

MDPI

Article

# Differences in Spatiotemporal Variability of Potential and Reference Crop Evapotranspirations

Keyu Xiang <sup>1,2,†</sup>, Xuan Zhang <sup>3,†</sup>, Xiaofeng Peng <sup>3</sup>, Ning Yao <sup>2,4</sup>, Asim Biswas <sup>5</sup>, De Li Liu <sup>6</sup>, Yufeng Zou <sup>2</sup>, Bakhtiyor Pulatov <sup>7</sup>, Yi Li <sup>2,3,4,\*</sup> and Fenggui Liu <sup>8,\*</sup>

- College of Water Resources and Architectural Engineering, Shihezi University, Shihezi 832003, China; xiangkiris@nwafu.edu.cn
- College of Water Resources and Architectural Engineering, Northwest Agriculture and Forestry University, Yangling 712100, China; yaoning@nwafu.edu.cn (N.Y.); matthew1222@163.com (Y.Z.)
- Institute of Agricultural Science of the Third Division of Xinjiang Production and Construction Corps, Tumushuke 843900, China; zhangx@126.com (X.Z.); pengxf2016@163.com (X.P.)
- <sup>4</sup> Key Laboratory for Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A&F University, Yangling 712100, China
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; biswas@uoguelph.ca
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia; de.li.liu@dpi.nsw.gov.au
- <sup>7</sup> Tashkent Institute of Irrigation and Agricultural Mechanization Engineers—National Research University, Qoriy Niyoziy 39, Tashkent 100000, Uzbekistan; bakhtiyor.pulatoff@gmail.com
- 8 Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
- \* Correspondence: liyikitty@126.com (Y.L.); lfg\_918@163.com (F.L.)
- † These authors contributed equally to this work.

**Abstract:** Potential evapotranspiration ( $ET_p$ ) and reference crop evapotranspiration ( $ET_o$ ) are two key parameters in hydrology, meteorology, and agronomy.  $ET_p$  and  $ET_o$  are related to each other but have different meanings and applications. In this study, the  $ET_p$  and  $ET_o$  were distinguished and calculated with the Penman and FAO56 PM equations using the weather data of 551 stations in China from 1961 to 2018. The differences in their spatiotemporal variations were examined with an MMK test, an R/S test, and wavelet analysis. The monthly  $ET_p$  and  $ET_o$  were close but the  $ET_p$  was always larger than the  $ET_o$ , with values ranging from 1 to 356 mm and 2 to 323 mm, respectively. Their differences varied in different months and sub-regions. The maximum monthly difference transferred from south to north and then back to the south in a yearly cycle, showing spatiotemporal heterogeneity. The annual values of the  $ET_p$  and  $ET_o$  were also close, but the  $ET_p$  was significantly higher than the  $ET_o$ . The increasing future trends of  $ET_p$  but decreasing trends of  $ET_o$  were tested at most sites in China. Although the primary periods were almost the same, their spatial distribution was slightly different. In conclusion,  $ET_p$  is different from  $ET_o$  and they should be applied carefully. This study performs a thorough comparison and reveals the underlying basis of and discrepancy between  $ET_p$  and  $ET_o$ .

**Keywords:** potential evapotranspiration; reference crop evapotranspiration; R/S analysis; wavelet analysis; spatiotemporal variability



Citation: Xiang, K.; Zhang, X.; Peng, X.; Yao, N.; Biswas, A.; Liu, D.L.; Zou, Y.; Pulatov, B.; Li, Y.; Liu, F.
Differences in Spatiotemporal
Variability of Potential and Reference
Crop Evapotranspirations. *Water*2022, 14, 988. https://doi.org/
10.3390/w14060988

Academic Editor: Renato Morbidelli

Received: 9 February 2022 Accepted: 17 March 2022 Published: 21 March 2022

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations



Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

# 1. Introduction

Potential evapotranspiration ( $ET_p$ ) and reference crop evapotranspiration ( $ET_o$ ) are closely connected to actual evapotranspiration (ET) [1,2], leading them to be extensively used in the fields of hydrology, agronomy, meteorology, and ecology [1–5]. Moreover, an important practical application of ET in the fields mentioned above is crop evapotranspiration ( $ET_c$ ) [6], which is usually calculated by  $ET_p$  or  $ET_o$  to evaluate the regional or global variation in agricultural water quantity [7,8], to assess the impacts or responses to

Water 2022, 14, 988 2 of 15

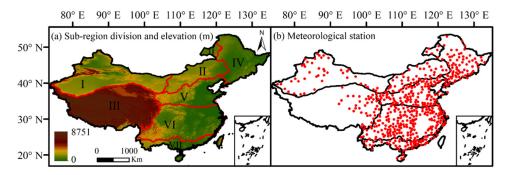
climate change [9–11], and to provide useful guidelines for related policy makers. The accuracy estimation of  $ET_p$  or  $ET_0$  is key for achieving these aims. Therefore, the difference between  $ET_p$  and  $ET_0$  needs further analysis. Many recent research involving  $ET_p$  or  $ET_0$  has focused on their variation, regional characteristics [12] or prediction [13], drought or drying analysis [14], vegetation responses [15], responses to drought [16], the influence of water resources on agriculture [17], and evapotranspiration rate estimations [18]. The studied timescales varied from monthly to annual [2,19], and the spatial scales varied from site [20] to multi-site [19], regional [21], national, and global. Additionally, many interesting results were obtained, the calculation efficiency was improved, and a software was created [22].

