 0.4482
18 16 1 30 1 1 0.4760
19 16 1 60 1.2 0.8 0.4737
20 20 1 30 1 0.8 0.4591
21 20 1 45 1 1 0.4660
22 20 0.8 45 1 0.8 0.4441

23 (C) 16 1 45 1 0.8 0.4537
24 20 1 45 0.8 0.8 0.5245
25 20 1 45 1.2 0.8 0.4743
26 16 1 45 1.2 1 0.4915
27 16 1.2 30 1 0.8 0.4648
28 16 1.2 45 1.2 0.8 0.4770
29 20 1.2 45 1 0.8 0.4537
30 16 0.8 30 1 0.8 0.4532

31 (C) 16 1 45 1 0.8 0.4500
32 16 1 30 0.8 0.8 0.5150
33 12 1 60 1 0.8 0.4496
34 12 1 45 1 0.6 0.4507
35 16 0.8 60 1 0.8 0.4431
36 16 1 45 1.2 0.6 0.4698
37 16 1.2 45 1 1 0.4702
38 12 1 45 0.8 0.8 0.5027
39 16 1 45 0.8 0.6 0.5215
40 16 1 30 1.2 0.8 0.4802

41 (C) 16 1 45 1 0.8 0.4489
42 20 1 45 1 0.6 0.4464
43 12 1 30 1 0.8 0.4637
44 16 1 30 1 0.6 0.4526
45 16 0.8 45 1.2 0.8 0.4615

C indicates the central repeated trials.
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The mathematical relationship between the emitter discharge exponent and structural
parameters is described by the quadratic polynomial equation below:

y = β0 + β1 x1 + β2 x2 + β3 x3 + β4 x4 + β5 x5 + β12 x1 x2 + β13 x1 x3 + β14 x1 x4 + β15 x1 x5 + β23 x2 x3 + β24 x2 x4 + β25 x2 x5
+ β34 x3 x4 + β35 x3 x4 + β45 x4 x5 + β11 x1

2 + β22 x2
2+ β33 x13

2+ β44 x4
2+ β55 x5

2 (3)

where y is the predicted response; x1, x2, x3, x4, and x5 are the independent variables; β0 is
the model regression intercept; β1, β2, β3, β4, and β5 are the linear regression coefficients;
β12, β13, β14, β15, β23, β24, β25, β34, β35, and β45 are the interaction regression coefficients;
and β11, β22, β33, β44, and β55 are the quadratic regression coefficients.

2.4. Artificial Neural Network (ANN)

The artificial neural network (ANN) is a mathematical model or computational model
established by imitating the structure and function of a biological neural network. The
neuron is the core component and the most basic unit of the artificial neural network.
Neurons form the input layer, the output layer, and the hidden layer. Each neuron in a
hidden layer is connected with the neurons in the previous layer and the next layer through
weights to form a complete neural network. The input layer is mainly used to obtain
input information, that is, independent variables. The input layer data is weighted and
transferred to the hidden layer. Then, the hidden layer uses the activation function to
process the data and transmits the hidden layer information to the output layer. Finally, the
model processing results (the dependent variables) are output through the output layer. The
effective parameters that affect the accuracy of an ANN model include the number of hidden
layers, the number of neurons in each hidden layer, the activation function, the learning rate,
the learning rate optimization algorithm, the momentum term, and the number of iterations.
The activation functions mainly include sigmoid, tanh, relu, and linear activation functions.
Commonly used learning rate optimization algorithms include stochastic gradient descent
(SGD), the limited-memory Broyden—Fletcher–Goldfarb–Shanno (LBFGS) algorithm, and
adaptive moment estimation (Adam). In the present study, the input layer has five neurons,
which are the number of channel units (N), channel depth (D), tooth angle (α), tooth
height (H), and channel width (W). The output layer has only one neuron, which is the
discharge exponent (x). The tanh function and Adam algorithm were selected as the
activation function and the learning rate optimization algorithm, respectively. The Bayesian
optimization method is employed for optimizing the number of hidden layers, the number
of neurons in each hidden layer, the learning rate, the momentum term, and the number
of iterations. The k-fold cross-validation approach is an effective way to avoid model
overfitting. Therefore, a 5-fold cross-validation approach was used for data division in this
study. In order to eliminate the influence of the difference in the value range among the
indicators, the standardization of data was carried out.

