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Abstract: Flood-producing rainfall amounts have a significant cumulative economic impact. Despite
the advance in flood risk mitigation measures, the cost of rehabilitation and compensation of citizens
by the state and insurance companies is increasing worldwide. A continuing challenge is the flood
risk assessment based on reliable hazard and impact measures. The present study addresses this
challenge by identifying rainfall thresholds likely to trigger economic losses due to flood damages
to properties across the Athens Metropolitan Area of Greece. The analysis uses eight-year rainfall
observations from 66 meteorological stations and high spatial resolution insurance claims on the
postal code segmentation. Threshold selection techniques were applied based on the ROC curves
widely used to assess the performance of binary response models. The model evaluates the probability
of flood damages in terms of insurance claims in this case. Thresholds of 24-h rainfall were identified
at the municipal level, as municipalities are the first administration level where decision making to
address the local risks for the citizens is needed. The rainfall thresholds were further classified to
estimate and map the local risk of flood damages. Practical implications regarding the applicability
of the detected thresholds in early-warning systems are also discussed.

Keywords: rainfall thresholds; flood damages; Mediterranean; Greece; urban; early warning;
ROC curves

1. Introduction

Rainfall and accompanying flooding phenomena often lead to material damage in
vehicles, buildings, and infrastructure and significant road network disruptions, while
they may also cause fatalities [1,2]. The substantial impact of extreme rainfall events in
terms of economic losses has been documented in many ways [3,4]. The increasing trend
of their occurrence in the last four decades [5] has motivated global mobilization to ad-
dress the risk [6]. However, less severe yet more frequent rainfall events may also cause
a significant cumulative economic impact [7]. And yet, there is evidence that there is
substantial underreporting of more minor floods and their impact [8]. Studies show that
particularly urban areas are vulnerable to flash floods that even less important rainfall
amounts can cause [9–11]. Despite the progress made towards protective infrastructure,
risk communication, and understanding a wide pallet of vulnerability features, rainfall
events cause repetitive and eventually severe financial losses for citizens, the state, and
insurance companies [8,12–14]. Part of the exposure of elements to the rainfall hazard can
be addressed by appropriate and timely reactions, starting with identifying the potential
risk occurrence related to an upcoming hazardous event [15].
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Urban floods are mainly surface water floods producing localized phenomena, so
flood damage risk needs to be assessed locally [16]. An essential challenge in this direction
is to find reliable hazard and impact data at the local level. For example, due to a lack
of data on actual economic losses, some studies targeting European cities have used
alternative impact indicators, such as emergency calls to the local fire brigade [10], requests
related to insurance claims received at meteorological services [17], or crowdsourced
flooding reports [18]. Financial loss data, such as insurance claims, are scarce, but when
available, they can be a reliable indicator of flood and storm damage [13,19–21]. Scientists
have used insurance data to examine the role of socio-environmental or infrastructure-
induced vulnerability to rainfall hazards and urban flooding [14,22], to develop damage
functions for coastal flooding and storms [23,24], and to model the financial exposure
to floods for the insurance market [25]. At the same time, methodological difficulties
associated with collecting and processing primary insurance data have been of particular
concern among scholars [12,14,26], making the elaboration of such data a methodological
achievement. Overall, insurance datasets can be a promising source for weather-related
damage assessment.

Determining appropriate rainfall thresholds that are likely to trigger flood damages
could essentially contribute to flooding risk assessment and early warning systems. So far,
they have mainly developed to determine the exact location and time of rainfall-triggered
landslides [27–29]. Despite their usefulness, studies on flood-related rainfall thresholds are
limited [30]. Most of them focus on extensive or extreme phenomena [31], or analyze only a
limited number of rainfall events [32]. Furthermore, relevant studies based on the analysis
of high-resolution direct loss data are yet to be undertaken. Only recently, Cortès et al. [12]
investigated the relationship between rainfall and floods with severe damage based on
insured losses in Catalonia, Spain. The authors explored the possibility of setting rain
thresholds for the risk of a high-impact event in the area. They also demonstrated the
usefulness of flood risk models based on parsimonious data.