The development of definitions for  $ET_p$  and  $ET_o$  has been a long-term process. Thorn-thwaite (1948) defined  $ET_p$  as "the maximal water vapor in an area, including the evapotranspiration from crops and the evaporation from water surfaces in order to determine dry/wet conditions" [23]. Although other definitions have been suggested [24–29], the definition of  $ET_p$  has not yet been standardized. Doorenbos and Pruitt (1977) proposed a clear concept of  $ET_o$  [30]. The Food and Agriculture Organization (FAO) standardized the  $ET_o$  definition as "the ratio of evapotranspiration from a reference crop with an assumed crop height of 12 cm, a fixed surface resistance at 70 s/m, and albedo of 0.23 which closely resembles evapotranspiration from an extensive surface of green grass cover without water stress" [6].

Despite some similarities, there are many differences between  $ET_{\rm p}$  and  $ET_{\rm o}$  in terms of their definition, estimation methods, equation types, and application fields. Much of the previous research has mixed the utilization of these two terms. Instances of this misuse are as follows. (i) Use of incorrect terminology [31–33]: For example, Sun et al. adopted the FAO 56 Penman–Monteith equation to estimate  $ET_{\rm o}$ , but they named it "potential evapotranspiration" [34,35]. (ii) The alternative and inconsistent use of the two terms (Gwate et al., 2018; Lewis and Allen 2017; Zhang 2019) [5,36,37]: When Ding et al. (2020) adopted the FAO 56 Penman–Monteith equation to estimate  $ET_{\rm o}$  in northwest China, they used both terms—"potential evapotranspiration" and "reference evapotranspiration" [38]. (iii) The application of mixed equations. For example, Oudin et al. (2005) generalized four different types of  $ET_{\rm p}$ , when in fact the FAO-24 and Hargreaves and Samani (1982) were  $ET_{\rm o}$  equations. Burke et al. (2006) adopted an  $ET_{\rm o}$  equation to estimate  $ET_{\rm p}$  when conducting a drought analysis [30,39–42].

Except for some common misuses, most researchers have used  $ET_0$  [6,43–49] or  $ET_p$  correctly [50–52]. However, their attributions have rarely been compared. For example, Katerji and Rana (2011) investigated the differences between  $ET_p$  and  $ET_0$  by comparing resistances (namely, the aerodynamic resistance, crop-structure resistance and crop-stomatal resistance) [53]. They concluded that  $ET_0$  and  $ET_p$  were un-equivalent. Xiang et al. (2020) reviewed the differences between the two terms and grouped the different types of  $ET_p$  and  $ET_0$  [54]. This was the first study to clearly differentiate  $ET_p$  and  $ET_0$  up until now.

Many researchers consider  $ET_p$  and  $ET_o$  to be equivalent. Due to the difficulty in their direct and accurate measurement, the differences in these closely related terms when supporting and modelling results are often considered to be errors or uncertainties, even though these can be reduced through the proper choice of the type of ET. Accuracy estimations of  $ET_p$  and  $ET_o$  affect both the water-resource and agricultural sectors and contributes significantly to the national economy [50]. Although there has been progress in differentiating  $ET_p$  and  $ET_o$ , a direct quantitative comparison between them is missing, despite their contributions to the fields of agriculture, engineering, and the environment. Thus, this research aims to quantitatively compare  $ET_p$  and  $ET_o$  at monthly and annual timescales for mainland China based on their commonly used and standardized methods. The spatiotemporal variability characteristics, including trends, abrupt-change years, the wavelet-based main- and quasi-periods, and the serial long-term dependence, will be systematically compared. This work will provide important references for researchers in a wide range of fields who directly or indirectly use potential or reference crop evapotranspiration.


Water 2022, 14, 988 3 of 15

## 2. Data Collection and Methodology

## 2.1. Study Area Description and Data Sources

China is located in eastern Eurasia on the west coast of the Pacific Ocean. It has a large land mass (9.634057  $\times$  10<sup>6</sup> km²); a long distance between its eastern and western boundaries; a wide range of altitudes, morphologies, and mountains; and a variety of climates. Weather data from 839 stations of China were downloaded from the Meteorological Data Sharing Service Network in China (http://data.cma.cn/, accessed on 6 March 2017). The daily climatic variables include precipitation, wind speed at 10 m ( $u_{10}$ ), the maximum ( $T_{max}$ ) and minimum air temperature ( $T_{min}$ ), relative humidity, and hours of sunshine, from December 1960 to December 2018. The sites with a data-missing ratio >1% were removed. Missing data were interpolated with the data of 10 adjacent sites on the same day. The data were cross-examined using the Kendall autocorrelation and Mann–Whitney homogeneity tests [55]. The test results indicated that the fluctuation of the weather data was fixed between critical points at a significance level of 5% [56,57]. Finally, a total of 551 sites were selected.