2.5. Support Vector Regression (SVR)

The support vector machine is a machine learning method that implements classi-
fication or regression by constructing one or a set of hyperplanes in a high-dimensional
space, where the method used for regression is called support vector regression (SVR). The
kernel function is used in an SVR model to solve a linearly inseparable problem. Since the
kernel function is one of the important factors affecting the accuracy of the SVR model, it
is particularly important to choose an appropriate kernel function for the SVR model. At
present, the kernel functions of the SVR model are mainly divided into four types, namely,
the linear, polynomial, radial basis function (RBF), and sigmoid. In addition, after the
kernel function is selected, the hyperparameters also affect the performance of the SVR
model, such as gamma, C, and epsilon, so the selection of the hyperparameters is also
a key step in SVR modeling. In this study, the radial basis function (RBF) was selected
as the kernel function. Similarly, the Bayesian optimization method was employed for
hyperparameters optimization, the standardization of data was carried out, and a 5-fold
cross-validation approach was used for data division.
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2.6. Indices for Evaluating Modeling Accuracy

The coefficient of determination (R2), the root-mean-square error (RMSE), and the
mean absolute error (MAE) were employed to evaluate the accuracy of the RSM, ANN, and
SVR models in the present study.

R2 = 1−

n
∑

i=1
(Mi − Ei)

2

n
∑

i=1

(
Mi −M

)2
(4)

RMSE =

√√√√ 1
N

N

∑
i=1

(Mi − Ei)
2 (5)

MAE =
1
N

N

∑
i=1
|Mi − Ei| (6)

where Mi and Ei are the discharge exponents of the No. i drip irrigation emitter measured
via the hydraulic performance experiment and estimated via the applied estimation models,
respectively; M is the average discharge exponents measured via the hydraulic performance
experiment; and N is the total number of measured discharge exponents.

3. Results and Discussion
3.1. RSM Modeling
3.1.1. Statistical Analysis of Experimental Results

Design-Expert software was employed to process and analyze the experimental data.
The analysis of variance (ANOVA) was conducted to check whether the RSM model fits
the overall data and identify the degree of influence of the independent variables on the
dependent variables. The ANOVA results of the response models of the discharge exponent
are presented in Table 3. From Table 3, it can be observed that the significant value (p-value)
of the regression model item is less than 0.01, while the p-value of the lack-of-fit item is
greater than 0.05; in other words, the regression model is extremely significant and its lack-
of-fit item is not significant, indicating that the regression model is reasonable and effective.
The adequacy of the regression model was evaluated by the value of R2. For a good fit of a
model, the value of R2 should be greater than 0.80, and the closer the value of R2 is to 1,
the better the model fit. The value of R2 of the RSM model was 0.9851, indicating that the
fitness of the model of discharge exponent was quite good. The adequate precision (AP)
was used to measure the signal-to-noise ratio, its value of the regression model was 27.807,
which was greater than 4, indicating that this model can be used to navigate the design
space. The coefficient of variance (C.V. %) of the discharge exponent regression model was
only 0.84%, which was much lower than 10%, indicating that the model had good reliability
and precision. These statistical results show that the predicted values of the discharge
exponential response surface model are in good agreement with the measured values.