That said, this paper is devoted to defining rainfall thresholds above which material
damage is likely to be caused to citizens’ properties in Greece’s Athens Metropolitan Area
(AMA). In particular, the research objectives are to investigate and model, at the local level,
the relationship between rainfall hazard and the occurrence of flood-related damage to
generate optimal rainfall thresholds for early warning. The present study was motivated
by the urgent need for effective flood risk prevention through warning systems that allow
timely precautionary action and readiness. For the AMA, the design of such systems is
a top priority as the area has experienced severe flash floods in the past [15,33,34] and it
is considered as an area particularly prone to floods [9,10,35]. Rainfall thresholds were
identified at the municipal level, as municipalities are the first administration level and,
therefore, the first level at which decision making is needed to address the local risks. For
the analysis, rainfall observations and insurance claims data at the postal code level were
elaborated on from the EU co-funded YANTAS project framework. Threshold selection
techniques widely used to classify hazardous conditions associated with adverse effects
in various disciplines, including hydrogeological sciences [12,36], were applied. Practical
implications regarding the applicability of the detected optimal thresholds in flood risk
early-warning systems are also discussed in this paper.

2. Materials and Methods
2.1. Study Area

The Athens Metropolitan Area (AMA) of the Attica prefecture is the most populated
region of Greece (3.8 Mio inhabitants), as it includes the city of Athens, the capital of
the country. The climate is temperate, typical Mediterranean, and the average annual
precipitation is approximately 450 mm, with the highest peaks recorded in late autumn
and early winter [10,33]. Regarding weather-related societal impacts, the AMA is the most
affected region in Greece. According to the high-impact weather events (HIWE) database
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developed by the METEO unit of the National Observatory of Athens (NOA) [9], the study
area suffers especially from rainfall-induced flash floods.

The AMA covers 3200 km2 and includes 284 sub-areas following the postal code
(PC) segmentation. The PCs have a mean area of 11 km2 (ranging from 0.05 to 348 km2)
and a mean population of 12,100 inhabitants (ranging from 990 to 59,000 inhabitants).
Population data were derived from the Hellenic Statistical Authority and refer to the latest
population-housing Census of 2011 [37].

2.2. Data Spatial Analysis and Sources

The analysis is based on two main data sources, rainfall data and damage claim data
for the AMA area, spanning from 2012 through 2019.

Rainfall data were derived from a dense network of 66 surface meteorological stations
spread in the AMA (Figure 1), that are installed at altitudes ranging from 2 to 1230 m
(M = 157, SD = 195). These stations belong to the network of surface weather stations
operated by the METEO unit at NOA, the denser network across Greece [38]. The stations
provide 10 min observations of various meteorological parameters such as temperature,
pressure, humidity, wind velocity and direction, rain and rain intensity.

Figure 1. Location of the meteorological stations in the Athens Metropolitan Area (AMA), highlight-
ing the postal code (PC) boundaries.

Damage claim data were provided by Interamerican, one of the most significant Greek
insurance companies, part of the Achmea insurance group, with the PC as a geographical
reference (Figure 1). The insurance company accounts for about 11% of the domestic
insurance market in the non-life insurance branches and is ranked first based on this share.
The data are available at the branch level and include a series of information for each
claim, such as the date when the damage occurred, the cause and type of damage, and the
amount of approved compensation, among others. The processing and analysis of the data
were carried out at the PC level to be consistent with the corresponding level of geospatial
monitoring of the insurance data followed by the insurance company.
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2.3. Rainfall Events

Rainfall events were identified based on the meteorological observations, according to
an accredited methodology developed by the METEO unit of EAA [10]. Two consecutive
rainfall events have a start time difference of at least 24 h.

Each event affected one or more PCs. The cumulative maximum rolling 24-h rainfall
(R24) was calculated for each event and PC from a representative station selected from
the pool of stations located at a distance of up to 5 km from the PC centroid. In the few
cases where this limit was exceeded, the station closest to the centroid at a distance up to
20 km was selected. The R24 rain parameter was chosen as the most suitable for use in
early warning systems based on 24-h meteorological forecasts.

Only events with cumulative total rainfall above 20 mm and 60-min rainfall above
5 mm were included in the analysis to account for actual hazardous conditions. These
thresholds are based on previous studies on the flash-flood occurrence in the study area [10].

2.4. Statistical Methods

A binary variable for the damage occurrence (DO) was developed based on whether
the rainfall event caused flood-related damages to properties within a PC area, namely
if insurance claims resulting from flood damages were recorded. A set of R24–DO pairs
were therefore identified for each PC. Binary logistic regression was applied to model the
relationship between DO and R24. Logistic regression was selected over other powerful
classification model types applied to machine learning tasks, such as non-parametric
decision tree models. The main reasons were that logistic regression might more effectively
address small sample sizes and is easy to interpret based on the coefficients alone [39].
The level of significance (p-value) was set at 0.05. The model performance, specifically the
model’s discrimination ability, was further assessed using the AUC, namely the area under
the receiver operating characteristic curve (ROC curve).