The digital elevation and the site distribution in mainland China are presented in Figure 1. There are seven climate zones, including the northwestern desert region, the Inner Mongolia grassland region, the Qinghai–Tibetan Plateau, the northeastern humid and sub-humid region, the northern China humid and semi-humid region, the middle and southern China humid and sub-tropical region, and the southern China humid and tropical region, which are named as sub-regions I to VII and which contain 46, 47, 39, 69, 108, 190, and 52 weather stations, respectively. Sub-region III contains fewer stations due to its relatively rough terrain with high elevation range. The analysis will consider both mainland China and these divided sub-regions.



**Figure 1.** The digital evaluation of the sub-region divisions and the distribution of the weather stations. (a) Sub-region division and elevation; (b) Meteorological station.

## 2.2. Methodology

# 2.2.1. Equations for Estimating $ET_p$ and $ET_o$

The Penman (1963) equation was selected as the standardized  $ET_p$  method, since this formula was developed from the Penman (1948) equation and is one of the earliest methods used to calculate  $ET_p$  [25]. It is a widely used equation [58–60], written as [25]:

$$ET_{p} = \frac{\Delta}{\Delta + \gamma} (R_{n} - G) + \frac{6.43\gamma}{\Delta + \gamma} (1 + 0.0536u_{2}) (e_{s} - e_{a})$$
 (1)

where  $\Delta$  is the slope of the vapor–pressure curve (kPa °C<sup>-1</sup>);  $\gamma$  is the psychrometric constant (kPa °C<sup>-1</sup>);  $u_2$  and  $T_2$  are the wind speed (m s<sup>-1</sup>) and mean air temperature (°C) at 2 m;  $e_s$  and  $e_a$  are the saturation and actual vapor pressure (kPa), respectively (kPa);  $R_n$  is the net radiation (MJ m<sup>-2</sup> day<sup>-1</sup>); and G is the soil heat flux (MJ m<sup>-2</sup> day<sup>-1</sup>). Values of  $u_2$  are obtained based on  $u_{10}$ . G at the M th month is estimated by the soil temperature of M+1 th and M-1 th month:

$$G_{\rm M} = 0.07 (T_{\rm M+1} - T_{\rm M-1})$$
 (2)

Water 2022, 14, 988 4 of 15

The standaridized  $ET_0$  method of the Penman–Monteith equation is written as [6]:

$$ET_{o} = \frac{0.408\Delta(R_{n} - G) + \gamma u_{2}(e_{s} - e_{a})[900/(T_{2} + 273)]}{\Delta + \gamma(1 + 0.34u_{2})}$$
(3)

Annual  $ET_0$  or  $ET_p$  values are found by summing the monthly values.

## 2.2.2. Trend and Abrupt-Change Year Analysis

The trends and significance of the annual  $ET_o$  (or  $ET_p$ ) series at the 551 sites were tested following the modified nonparametric Mann–Kendall (MMK) method [61]. The MMK considers the effects of self-correlation in time series x(t) ( $t=1,2,\ldots,N_T$ , where  $N_T$  is the total year number) based on the Mann–Kendall method [62,63]. To show the influence of serial self-correlation, the MK statistic is modified to the new MMK statistic ( $Z_m$ ) with a correction factor  $n^s$  [64]. If  $Z_m$  is positive/negative, x(t) has an up/downward trend. When the lag of self-correlation functions is >0 and  $|Z_m| \ge 1.96$ ,  $x_i$  is time-dependent and the trend is significant at a confidence level  $\alpha=0.05$ . The equations are written as follows:

$$Z^* = \frac{Z}{\sqrt{n_1^s}}, \text{ where } n_1^s = \begin{cases} 1 + \frac{2}{n_1} \sum_{j=1}^{n_1 - 1} (n_1 - 1)r_{jj} & \text{for } jj > 1\\ 1 + 2\frac{r_1^{n_1 + 1} - n_1 r_1^2 + (n_1 - 1)r_1}{n_1(r_1 - 1)^2} & \text{for } jj > 1 \end{cases}$$

$$(4)$$

where  $r_{jj}$  is the self-correlation coefficient of the time series at the lag-jj.