The p-value is an indicator used to access the intensity of the influence of independent
variables on dependent variables. When the p-value of a factor is less than 0.05, it can
be considered that the influence of the factor on the response variable is significant, and
the lower the p-value, the greater the influence of the factor. According to Table 3, in the
linear term, excluding the number of channel units (N), the channel depth (D), tooth angle
(α), tooth height (H), and channel width (W) all had extremely significant influences on
the discharge exponent. In the interaction term, the interaction between the number of
channel units and the tooth height (N × H), the interaction between the channel depth and
the tooth height (D × H), and the interaction between the tooth height and the channel
width (H ×W) had extremely significant influences on the discharge exponent, while the
remaining interaction factors had no significant influence. In the square term, the square
term of the tooth height (H2) and the square term of channel width (W2) had extremely



Water 2022, 14, 1034 8 of 17

significant influences on the discharge exponent, while the other square terms had no
significant influence on the discharge exponent. Moreover, it can be observed that the linear
term, square term of the tooth height, and its interaction term with other structural factors
all had a significant effect on the discharge exponent, indicating that the tooth height was a
key factor affecting the discharge exponent of the tooth-shaped labyrinth channel emitters.

Table 3. ANOVA for the response of the discharge exponent.

Source Sums of
Squares

Degrees of
Freedom Mean Squares F-Value p-Value Status Summary of the

Statistics

Model 0.0244 20 1.2214 × 10−3 79.2747 <0.0001 ss

R2—0.9851
Adj-R2—0.9727
Pred-R2—0.9433

C.V. %—0.84
AP—27.807

N 3.0625 × 10−6 1 3.0625 × 10−6 0.1988 0.6597 ns
D 2.2801 × 10−4 1 2.2801 × 10−4 14.7992 0.0008 ss
α 4.4732 × 10−4 1 4.4732 × 10−4 29.0339 <0.0001 ss
H 5.6626 × 10−3 1 5.6626 × 10−3 367.5344 <0.0001 ss
W 9.2416 × 10−4 1 9.2416 × 10−4 59.9835 <0.0001 ss

N × D 2.0250 × 10−7 1 2.0250 × 10−7 0.0131 0.9097 ns
N × α 2.5000 × 10−7 1 2.5000 × 10−7 0.0162 0.8997 ns
N × H 1.6256 × 10−4 1 1.6256 × 10−4 10.5513 0.0034 ss
N ×W 1.6000 × 10−7 1 1.6000 × 10−7 0.0104 0.9197 ns
D × α 4.8400 × 10−6 1 4.8400 × 10−6 0.3141 0.5803 ns
D × H 1.5006 × 10−4 1 1.5006 × 10−4 9.7400 0.0046 ss
D ×W 3.6000 × 10−7 1 3.6000 × 10−7 0.0234 0.8798 ns
α × H 1.6000 × 10−7 1 1.6000 × 10−7 0.0104 0.9197 ns
α ×W 4.3560 × 10−5 1 4.3560 × 10−5 2.8273 0.1056 ns
H ×W 2.3409 × 10−4 1 2.3409 × 10−4 15.1938 0.0007 ss

N2 6.9297 × 10−6 1 6.9297 × 10−6 0.4498 0.5088 ns
D2 1.9809 × 10−5 1 1.9809 × 10−5 1.2857 0.2680 ns
α2 2.3685 × 10−5 1 2.3685 × 10−5 1.5373 0.2270 ns
H2 1.3503 × 10−2 1 1.3503 × 10−2 876.4100 <0.0001 ss
W2 2.7585 × 10−4 1 2.7585 × 10−4 17.9042 0.0003 ss

Residual 3.6977 × 10−4 24 1.5407 × 10−5

Lack of Fit 3.4027 × 10−4 20 7.3750 × 10−6 2.3069 0.2172 ns
Pure Error 2.9500 × 10−5 4
Cor Total 0.0248 44

ss indicates extremely significant (p < 0.01), ns indicates not significant (p > 0.05), R2 indicates coefficient of
determination, Adj-R2 indicates adjust R2, Pre-R2 indicates predicted R2, C.V. % indicates coefficient of variation,
and AP indicates adequate precision.

It can be observed from Table 3 that the factors that have a significant effect are ranked
in order of their effect on the discharge exponent, according to the F-value of each factor,
which is as follows: square term of the tooth height (H2) > tooth height (H) > channel
width (W) > tooth angle (α) > square term of channel width (W2) > interaction between the
channel depth and the tooth height (D × H) > channel depth (D) > interaction between
the number of channel units and the tooth height (N × H) > interaction between the tooth
height and the channel width (H ×W).