ROC and AUC are commonly used to assess the performance of binary response
models such as logistic models [40]. Furthermore, ROC curves are among the most widely
used techniques for selecting the optimal threshold of a binary classifier, above which
there is a strong probability of adverse effects [36]. The use of ROC curves is becoming
more widespread in a vast range of application areas, including biostatistics and machine
learning [40].

The ROC curve is constructed by plotting two contingency scores, the true-positive
(y-axis) and the false-positive (x-axis) rates, at each cutpoint of the classifier, in this case,
the R24 rain parameter. The true-positive rate (TPR) is a synonym for the hit rate and is
defined as follows:

TPR = TP/(TP + FN) (1)

The false-positive rate (FPR) is a synonym for the false alarm rate and is defined
as follows:

FPR = FP/(FP + TN) (2)

where, for this study: TP (true-positive result) is the number of events correctly classified
as damaging ones, FN (false-negative result) is the number of missed events that caused
damages, FP (false-positive result) is the number of events incorrectly classified as dam-
aging ones, and TN (true-negative result) is the number of events correctly classified as
non-damaging ones. Thus, TPR expresses the proportion of the total damaging events
that have been correctly classified, and FPR expresses the proportion of the non-damaging
events that have been incorrectly classified as damaging ones.

2.4.1. Analysis for the AMA as a Whole

First, binary logistic regression was applied to determine whether the association
between DO and R24 is statistically significant for the study area as a whole. The full dataset
was used for the analysis, i.e., all R24-DO pairs at the PC level. The PC population was
added as a control variable, based on the hypothesis that a higher population is associated
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with a higher probability of any damage to occur in the area. For the logistic regression, the
continuous independent variables R24 and population were converted into logarithmic
ones to ensure comparability of their effects and a better interpretation of the results. An
overall optimal 24-h rainfall threshold above which flood-related damages are likely to
occur in the AMA was estimated as the value of the rainfall cutpoint for which the difference
between true-positive rate and false-positive rate is maximized [41]. This condition ensures
that the degree of false alarms will be low compared to successful predictions.

K-fold cross-validation was further performed to generate a more realistic estimate
of the model’s predictive performance [42] by averaging the AUCs corresponding to each
fold and bootstrapping the cross-validated AUC to obtain statistical inference and 95%
bootstrap bias-corrected confidence intervals (CI) [43]. Eight k-folds were defined, with
approximately 1100 observations each.

2.4.2. Analysis at the Municipality Level

Municipalities constitute the first level of administration and, therefore, the adminis-
trative level at which decision making to address local flood risks is needed. Therefore, R24
thresholds at a municipality level would better fit the needs of the end-users and decision-
makers. For the analysis, we aggregated the R24–DO pairs from the PC area segmentation
to the municipality level segmentation. The sets of R24–DO pairs were therefore remapped
at the municipality level.

Optimal R24 thresholds were defined for the municipalities for which the logistic
regression models were found significant and upon acceptable AUC. Specifically, the
performance of R24 as a binary classifier was acceptable only if AUC was above 60%.
In general, an AUC up to 60% suggests a failure to discriminate; between 60–80%, it is
considered acceptable; and above 80%, it is deemed to be excellent.

The level of confidence as to the discriminating performance of the estimated R24
thresholds was also defined. Specifically, a three-level confidence index was defined based
on the AUC parameter: level 1 (low confidence) for AUC between 60% and 70%, level 2
(moderate confidence) for AUC between 70% and 80%, and level 3 (high confidence) for
AUC more than 80%.

Optimal thresholds at the municipality level were selected to maximize the difference
between TPR and FPR, with an additional criterion of TPR exceeding 50%. We consider
a hit rate of 50% as the minimum requirement for an effective warning and decision
support system.

3. Results
3.1. Overview of the Study Area

During 2012–2019, 228 rainfall events occurred in the AMA, half of which (115) caused
flood damages in parts of the area. Each event spatially affected from 1 up to 243 (out of
the 284 in total) PCs (M(SD) = 38.3 (56.3)), leading to 8,726 R24–DO pairs at the PC spatial
analysis. The R24 ranged from 20.0 mm, the chosen minimum threshold, to 179.6 mm,
with a mean value of 38.2 mm. Figure 2a shows the frequency distribution (histogram) of
R24, at the PC level, indicating that frequency decreases as R24 (above 20 mm) increases.
Figure 2b shows the statistical distribution (boxplot) of R24 over the binary damage occur-
rence variable, DO. A one-way ANOVA revealed that there was a statistically significant
difference in R24 between the cases (i.e., the R24–DO pairs) with and without damage
occurrence (F(1, 8724) = 387.38, p < 0.001). The mean R24 was 36.8 mm among the cases
without flood damages and 48.5 mm for those that caused flood damages, indicating a
positive relationship between R24 and DO.
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Figure 2. (a) Frequency distribution (histogram) of R24, at the PC spatial analysis. (b) Distribution
(boxplot) of R24 over the binary damage occurrence variable, DO.