## 2.2.3. The Rescaled (R/S) Analysis

The R/S analysis was proposed based on Hurst (1951) [65,66]. For the time series x (t) ( $t = 1, 2, \dots 58$ ), the mean value and cumulative deviation of the sub-series are calculated as:

$$y(\tau) = \frac{1}{\tau} \sum_{t=1}^{\tau} x(\tau), \ \tau = 1, 2, \cdots$$
 (5)

$$F(t,\tau) = \sum_{u=1}^{\tau} x(u) - y(\tau), \ 1 \le t \le \tau$$
 (6)

The range is calculated as:

$$R(\tau) = \max_{1 < t < \tau} F(t, \tau) - \min_{1 < t < \tau} F(t, \tau), \ F(t, \tau) = 1, 2, \cdots$$
 (7)

Additionally the standardized deviation is computed as:

$$S(\tau) = \left[\frac{1}{\tau} \sum_{t=1}^{\tau} (x(t) - y(\tau))^{2}\right]^{\frac{1}{2}}, \ \tau = 1, 2, \cdots$$
 (8)

The ratio of the range to standardized deviation is described as:

$$\frac{R(\tau)}{S(\tau)} = (C\tau)^{H}, \text{ then } \log(R/S)n = \log c + H\log n$$
(9)

where *C* is a constant. By applying Equation (11), the Hurst index (0 < H < 1) is obtained. *H* measures the intensity of long-range dependence in x(t). When H = 0.5, the time series x(t) has a random process. When 0 < H < 0.5 and 0.5 < H < 1, x(t) has reversibility or sustainability, respectively.

Water 2022, 14, 988 5 of 15

## 2.2.4. The Wavelet Analysis

A continuous wavelet transform was performed using the Morlet wavelet basis  $(\Psi_0)$  [67]. The wavelet key function is described as:

$$\int_{-\infty}^{+\infty} \Psi(t)dt = 0 \tag{10}$$

where t is the year and  $\Psi(t)$  is a wavelet function that can form a cluster of functions on the timeline (Li et al., 2019):

$$\Psi_{a,b}(t) = |a|^{-\frac{1}{2}} \Psi\left(\frac{t-b}{a}\right), \ a,b \in R, a \neq 0$$
 (11)

where  $\Psi_{a,b}(t)$  is a sub-wavelet, a is a wavelet-length scale factor, and b is a factor that shows the translation in time. The multi-Morlet-wavelet was selected as a basic function here.

The primary period has a maximum vibration intensity showing the significance or insignificance which is read from the bright color-belt of the wavelet map. The quasi-period has a secondary maximum vibration intensity [68]. The MATLAB 2019b software (MathWorks, Natick, MA, USA) was used to perform these analyses.

A schematic of general framework adopted in this research is presented in Figure 2.

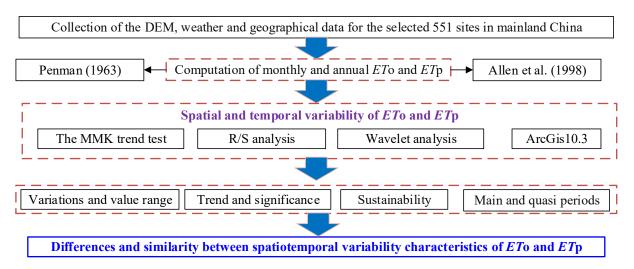
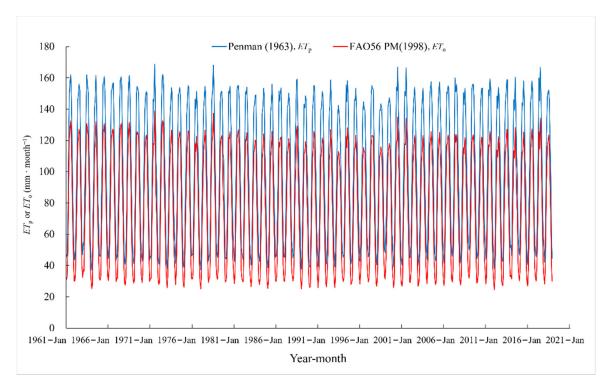


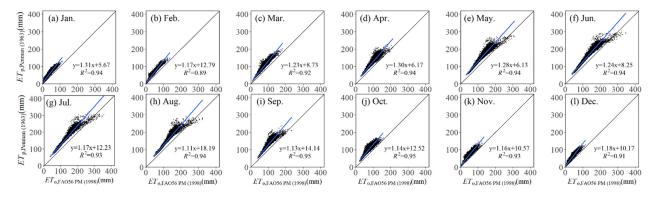

Figure 2. Flow chart of the study framework used for this research.

#### 3. Results

3.1. The Differences between Monthly  $ET_p$  and  $ET_o$ 


#### 3.1.1. Temporal Differences

The temporal variations in the monthly  $ET_{\rm p}$  and  $ET_{\rm o}$  between 1961 and 2018 averaged from 551 sites across China are presented in Figure 3. The monthly  $ET_{\rm p}$  and  $ET_{\rm o}$  fluctuated periodically and their peaks and valleys varied synchronically. The monthly  $ET_{\rm p}$  were larger than the monthly  $ET_{\rm o}$  between 1961 and 2018. The monthly  $ET_{\rm p}$  and  $ET_{\rm o}$  differed clearly in their values.