The relationship between the discharge exponent and the structural factors can be
written based on the ANOVA regression coefficients of the BBD model as:

x = 1.75049 + 5.90729 × 10−3 × N − 0.041229 × D +7.83333 × 10−5 × α − 2.31267 × H − 0.34817 ×W − 2.81250 ×
10−4 × N × D + 4.16667 × 10−6 × N × α − 7.96875 × 10−3 × N × H + 2.50000 × 10−4 × N ×W − 3.66667 × 10−4 × D × α

+ 0.15313 × D × H + 7.50000 × 10−3 × D ×W + 6.66667 × 10−5× α × H − 1.10000 × 10−3 × α ×W + 0.19125 × H ×W
+ 5.76823 × 10−5 × N2 − 0.039010 × D2 + 7.58333 × 10−6 ×α2 + 1.01849 × H2 + 0.14557 ×W2

(7)

3.1.2. The Interactive Effects on the Discharge Exponent

The interactions between the variables on the discharge exponent, which has a signif-
icant influence, are illustrated in Figure 3. When the interaction between two structural
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variables on the discharge exponent was studied, the other three structural variables were
at center levels.
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The three-dimensional response surface plot and the contour plot of the interactions
between the tooth height and the number of channel units, channel depth, and channel
width (N × H, D × H, H × W) on the discharge exponent are shown in Figure 3a–c,
respectively. It can be observed from Figure 3 that when the number of channel units,
the channel depth, or the channel width changes, the variation range of the discharge
exponent with the increase in the tooth height is affected by the changes in the other three
structural factors, but the variation trend of the discharge exponent with the increase in
the tooth height is same, which first decreased and then increased. However, when the
tooth height took different values, the variation trends of the discharge exponent with the
increase in the other three structural factors were different. By comparing the variation
range of the discharge exponent with the change of tooth height in the three figures, it can
be observed that, no matter what, the values of the other three structural factors are the
discharge exponent when the tooth height is 1.2 mm, which is significantly smaller than
that when the tooth height is 0.8 mm, indicating that moderately increasing the tooth height
can reduce the discharge exponent of the tooth-shaped labyrinth channel emitters, but
excessively increasing the tooth height is not conducive to reducing the discharge exponent
of the tooth-shaped labyrinth channel emitters.

Figure 3a displays that when the tooth height exceeds 0.95 mm, the discharge exponent
decreases with the increase in the number of channel units, whereas when the tooth height
is less than 0.95 mm, the discharge exponent increases with the increase in the number of
channel units. Figure 3b shows that when the tooth height exceeds 0.9 mm, the discharge
exponent increases with the increase in the channel depth, but when the tooth height
is less than 0.9 mm, the discharge exponent slightly decreases with the increase in the
channel depth. Figure 3c depicts that when the tooth height exceeds 0.95 mm, the discharge
exponent increases with the increase in the channel width. When the tooth height is less
than 0.95 mm, the discharge exponent first decreases and then increases with the increase
in the channel width, but the variation range of the discharge exponent with the change of
the channel width is very small, indicating that when the tooth height is small, the change
of channel width can not significantly affect the discharge exponent.

3.2. ANN Modeling

The hyperparameters of the ANN model were optimized using the Bayesian optimiza-
tion method based on the average R2 of 5-fold cross-validation. The optimization results
show that, compared to the ANN model that has a single hidden layer and double hidden
layer, the ANN model with 3 hidden layers has better prediction results, and the number of
neurons of three hidden layers is four, six, and four, respectively. After modeling the data
with the ANN model with the three hidden layers, the Bayesian optimization results show
that the model with hyperparameter values, such as learning rate = 0.0143, momentum
term = 0.6, and the number of iterations = 6000, results in the predicted discharge exponent
that is closest to the measured discharge exponent.