During the study period, the number of R24–DO pairs per PC ranged from 2 to 66,
with a mean value of 31 events. The number of damage occurrences per PC ranged from
1 to 20, with a mean value of 4. In 12% (33) of the PCs, there was no damage claim recorded
during the analysed period, while there was only one PC in which all rainfall events
caused damages.

Table 1 shows the results for the logistic regression analysis used to examine the effect
of R24 on DO across the PCs of the AMA. The model is significant at the 5% level [44].

Table 1. Results for the logistic regression analysis of the probability of damage occurrence (DO)
across the PCs of the AMA depending on R24 and controlled for the population.

Variable b SE p Value 95% Conf. Interval

R24 1 3.03 0.18 0.000 2.68 3.39
Population 1 1.51 0.11 0.000 1.29 1.72

Intercept −12.87 0.54 0.000 −13.93 −11.80

N = 8726
LR chi2(5) = 498.85
Prob > chi2 = 0.000
Pseudo R2 = 0.08

1 Variables were log-transformed.

The effect of R24 on DO was found positive and statistically significant (b = 3.03,
p < 0.001). Given a specific population, an increase in R24 is associated with an increased
likelihood of causing flood damages. The population was also found to affect DO positively
(b = 1.51, p < 0.001) given a specific R24, confirming our initial hypothesis. Figure 3a depicts
the predicted probability (fitted values) of DO as a function of R24, controlled for the
population. Results indicate that the DO probability in the AMA increases monotonically
with increasing amounts of R24.

Figure 3b shows the ROC curve used to evaluate the model’s performance and identify
an optimal R24 threshold associated with damage occurrence. Specifically, the optimal R24
across the AMA was defined based on the TPR and FPR values at each R24 cut-off point,
under the condition of maximizing the difference between the hit and false alarm rates.
Given this condition, the overall optimal threshold for the AMA corresponds to R24 of
39.8 mm and produces a 52.2% TPR (hit rate), a 29.0% FPR (false alarm rate), and 68.8%
rainfall observations correctly classified.
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Figure 3. (a) Fitted values of DO predicted probability as a function of R24 controlled for the
population. (b) ROC curve, highlighting the TPR/FPR coordinates related to the AMA optimal R24
threshold given that the difference between TPR and FPR is maximized.

Table 2 presents the cross-validated results for the ROC–AUC. The cross-validated
mean AUC is 0.64 (SD = 0.02), denoting an acceptable but low performance of the R24 as a
predictor of damage occurrence across the whole AMA.

Table 2. ROC–AUC cross-validated results for the study area (AMA).

ROC–AUC Metrics

Cross-validated (cv) mean AUC 0.64
cvSD AUC 0.02

Bootstrap bias corrected 95% CI 0.62 0.66
k-folds 8

3.2. Optimal R24 Thresholds per Municipality

Table 3 presents descriptive statistics for the numbers of PCs, R24–DO pairs, and
damage occurrences per municipality. Within the AMA, there are 59 municipalities, and
the number of PCs per municipality ranges from 1 to 90, with a mean value of 5 PCs. The
maximum number of PCs (90), which is far from the second in order (18), corresponds to
the municipality of Athens, the capital city of Greece. A mean of 148 R24–DO pairs with
R24 above 20 mm was defined per municipality, while about 17% was the mean percentage
of damage occurrences per municipality. The standard deviation for the number of R24–DO
pairs is very high due to the much higher number of PCs and, thus, examined cases in
Athens’s municipality than the other municipalities.

Table 3. Descriptive statistics (mean, standard deviation (SD), min, max) for PCs, R24–DO pairs, and
damage occurrences at the municipality level (N = 59).

Mean SD Min Max

R24–DO pairs 1 147.9 474.1 7 3695
Damage occurrences

(i.e., DO = 1) 17.5 34.7 0 266

% damage 16.7 8.7 0 43

PCs 4.8 11.6 1 90
1 Rainfall events with R24 above 20 mm.