To further show the value differences, the scatter plots of  $ET_{\rm p}$  and  $ET_{\rm o}$  between 1961 and 2018 in the 12 months of the year are shown in Figure 4. The monthly  $ET_{\rm p}$  and  $ET_{\rm o}$  ranged from 1 to 356 mm and from 2 to 323 mm, respectively. Most of the data-points were in the upper-left side of the 1:1 line, and some large values were in the upper-right part of the 1:1 line. These generally indicated a larger monthly  $ET_{\rm p}$  than  $ET_{\rm o}$ , especially in the cold months of November to March. The deviations of the monthly  $ET_{\rm p}$  from  $ET_{\rm o}$  were larger and increased with the increase in their values. Furthermore, the slopes of the linear function ranged between 1.11 and 1.30, indicating deviations of 11–30% from the monthly  $ET_{\rm p}$  to  $ET_{\rm o}$ . There were very high  $R^2$  values (0.89–0.95) representing a linear correlation

Water 2022, 14, 988 6 of 15

between  $ET_p$  and  $ET_o$ , which confirmed the similarity in their patterns. Although there were slight differences in the  $R^2$  values of the cold months and warm months, this may be due to the variation in the meteorological data, which were using different weights in the two ET equations. Across the entire study area in each month, the relationship between the two was generally close.



**Figure 3.** The variations in monthly  $ET_0$  and  $ET_p$  averaged from 551 sites in mainland China.



**Figure 4.** The scatter plots of monthly  $ET_0$  and  $ET_p$  for the 12 months (containing 551 sites).

The variations in long-term mean monthly  $ET_p$ ,  $ET_o$ , and their differences D (= $ET_p - ET_0$ ) were also compared for the different sub-regions (Figure 5). The monthly  $ET_p$ ,  $ET_o$ , and D showed peaks from around May to July. The peak values of  $ET_p$  and  $ET_o$  ranged from 144 to 218 mm and 116 to 176 mm for the sub-regions I to VII and for Mainland China, respectively. The peaks in the sub-regions ranked in the order of I > II > V > Mainland China > IV > VII > VI > III. The interannual variations in  $ET_p$  and  $ET_o$  were larger for the arid and semi-arid sub-regions (I and II) than the semi-humid and humid sub-regions (III, VI and VII). The monthly  $ET_p$  were generally larger than the monthly  $ET_o$  for the same month and the same region. The D values varied within the months of the year, reaching as high as 42 mm in July for the arid and semi-arid sub-region I.

Water 2022, 14, 988 7 of 15

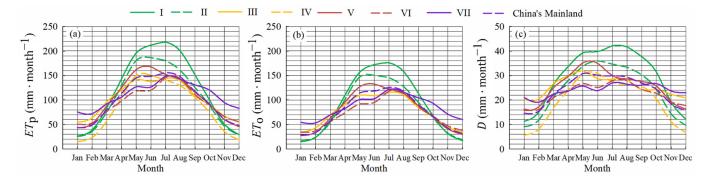
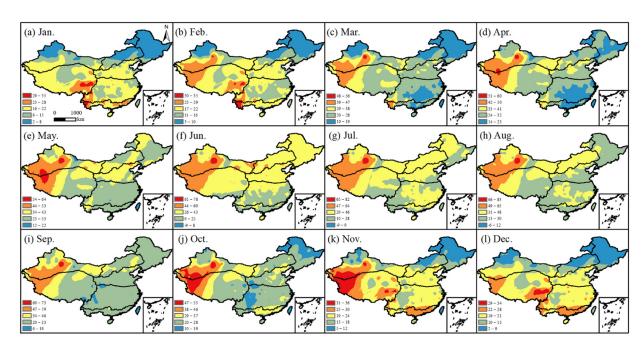



Figure 5. The long-term mean monthly variables averaged from the sites of different sub-regions. (a)  $ET_o$ , (b)  $ET_p$  and (c) D.

Figures 3–5 show that the monthly  $ET_p$  was larger than  $ET_o$  under most conditions. Although previous research has investigated the temporal variations in monthly  $ET_p$  or ETo, seldom has research directly compared their values with the aim of differentiating the two variables.

## 3.1.2. Spatial Differences

The spatial distribution of the long-term mean monthly D (= $ET_p - ET_o$ ) in the 12 months of the year (Figure 6) exhibited variable ranges between  $ET_p$  and  $ET_0$  across China. The results showed that: (1) The monthly *D* varied with the months. In cold and cool seasons (October to March), the smallest D values were in northeastern China and the areas of northwestern China. D values were mostly positive in mainland China, since the  $ET_p$  values were generally larger than the  $ET_o$ . (2) In the warm and hot seasons (April to September), the smallest *D* values were observed in southeastern or northeastern China. These were mostly positive but were occasionally negative, reaching as low as -9 mm  $month^{-1}$ . The D values in sub-regions II (the Inner Mongolia grassland), III (the Qinghai– Tibetan Plateau), and V (northern China) were large. (3) In sub-region IV (northeastern China), the D values ranged between 2 and 33 mm month<sup>-1</sup> in the year and did not change as much as other regions. (4) In general, the spatial distributions of the monthly D were both site- and region-specific.