The 5-fold cross-validation results of the ANN model with the optimal hyperparame-
ters are shown in Table 4. From Table 4, it can be observed that the average R2 is 0.9496,
indicating that the estimated value from the ANN model was in good agreement with
the measured value obtained from the experiment. The values of the average RMSE and
MAE were also small, which were 0.0048 and 0.0036, respectively, indicating that the error
between the estimated value and the measured value was small. Moreover, the five values
of R2, RMSE, and MAE of the 5-fold cross-validation were all relatively close, indicating
that the established ANN model had good robustness. Based on the above analysis, it can
be concluded that the established ANN model has a high accuracy when predicting the
discharge exponent of tooth-shaped labyrinth channel emitters.
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Table 4. Values of the evaluation indices of the 5-fold cross validation for the ANN model.

Index 1 2 3 4 5 Average Value

R2 0.9632 0.9568 0.9153 0.9288 0.9839 0.9496
RMSE 0.0046 0.0044 0.0065 0.0046 0.0037 0.0048
MAE 0.0033 0.0035 0.0045 0.0042 0.0027 0.0036

3.3. SVR Modeling

Based on the SVR model with the kernel function of RBF, the Bayesian optimization
results show that when gamma is 0.01203, C is 522.001, and epsilon is 0.0001; the value of
average R2 of 5-fold cross-validation is the largest. The values of the R2, RMSE, and MAE
statistical indices for the best SVR model are listed in Table 5.

Table 5. Values of the evaluation indices of the 5-fold cross-validation for the SVR model.

Index 1 2 3 4 5 Average Value

R2 0.9863 0.9552 0.9575 0.9650 0.9842 0.9696
RMSE 0.0028 0.0045 0.0046 0.0032 0.0036 0.0037
MAE 0.0026 0.0038 0.0035 0.0027 0.0030 0.0031

As can be observed in Table 5, the established SVR model with the average R2, the
average RMSE, and the average MAE of 0.9696, 0.0037, and 0.0031 had a high correlation
between the predicted values and the measured values. In addition, the ranges of the R2

value, RMSE value, and MAE value in the 5-fold cross-validation for the established SVR
model were 0.9552~0.9863, 0.0028~0.0046, and 0.0026~0.0038, respectively. Furthermore,
it can be observed that the changes of the three indices are minor, which demonstrates
that the SVR model has high robustness. The above results determine that the established
SVR model has an excellent prediction capability to simulate the discharge exponent of the
tooth-shaped labyrinth channel emitters.

3.4. Comparison of the Applied Models

In order to compare the 5-fold cross-validation results of the ANN and SVR models,
the R2, RSME, and MAE values of the RSM model, according to the data of the 5-fold
cross-validation approach, were calculated, and the results are presented in Table 6.

Table 6. Values of the evaluation indices of the 5-fold cross-validation for the RSM model.

Index 1 2 3 4 5 Average
Value

R2 0.9648 0.9350 0.9178 0.8857 0.9673 0.9341
RMSE 0.0045 0.0054 0.0064 0.0058 0.0053 0.0055
MAE 0.0040 0.0041 0.0054 0.0049 0.0044 0.0046

A comparison of the results presented in Tables 4–6 shows that the average R2 for the
SVR model is closer to one than that produced by the ANN and RSM models. The average
RMSE in the RSM model (0.0055) was 1.15 times the value produced by the ANN model
(0.0048), and 1.49 times that produced by the SVR model (0.0037). The average MAE in
the RSM model (0.0046) was 1.28 times that produced by the ANN model (0.0036), and
1.48 times that produced by the SVR model. The results reveal that the prediction accuracy
of the SVR model is greater than the ANN and RSM models, and the prediction accuracy
of the ANN model is greater than the RSM model.

Tables 4–6 determine that the maximum difference of R2 in the 5-fold cross-validation
is 0.0686 in the ANN model, 0.0311 in the SVR model, and 0.0791 in the RSM model,
respectively. It can be observed that the maximum difference of R2 of RSM model is
1.15 times that produced by ANN model, and 2.54 times that produced by SVR model;
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therefore, the robustness of the RSM model is worse than the ANN and SVR models, and
the robustness of the SVR model is the best.