Logistic regression was then applied separately for each municipality, except for the
one in which there were no damage occurrences; thus, there was no dichotomous variable
DO. According to the results, the R24 p-values ranged from 0.00 to 0.86 (M = 0.22, SD = 0.23).
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Out of the 58 logistic models (corresponding to the 58 municipalities), only 19 (33%) were
found to be statistically significant, i.e., the p-value was less than 0.05.

Since there is evidence that statistical significance in regression models depends
heavily on the statistical sample size [45], we tested its effect on the estimated p-value. The
sample size, namely the total number of R24–DO pairs included in the statistical analysis,
was converted to a logarithmic value to decrease its high variability (Table 3). Figure 4
depicts the relationship between the sample size and the R24 p-value, showing the scatter
plot and the fit line. The linear regression analysis was found to be statistically significant
(R2 = 0.13, F(1, 56) = 8.55, p = 0.005). Specifically, the sample size was found to have
a statistically significant and negative effect (coefficient = −0.21, p = 0.005) on the R24
p-value, which indicates that a small statistical sample may be responsible for the statistical
insignificance of the logistic models of some of the examined municipalities.

Figure 4. Relationship (scatter plot and fit line) between statistical sample size and R24 p-value of the
logistic regression models examining the effect of R24 on DO per municipality.

Therefore, to overcome the limitation likely posed by the sample size to determine rain-
fall thresholds for as many municipalities as possible, we proceeded to merge neighboring
municipalities for which the individualized logistic models were not found to be statistically
significant (the p-value was greater than 0.05). The statistical results were then re-evaluated
and found to be statistically significant for nine groups of merged municipalities. Overall,
we defined optimal R24 thresholds for 78% of the AMA’s municipalities.

Table 4 presents statistical results for 28 municipalities and merged municipalities with
significant model performance. Specifically, the table summarizes statistics for the number
of R24–DO pairs, the logistic regression results, and ROC–AUC results, including the
optimal R24 thresholds under the condition the difference between the hit and false alarm
rates is maximized and TPR is equal to or higher than 50%. The optimal R24 threshold
ranged from 30.4 mm to 78.0 mm, with a mean value of 43.9 mm. Also, the mean TPR
(hit rate) was 65%, ranging from 25% to 100%, while the mean percentage for rainfall
observations correctly classified was estimated at 71%, ranging from 51% to 92%. Finally,
the mean AUC was calculated at 68%, ranging from 60% to 85%. Indicatively, 35% of
the AUC values were above 70% (moderate confidence), and 7% had a value above 80%
(high confidence).
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Table 4. Statistics (mean, standard deviation (SD), min, max) of R24–DO pairs, logistic regression
results, and ROC–AUC results for the municipalities and the merged ones with significant model
performance (N = 28).

Mean SD Min Max

R24–DO pairs 275 673 46 3695
Damage occurrences

(i.e., DO = 1) 31 48 7 266

Logistic regression results
R24 coefficient 4.16 1.69 2.01 10.21

R24 p-value 0.02 0.02 0.00 0.05
ROC–AUC results 1

AUC (0 to 1) 0.68 0.07 0.60 0.85
AUC SE 0.07 0.03 0.02 0.13

LCI 0.54 0.09 0.38 0.75
HCI 0.82 0.08 0.68 1.00

R24 opt. (mm) 2 40.4 10.6 30.4 78.0
TPR (hit rate, %) 68.7 15.7 50.0 100.0

FPR (false alarm rate, %) 32.5 14.4 3.0 59.0
Correctly classified (%) 67.9 11.4 51.0 92.0

1 AUC SE: standard error of AUC; LCI/HCI: low/high confidence interval. 2 R24 opt.: optimal R24 threshold for
which the difference between TPR and FPR is maximized, given a TPR equal to or higher than 50%.

The optimal R24 thresholds were further classified to estimate the local risk of flood-
related damage, considering that threshold rates are inversely proportional to the risk.
Namely, the lower the R24 threshold associated with a high probability of damage, the
higher the risk in the area since there is a higher probability of lower R24 occurrences, as
shown by the frequency distribution of R24 in the AMA (Figure 2a). The 75th and 90th
percentiles on the distribution of the optimal rainfall thresholds at the municipality level
were used to define three risk levels, as shown in Table 5. Specifically, municipalities were
classified at risk level 1 (low) for R24 above 56 mm (90th percentile), risk level 2 (moderate)
for R24 between 42 mm (75th percentile) and 56 mm, and risk level 3 (high) for R24 between
30 mm (minimum value) and 42 mm. Table 5 also presents the confidence classification in
the discriminating performance of the estimated R24 thresholds, as measured by AUC.