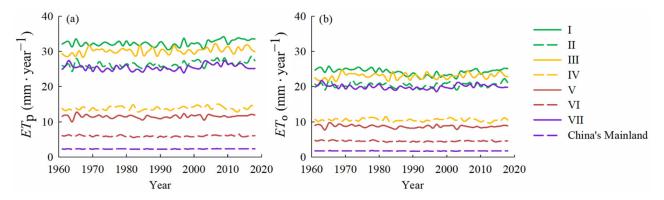

The detailed differences in the *D* for the various sub-regions and months are presented in Table 1.

**Table 1.** Values of the monthly D in different sub-regions and months. Unit: mm month<sup>-1</sup>.

| 3.6 .1  |   |    |     | Sub-Region |   |    |    |
|---------|---|----|-----|------------|---|----|----|
| Month - | I | II | III | IV         | V | VI | VI |

| 3.6 .4    | Sub-Region Sub-Region |    |     |    |    |    |     |  |  |  |  |
|-----------|-----------------------|----|-----|----|----|----|-----|--|--|--|--|
| Month —   | I                     | II | III | IV | V  | VI | VII |  |  |  |  |
| January   | 15                    | 11 | 9   | 20 | 6  | 16 | 16  |  |  |  |  |
| February  | 15                    | 15 | 12  | 20 | 8  | 17 | 16  |  |  |  |  |
| March     | 22                    | 26 | 21  | 27 | 17 | 25 | 21  |  |  |  |  |
| April     | 27                    | 34 | 28  | 30 | 24 | 30 | 24  |  |  |  |  |
| May       | 31                    | 39 | 34  | 32 | 31 | 35 | 27  |  |  |  |  |
| June      | 30                    | 40 | 36  | 29 | 31 | 35 | 25  |  |  |  |  |
| July      | 30                    | 42 | 35  | 29 | 27 | 30 | 28  |  |  |  |  |
| August    | 29                    | 42 | 33  | 28 | 26 | 29 | 28  |  |  |  |  |
| September | 27                    | 38 | 30  | 24 | 26 | 28 | 24  |  |  |  |  |
| Öctober   | 24                    | 31 | 24  | 24 | 20 | 26 | 23  |  |  |  |  |
| November  | 18                    | 19 | 14  | 22 | 11 | 19 | 19  |  |  |  |  |
| December  | 16                    | 12 | 10  | 21 | 7  | 16 | 18  |  |  |  |  |

Water 2022, 14, 988 8 of 15

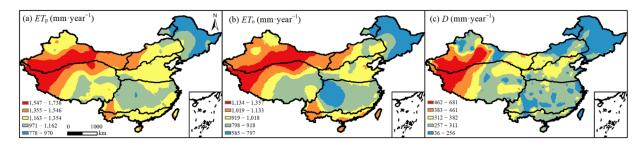



**Figure 6.** The spatial distribution of the long-term mean monthly *D* in mainland China (the site values were interpolated by the Kriging method in ArcGIS 10.3).

3.2. The Differences between Annual ET<sub>v</sub> and ET<sub>o</sub>

# 3.2.1. Temporal and Spatial Differences

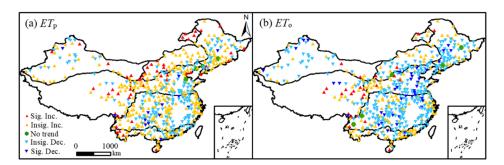
The annual variations in the  $ET_{\rm p}$  and  $ET_{\rm o}$  in different sub-regions of China are presented in Figure 7. The fluctuating patterns of the  $ET_{\rm p}$  and  $ET_{\rm o}$  in the same sub-region were generally similar. The general sub-region ranks of the annual  $ET_{\rm p}$  and  $ET_{\rm o}$  values were sub-region I > III > II > VII > IV > V > VI > mainland China. The annual D values ranged from 256 mm to 315 mm for sub-regions I to VII and mainland China. It was observed that the annual  $ET_{\rm p}$  differed with the  $ET_{\rm o}$  and the differences varied within the different sub-regions.




**Figure 7.** The temporal variations in annual variables in different sub-regions of China. The sub-regional  $ET_p$  and  $ET_o$  values were computed using the site-specific weight coefficients obtained from the Theson-polygon method in ArcGis. (a)  $ET_p$  and (b)  $ET_o$ .