The radar diagrams of 5-fold cross-validation for the three estimation models in terms
of R2, RSME, and MAE are illustrated in Figure 4. From an observation of Figure 4a,
the 5 R2 values of the SVR model are all greater than 0.95, which are all greater than the
corresponding values of the RSM model. Although the ANN model performed slightly
better than the SVR model in the second-fold cross-validation, the other four values of the
SVR model were greater than that of the ANN model. Comparing the five R2 values of
the ANN and RSM models, it was found that the RSM model performed slightly better
than the ANN model in the first and third fold of the cross-validation, but the results of the
other three-fold cross-validations were lower than those of the ANN model. For the RMSE
estimated metric (Figure 4b), the comparison results of the three models were completely
consistent with the R2 estimated metric comparison results. In Figure 4c, it can be observed
that, for the MAE term, the five values in the SVR and ANN models are all larger than
those of the RSM model. The MAE values of the SVR model were lower than that of the
ANN model in the second-fold cross-validation and fifth-fold cross-validation, but the
other three-fold cross-validation results were better than the ANN model. Overall, in the
radar diagram, the RMSE and MAE values of the SVR model had the smallest area and
R2 value had the largest area, thus the prediction performance of the SVR model was the
best among the three models, and the ANN model was second only to the SVR model.
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Figure 5 shows the linear dependency relationship between the predicted values of
the 3 models and all 45 experiment measured values. According to Figure 5, an R2 value
of 0.9851 for all the data was produced by the RSM model, and the R2 values of the ANN
and SVR models were 0.9903 and 0.9970, respectively. Thus, the values of R2 demonstrated
that the linear fitting relationship between the predicted results of the three models and the
experimental results were all good, but among the three models, the predicted results of
the SVR model were the most approximate to the experimental results, and the second was
the ANN model.

The comparison results between the measured discharge exponent from 45 experi-
ments and the predicted discharge exponent from three models are listed in Table 7. The
relative error, which refers to the ratio of the deviation between the predicted value and
experimental value to the experimental value, was used to describe the prediction error
between the experimental value and the predicted value in this study. From Table 7, it can
be observed that the range of the relative error between the experiment measured values
and predicted values for the RSM, ANN, and SVR models are 0~1.3072%, 0~1.1697%, and
0~0.8961%, respectively. The results clearly demonstrate that the SVM model leads to the
smallest relative error compared to the ANN and RSM models. Furthermore, the mean
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relative error between the experiment measured values and predicted values for RSM was
0.4825%, and increased by 27.24% and 315.59%, compared to that for the ANN (0.3792%)
and SVR (0.1161%) models, respectively. In summary, the predicted value of the SVR model
was more similar to the actual measured value, so the SVR approach performed extremely
well in predicting the discharge exponent of tooth-shaped labyrinth channel emitters.
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Table 7. Experimental result comparisons of the RSM, ANN, and SVR model predictions.

Run Measured Discharge
Exponent

Model Predictions Relative Error (%)

RSM Model ANN Model SVR Model RSM Model ANN Model SVR Model

1 0.4497 0.4500 0.4466 0.4497 0.0667 0.6893 0
2 0.4443 0.4453 0.4438 0.4443 0.2251 0.1125 0
3 0.4523 0.4521 0.4529 0.4523 0.0442 0.1327 0
4 0.4460 0.4492 0.4468 0.4460 0.7175 0.1794 0
5 0.5070 0.5077 0.5062 0.5070 0.1381 0.1578 0
6 0.4780 0.4818 0.4790 0.4780 0.7950 0.2092 0
7 0.5160 0.5124 0.5189 0.5160 0.6977 0.5620 0
8 0.4512 0.4522 0.4512 0.4512 0.2216 0 0
9 0.5126 0.5174 0.5157 0.5126 0.9364 0.6048 0

10 0.4503 0.4496 0.4494 0.4503 0.1555 0.1999 0
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Table 7. Cont.