Table 5. Specifications for the classification of flood damage risk and confidence in discriminating
performance of the estimated R24 thresholds.

Flood Damage Risk Classification Confidence Classification

Class R24 opt. (mm) Corresponding
Percentile AUC (%) Corresponding

Percentile

1—low >56 90th 60–70 Minimum–68th
2—moderate 42–56 75th–90th 70–80 68th–93th

3—high 30–42 Minimum–75th >80 >93th

Figure 5 shows the distribution at the municipality level of the optimal R24 threshold
and flood damage risk using a 3-color palette. Three different shades for each color indicate
the level of confidence, which increases as the color darkens. Therefore, the darker the
color, the higher is the confidence about the estimated risk of flood damage.
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Figure 5. Optimal R24 thresholds (mm) above which flood damage is likely to occur, level of flood
damage risk (3-color palette), and level of confidence in R24’s discriminating performance, at the
municipality level.

4. Discussion

The meteorological and insurance data used in this study showed that in 2012–2019,
there were 228 rainfall events with R24 over 20 mm in the AMA, half of which caused
damage to citizens’ properties in parts of the area. The events manifested locally with
different intensities in terms of R24, which was found to affect the occurrence of flood
damages. This work determines the hazard conditions using an essential parameter,
the 24-h accumulated rainfall (R24). Other rainfall parameters, such as the maximum
accumulated rainfall of a rainfall event over a shorter period (e.g., in 1-h, 3-h, or 6-h), which
may indicate the rainfall intensity, may also play an essential role in causing adverse effects
and flood damage. However, we consider R24 more suitable for the ultimate purpose of
such an analysis, that of the early warning of risk. Namely, in terms of rainfall forecasting, a
shorter accumulation time is related to a lower forecasting skill as the temporal distribution
of rainfall is also a forecasting challenge [46,47]. Using R24 to estimate the likelihood for
flood damage would increase the forecast skill of the flood risk through the increased skill
of the rain forecast at this specific accumulation time.

According to the results, the probability of damage occurring (DO) across the AMA
increases as a function of R24. The logistic regression for the AMA as a whole shows
that the model is able to simulate the DO probability. However, the model’s performance
is low (cv AUC = 64%). This may be partly related to the differentiation of geophysical
and sociodemographic vulnerability at the local level, which may significantly affect the
response of each area to flood risk. Therefore, we do not expect uniformity in the R24
thresholds throughout the AMA. Cortès et al. [12] also found low to moderate AUC (<74%)
in logistic regression models that predict the probability of severe flood damage across
Catalonia based on 24-h rainfall. Note, however, that the present study, in contrast to
Cortès et al., considers also the occurrence of small-scale damages. Therefore, the model
may be more sensitive to exposure factors such as drainage systems that respond to small
precipitation amounts. This kind of sensitivity explains the reason why, for example,
Santos and Fragoso [30], in their work to determine precipitation thresholds in a northern
Portuguese basin, excluded from their analysis events with low precipitation (less than
one-year return period), to prevent the increase in false positives. However, although
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more fragile, the estimation of low-impact critical rainfall amount for a basin may have
implications for hydrological models and their sensitivity or uncertainty analysis [48].

The optimal rainfall threshold estimated for the AMA as a whole is 39.8 mm. Papagian-
naki et al. [10], who studied the relationship between flash floods and the rainfall hazard in
the Attica basin using data from fire service operations and meteorological observations,
found that 50% of damaging events were associated with R24 between 30 mm and 60 mm.
A relevant study using requests related to insurance claims received at meteorological
services in Barcelona [17] suggested an R24 of 40 mm as the rainfall threshold associated
with societal impact in densely populated areas. Both studies highlighted the critical role
for the degree of urbanization on how urban areas respond to rainfall.

The AMA overview provides information about the overall response of the area as
a whole to rainfall, a key prerequisite for establishing a hazard–impact relationship and
assessing the risk of rainfall-induced flood damages. Determining an optimal rainfall
threshold capable of triggering flood damages in the area is helpful. Still, the value of the
hazard–impact relationship is limited by the diversity of local vulnerability. To contribute
more substantially to the improvement of flood resilience, we attempted to identify flood
risk-related rainfall thresholds at a more local level. Indeed, the results showed that
we could have statistically improved models and, therefore, more reliable results when
analyzing smaller geographical areas, thus absorbing part of the local vulnerability effect.
However, the moderating role of data availability emerged, which was found to affect the
statistical significance and thus the performance of the individual local models. Therefore,
areas with a larger number of observations, i.e., R24–DO pairs, were associated with higher
statistical significance (Figure 3). The R24–DO pairs were created using the insurance
company raw data reported at the PC level and then aggregated at the municipality level,
the smaller administrative level of the area division. Accordingly, the resulting number of
observations per municipality depends largely on the included number of PCs. Even large
municipalities in terms of spatial extent may exhibit few observations due to the small
number of PCs. This limitation could be overcome with geolocation of damage data and
given a very dense network of meteorological stations. However, the network is denser in
the municipalities with more PCs (Figure 1).