The spatial distribution of the long-term mean annual  $ET_p$ ,  $ET_o$  and D in mainland China are presented in Figure 8. The spatial distribution pattern of the annual  $ET_p$  and  $ET_o$  were similar; low values appeared in northeastern, central, and southern China, but large values appeared in northwestern and southern China. The ranges of the annual  $ET_p$  and  $ET_o$  differed from 778 to 1738 mm and from 585 to 1357 mm, respectively. The annual D values ranged from 36 to 681 mm and the highest values occurred in northwestern China

Water 2022, 14, 988 9 of 15


and northern China. Therefore, in the areas with high D values, the differences in  $ET_p$  and  $ET_0$  should be considered in case their incorrect utilization should cause deviations.



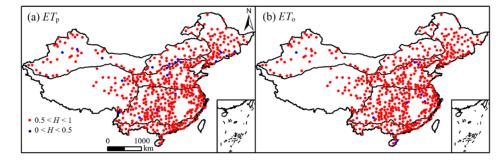
**Figure 8.** The spatial distribution of longterm mean annual (a)  $ET_p$ , (b)  $ET_o$ , and (c) D in mainland China.

# 3.2.2. The Trends and Long—Term Dependence

To further compare the intrinsic features, the annual  $ET_p$  and  $ET_o$  for all the sites were mapped (Figure 9). Although the trend distribution of the annual  $ET_p$  and  $ET_o$  looked similar—namely, with more increasing trends seen in central, northern, and small areas of southern China—more sites had decreasing trends in their annual  $ET_o$ . Their trend significance was also different.



**Figure 9.** The trends and significance of annual  $ET_p$  and  $ET_o$  in mainland China.


The detailed numbers of the sites with different trends and significance are given in Table 2. In all the seven sub-regions, more sites had increasing trends in annual  $ET_p$  than  $ET_o$ . Thus, due to the differences in spatiotemporal distributions, the  $ET_p$  and  $ET_o$  must be used carefully and correctly in hydrology and meteorology research. Our results were different from those of Han et al. (2012), who investigated  $ET_p$  trends between 1956 and 2005 at 244 sites in China and found decreasing  $ET_p$  trends for 59.7%, 50%, and 64.2% of the total stations in the arid/semi-arid, semi-humid, and humid regions of China, respectively [51]. This was not surprising, since the studied station numbers and the studied period of the two were very different.

The spatial distributions of the Hurst index for the annual  $ET_p$  and  $ET_o$  were mapped and are presented in Figure 10. The detailed number of sites that had different ranges of the Hurst index in each sub-region are given in Table 3. The spatial distribution of the two terms were generally similar—namely, most sites had Hurst indices larger than 0.5. The sites that had different ranges of the Hurst index were also very close, but the number of  $ET_p$  for H < 0.5 was almost 2.5 times that of  $ET_o$  at 19 and 8 sites, respectively. This implied that the future  $ET_p$  and  $ET_o$  of most stations will maintain consistent with the previous trend, while several sites'  $ET_p$  and  $ET_o$  will probably go in the opposite direction. When the Hurst index was combined with the result of the MMK test, the  $ET_o$  trend of most sites showed an insignificant decrease, while a few sites'  $ET_o$  trend was reversed to increase in the future. In that situation, the trend of the  $ET_p$  can be derived by comparing with the  $ET_o$ .

Water 2022, 14, 988 10 of 15

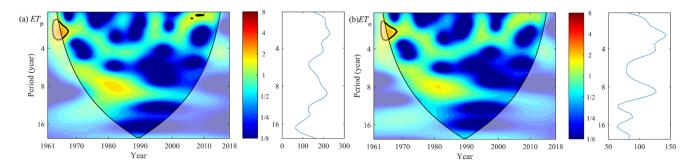
| -           | 1                      | Sub-Region |    |     |    |    |     |     |            |
|-------------|------------------------|------------|----|-----|----|----|-----|-----|------------|
| Term        | Trend                  | I          | II | III | IV | V  | VI  | VII | - Subtotal |
|             | Significant increase   | 3          | 5  | 2   | 2  | 8  | 25  | 5   | 50         |
| $ET_{ m P}$ | Insignificant increase | 23         | 24 | 19  | 36 | 55 | 117 | 29  | 303        |
|             | No trend               | 0          | 0  | 0   | 0  | 0  | 4   | 0   | 4          |
|             | Insignificant decrease | 20         | 15 | 16  | 28 | 41 | 43  | 18  | 181        |
|             | Significant decrease   | 0          | 3  | 2   | 3  | 4  | 1   | 0   | 13         |
|             | Significant increase   | 0          | 1  | 0   | 2  | 5  | 14  | 3   | 25         |
| $ET_0$      | Insignificant increase | 17         | 16 | 9   | 24 | 34 | 60  | 16  | 176        |
|             | No trend               | 0          | 0  | 0   | 0  | 1  | 4   | 0   | 5          |
|             | Insignificant decrease | 27         | 27 | 25  | 36 | 60 | 100 | 30  | 305        |
|             | Significant decrease   | 2          | 3  | 5   | 7  | 8  | 12  | 3   | 40         |

**Table 2.** The station numbers of annual  $ET_0$  and  $ET_p$ , which had different trends and levels of significance in different sub-regions.