Run Measured Discharge
Exponent

Model Predictions Relative Error (%)

RSM Model ANN Model SVR Model RSM Model ANN Model SVR Model

11 0.5077 0.5079 0.5081 0.5077 0.0394 0.0788 0
12 0.4587 0.4559 0.4581 0.4587 0.6104 0.1308 0
13 0.4695 0.4667 0.4677 0.4695 0.5964 0.3834 0
14 0.4556 0.4521 0.4529 0.4523 0.7682 0.5926 0.7243
15 0.4621 0.4599 0.4608 0.4614 0.4761 0.2813 0.1515
16 0.4599 0.4586 0.4584 0.4599 0.2827 0.3262 0
17 0.4482 0.4479 0.4494 0.4482 0.0669 0.2677 0
18 0.4760 0.4758 0.4761 0.4760 0.0420 0.0210 0
19 0.4737 0.4706 0.4753 0.4737 0.6544 0.3378 0
20 0.4591 0.4593 0.4580 0.4591 0.0436 0.2396 0
21 0.4660 0.4662 0.4667 0.4660 0.0429 0.1502 0
22 0.4441 0.4475 0.4480 0.4442 0.7656 0.8782 0.0225
23 0.4537 0.4521 0.4529 0.4523 0.3527 0.1763 0.3086
24 0.5245 0.5185 0.5190 0.5198 1.1439 1.0486 0.8961
25 0.4743 0.4681 0.4734 0.4708 1.3072 0.1898 0.7379
26 0.4915 0.4951 0.4870 0.4915 0.7325 0.9156 0
27 0.4648 0.4624 0.4642 0.4648 0.5164 0.1291 0
28 0.4770 0.4824 0.4770 0.4793 1.1321 0 0.4822
29 0.4537 0.4546 0.4552 0.4537 0.1984 0.3306 0
30 0.4532 0.4527 0.4521 0.4532 0.1103 0.2427 0
31 0.4500 0.4521 0.4529 0.4523 0.4667 0.6444 0.5111
32 0.5150 0.5188 0.5183 0.5150 0.7379 0.6408 0
33 0.4496 0.4496 0.4499 0.4496 0 0.0667 0
34 0.4507 0.4519 0.4533 0.4507 0.2663 0.5769 0
35 0.4431 0.4443 0.4448 0.4431 0.2708 0.3837 0
36 0.4698 0.4646 0.4681 0.4679 1.1069 0.3619 0.4044
37 0.4702 0.4680 0.4721 0.4702 0.4679 0.4041 0
38 0.5027 0.5066 0.5053 0.5027 0.7758 0.5172 0
39 0.5215 0.5175 0.5154 0.5203 0.7670 1.1697 0.2301
40 0.4802 0.4808 0.4833 0.4802 0.1249 0.6456 0
41 0.4489 0.4521 0.4529 0.4523 0.7129 0.8911 0.7574
42 0.4464 0.4506 0.4448 0.4464 0.9409 0.3584 0
43 0.4637 0.4607 0.4630 0.4637 0.6470 0.1510 0
44 0.4526 0.4540 0.4497 0.4526 0.3093 0.6407 0
45 0.4615 0.4626 0.4617 0.4615 0.2384 0.0433 0

4. Discussion

Some scholars studied the influence of the same structural variable on the discharge
exponent of a drip irrigation emitter, but they obtained different influence laws. On the one
hand, this may be caused by the different value ranges of the studied structural parameter;
on the other hand, it may also be caused by the interactive influence between the structural
parameters, that is, the influence law of a structural factor on the discharge exponent may
be affected by the value of other structural factors [16]. If there is a significant interactive
influence between the structural variables, but this influence is ignored in the research and
analysis, a one-sided conclusion will be drawn. Therefore, in order to fully and accurately
understand the influence of the structure on the discharge exponent of the emitters, the
interactive influence between the structural parameters must be considered. At present,
most of the influence laws between structural factors and the discharge exponent of emitters
studied by scholars are obtained without considering the interactive influence between
the factors. The interactive influence between the structural factors of the tooth-shaped
labyrinth channel emitter was studied using the RSM model in this paper. The statistical
analysis results show that for the tooth-shaped labyrinth channel emitter, the interaction
between the number of channel units and the tooth height, the interaction between the
channel depth and the tooth height, and the interaction between the tooth height and the