The importance of the density of meteorological stations in capturing the rain–damage
relationship is evident through the observation of the response of nearby areas (in the
PC spatial analysis) to rain events with very high R24. Specifically, there were extreme
values of R24, as shown by the distribution of Figure 2b, which were not associated with
damage in a PC while they were in the neighboring one. The specific events occurred
in suburban areas with significant geomorphological differences, especially in slope and
altitude due to the study area’s mountains. As the network of stations in these areas is
not yet very dense, likely some stations will not be representative enough for some areas,
especially amid extreme episodes with a possible high spatial variability of rainfall amount
and intensity [49].

Essential for an in-depth understanding of the behavior of predictive models is to
highlight inconsistencies related to the occurrence or not of flood-related damage in a
specific area under similar rainfall conditions. With the aim to shed some light on the
behavior of the predictive model developed in this work, a specific municipality is discussed
in the following with more detail. Indeed, the municipality of Zografou, which borders the
capital city of Athens to the west, was selected as this is one of the municipalities that is not
subject to the restrictions of either the statistical sample or the density of meteorological
stations. The associated model had a moderate to high performance (AUC = 78%), and
the optimal R24 threshold was determined at 47.2 mm (Figure 5). It consists of four PCs
with a total of 142 R24–DO pairs. Among the R24–DO pairs, 100 (71%) relate to events with
R24 less than the optimal threshold. Only two of these events are related to damage in the
area, specifically in a single PC, thus affecting the model performance. These false-negative
observations concern winter events in January 2014 and February 2019, with R24 at 32.6 mm
and 37.2 mm, respectively. Looking more closely at the additional weather parameters, we
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noticed that the January event had a very high maximum 30-min rainfall, i.e., 23.8 mm.
This value is the maximum one recorded among the winter events in the municipality of
Zografou, while it belongs to the top 10% in the AMA in winter. Therefore, it is possible
that the high rain intensity, as reflected by the 30-min rainfall, is responsible for the flood
event of January 2014 in the specific municipality. It is worth noting that the correlation
of the DO parameter with the 30-min rainfall in the AMA was found to be statistically
significant but very weak (Spearman’s rho = 0.14, p < 0.001). Therefore, it provides only
an additional assessment of the conditions associated with damage occurrence within the
study area. For example, the February 2019 event is not explained by the 30-min rainfall,
which was very low (7 mm). In this case, further investigation is required regarding the
damaged item’s specifications, location, and associated vulnerability.

In the last decade, we have observed a growing interest in determining thresholds
for weather hazard parameters to support early warning systems, mainly in the field of
rainfall-induced landslides [50,51]. The selection of optimal damage-triggering rainfall
thresholds may also enable more efficient detection in the likelihood of flood damage [36].
Therefore, it may be applicable in early-warning systems for flood-related damages and
economic losses [6]. Warnings at the municipality level can strengthen the preparedness
and coping capacity mechanisms for civil protection at the local level. The results showed
differentiation of the local R24 thresholds (>20% higher or lower) from those estimated for
AMA as a whole for at least half of the examined areas. Overall, higher R24 thresholds for
flood damage occurrence apply to the municipalities than the overall AMA R24 threshold.

We should emphasize that the estimated thresholds were selected so as to maximize
the difference between the observed hit rate and false alarm rate. The hit rate shows what
fraction of the events with damage is correctly forecasted. The false alarm rate represents
the fraction of the observed non-damaging events incorrectly denoted as damaging ones.
Naturally, different considerations regarding the requested hit rate and false alarm rate
in an early warning system and subsequent decision making may result in the selection
of different R24 thresholds. For example, Table 6 presents the ROC coordinates for three
possible R24 to be used as thresholds for the municipality of Athens, selected based on a
different trade-off between the hit and false alarm rates. This example shows that requesting
a higher percentage of hit rate leads to an increase in the percentage of false alarm rate, but
also a decrease in the overall successful classifications.

Table 6. Selected R24 thresholds for damage occurring in the municipality of Athens for different
trade-offs among TPR and FPR.