Water 2022, 14, 1034 15 of 17

channel width all have extremely significant effects on the discharge exponent (Table 3).
The results of the interaction analysis show that when the tooth height takes the maximum
value (1.2 mm) and minimum value (0.8 mm) of the research range, the influence laws of
the discharge exponent with the increase in the number of channel units, the channel depth,
or the channel width are obviously different, and even displays the opposite trend for the
number of channel units is (Figure 3). The above analysis and discussion fully reveal that
the interactive effects between the factors cannot be ignored in the study of the influence of
the structural factors on the emitters’ discharge exponents.

Many researchers used the prediction mechanism of machine learning models to
predict irrigation needs, for example, Adeyemi et al. [41] used the machine learning method
to predict the temporal soil moisture fluxes based on past soil moisture, precipitation, and
climatic measurements, and Ahmadi et al. [42] used the machine learning method to
estimate evapotranspiration based on climate parameters. These studies helped to improve
irrigation decisions and refine the construction of smart irrigation systems. However, the
final execution component of the irrigation decision is the drip irrigation emitters, and the
performance of the emitters determines whether the implementation of irrigation decisions
can reach the theoretical level; therefore, realizing the performance prediction of the drip
irrigation emitters is crucial to the development of intelligent irrigation. By applying
machine learning techniques to drip irrigation emitters’ performance predictions, once the
machine learning model is successfully trained, whenever a new design for the structure of
an emitter is proposed, its hydraulic performance can be quickly and accurately presented
by the machine learning model. In this study, two machine learning models, ANN and SVR,
were used to predict the discharge exponent of emitters, which is an under-researched area.
In addition, the prediction results of the two machine learning models are compared with
the results predicted by the traditional RSM model. The compared results indicate that the
SVR model has the best robustness and accuracy among the three models. However, the
discharge exponent prediction model established in this study is based on laboratory data.
The actual field irrigation situation is more complicated than the laboratory situation, so
future work involves testing the discharge exponent prediction model in field conditions.
In addition, further research needs to be carried out in relation to different terrains, different
crops, and different climatic conditions.

5. Conclusions

The hydraulic performance of drip irrigation emitters is very important for drip
irrigation systems, and the discharge exponent is an important standard to evaluate the
hydraulic performance of drip irrigation emitters. In this study, the response surface
methodology (RSM) and machine learning models (artificial neural network (ANN) and
support vector regression (SVR)) were used to predict the change of discharge exponents
of tooth-shaped labyrinth channel emitters due to structural parameters. The structural
parameters were the number of channel units (N), the channel depth (D), the tooth angle (α),
the tooth height (H), and the channel width (W). The response surface methodology results
demonstrate that the tooth height is the most important parameter for determining the
discharge exponent of a tooth-shaped labyrinth channel emitter in the range of this study.
The discharge exponent showed a non-linear trend with the increase in the tooth height,
which first decreased and then increased. Moreover, the value of the tooth height affected
the influence law of the channel depth, channel width, and the number of channel units
on the discharge exponent. The prediction accuracy of the developed ANN model and
SVM model was compared with the RSM model; the comparison results show that the SVR
model is better than the ANN model, and the two machine learning models show a better
prediction performance than the traditional RSM model. In addition, the mean relative
error between the experiment measured values and predicted values for the three models
were 0.4825%, 0.3792%, and 0.01161%, respectively, which exhibited that the predicted
discharge exponent of the SVR model was closest to the experiment measured value. The
findings of this study show that the SVR model can predict the discharge exponent of



Water 2022, 14, 1034 16 of 17

emitters accurately and reliably, as well as save time and cost when it comes to conducting
the experiments.
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