R24 (mm) TPR (Hit Rate)
%

FPR (False Alarm Rate)
%

Correctly Classified
%

35.0 60.2 40.3 59.7
41.8 1 50.4 25.7 72.6
50.4 40.2 16.5 80.4

1 Optimal R24 threshold for which the difference between TPR and FPR is maximized.

Note that these percentages are not related to the model’s classification performance,
as they only directly relate to the choice of a risk threshold. A fixed high hit rate might
be desirable for an early warning system. However, any decision should consider that
reducing critical rainfall to achieve a higher hit rate could lead to a high false alarm rate and
potentially affect trust in the system. Due to the large margins of rain threshold selection,
we argue that it should be customized for each study area to meet the local geophysical
and sociodemographic vulnerability against flood risk. Given this information locally,
we could suggest choosing a lower threshold, especially for the most vulnerable areas;
thus, we would achieve greater TPR, which is desirable for the areas most at risk. The
message to the final recipient could then play a role in balancing the degree of false-positive
alarms. While there is evidence that public risk perception and preparedness are enhanced
by the warnings of scientists and risk management agencies about the threats of extreme
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weather events [52], we do not know whether this is the case with less severe phenomena.
For the time being, studies on the impact of false alarms for tornadoes in the USA have
conflicting results as to whether they ultimately negatively affect the precautionary behavior
of citizens [53,54].

Given a specified trade-off between the hit and false alarm rate, we compared the R24
thresholds at the municipal level to estimate each municipality’s risk of flood damages due
to rainfall. The estimated R24 threshold indicates the local flood risk, as it is used to classify
rainfall events as positive, namely with increased risk of flood damage, or negative, with
low risk of flood damage [55]. Lower thresholds indicate greater risk, as the probability
of rain events with low R24 is higher. As shown by the frequency distribution (Figure 2a),
70% of rainfall events had R24 less than 42 mm (low risk), 20% of events had 42 mm to
56 mm (moderate risk), and 10% of events had more than 56 mm (high risk).

The proposed methodological approach has the advantage of being based on a few
components (rainfall and dammage occurrence) and can be applied to areas with a lack
of detailed hydrological monitoring networks. However, there are limitations that must
be considered when using the information produced. First of all, only the occurrence of
flood-related damage is considered, not the damage magnitude. The rainfall thresholds
are therefore mostly low, indicative of the area’s response on the first degree. Moreover,
the determination of thresholds at the municipal level does not completely eliminate
the variability in the topographic and sociodemographic vulnerability to flood risk that
exists at a more local level. Finally, other weather-related factors not considered in this
analysis might affect the outcome, such as the rainfall intensity and the spatial and temporal
variability of rainfall [56].

The present analysis has practical implications in terms of the possibility for exploiting
the results in the early warning of local risk managers and citizens for rainfall risk. Every
step towards recognizing flood risk at the local level can contribute to more effective risk
prevention, preparedness, and mitigation. While the coordinating role of governments
remains essential, it is necessary to empower local authorities and local communities to
reduce risk, including through decision-making responsibilities [6]. Meanwhile, insurance
companies can play a significant role in conveying information about impending threats
to citizens. Given the involvement of climate change in increasing rainfall and flood
risk, insured losses are also expected to increase. Therefore, practices that enhance the
preventive capacity of insured clients could be beneficial to both parties. The cooperation
of research bodies and the insurance industry offers a new perspective on weather-related
risk management and community and corporate adaptation to a possible increase in the
frequency and intensity of rainfall events.

5. Conclusions

The primary purpose of this study was to identify, at municipality level, the rainfall
thresholds likely to trigger flood damages in urban areas. The analysis answers under what
specific rainfall amounts there is a risk of flood damages and therefore direct economic
losses given the existing local geophysical and sociodemographic vulnerability to rainfall
hazard. The study manages to identify optimal 24-h rainfall thresholds while assessing
the level of confidence in their discriminative ability. The local thresholds were further
classified to assess the risk of flood damage to occur locally in the form of a risk index. The
three levels of information, namely the R24 threshold associated with a high probability
of flood damage, the confidence in thresholds’ performance, and the relative risk level,
compose a tool for the monitoring and early detection of upcoming rainfall hazard. The
results for analyses such as that which was carried out in the present study are susceptible
to the primary information provided. Low-quality data can jeopardize the effectiveness of
the analysis. In this case, we relied on solid and accurate data representing both the hazard
and the impact on the local level. In fact, this work showed that the claim insurance data
can be used successfully in modeling the relationship between the rainfall hazard and the
occurrence of flood damage, addressing the need for early warning of flood risk.
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