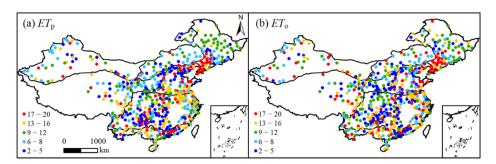


**Figure 10.** The spatial distribution of the Hurst index denoting the long-term dependence of  $ET_p$  and  $ET_o$ .

| Sul               | b-Region           | I  | II | III | IV | V   | VI  | VII | Subtotal |
|-------------------|--------------------|----|----|-----|----|-----|-----|-----|----------|
| $ET_{\mathrm{P}}$ | 0.5 < H < 1        | 43 | 43 | 38  | 65 | 105 | 186 | 52  | 532      |
|                   | 0 < H < 0.5        | 3  | 4  | 1   | 4  | 3   | 4   | 0   | 19       |
| $ET_0$            | 0.5 < <i>H</i> < 1 | 45 | 47 | 39  | 69 | 106 | 186 | 51  | 543      |
|                   | 0 < <i>H</i> < 0.5 | 1  | 0  | 0   | 0  | 2   | 4   | 1   | 8        |


**Table 3.** The station numbers of the Hurst coefficient for annual  $ET_0$  and  $ET_p$  in different sub-regions.

### 3.2.3. The Wavelet Periods


The variations in the wavelet spectrum and the wavelet variance for the annual  $ET_{\rm p}$  and  $ET_{\rm o}$  between 1961 and 2018 in mainland China are presented in Figure 11. The vibration intensity and fluctuation characteristics of the annual  $ET_{\rm p}$  and  $ET_{\rm o}$  were very similar. The primary and secondary periods of the annual  $ET_{\rm p}$  and  $ET_{\rm o}$  were almost same, being about 10 and 2 years, respectively, though somewhat weak. This was reasonable, since their annual variation patterns were very similar, although their values were very different (see Figure 7). Among the different time intervals, there were significant periods of four years between 1961 and 1970.

The spatial distributions of the primary periods in the annual  $ET_{\rm p}$  and  $ET_{\rm o}$  for all the studied sites are mapped and presented in Figure 12. In general, sites with shorter periods and with longer periods have similar distribution characteristics for both the annual  $ET_{\rm p}$  and  $ET_{\rm o}$ . They were mainly distributed in sub-regions V-VII, while a few were distributed in the other sub-regions.

Water 2022, 14, 988 11 of 15



**Figure 11.** The wavelet spectrum and wavelet variance for the annual  $ET_p$  (**a**) and  $ET_o$  (**b**) of mainland China. The thin solid lines denote the cones of influence, and the thick solid lines show the 95% confidence levels. The color bar represents the vibration intensity of the periods at different timescales.



**Figure 12.** The main periods of annual  $ET_p$  (a) and  $ET_o$  (b) extracted from wavelet analysis.

#### 4. Discussion

Though differentiating  $ET_p$  and  $ET_o$  seems easy, it is in fact very difficult and can greatly impact their further application. The standard method of the FAO-56 PM equation for  $ET_o$  [6] has been universally accepted. However, no standard method for the  $ET_p$  has been proposed. This research takes the Penman (1963) equation as the standard method for  $ET_p$ , considering it is a combination-type equation and has generally good performance [25]. Moreover, several pieces of research found that the value of  $ET_p$  was higher than that of  $ET_o$  on a daily scale; for example, the root mean square errors between  $ET_p$  and  $ET_o$  were 1.88 mm/d and 0.93 mm/d in the Senegal River Valley and North China Plain, respectively [69,70]. These research specialized the wind effects and the dynamic process of vaporization by adding specific numbers to represent the study area. However, this is still not a universal method. The Thornthwaite (1948) equation is also used to calculate  $ET_p$ , requiring only temperature data [23]. However, it tends to underestimate  $ET_p$  in humid regions [71,72]. There may be other better  $ET_p$  equations used in different countries. Nevertheless, there are apparent differences, especially in the spatiotemporal variations, between the  $ET_p$  and  $ET_o$ , at monthly, annual, and other timescales.

Since the monthly and annual values, ranges, seasonal changes, spatial distributions, long-term dependent characteristics, periods, trends, and significance of  $ET_p$  and  $ET_o$  differed at most of the sites in the sub-regions and in mainland China, in the future the unitization of the two terms should be approached more carefully. Not only do the quantitative characteristics of  $ET_p$  and  $ET_o$  differ, but the application scale differs as well.  $ET_p$  has been suitably applied to studies with a larger spatial scale, including the rainfall-runoff modeling of many catchments [39], discharge projections [73], and the attribution of evapotranspiration changes under non-water-limited conditions [15], as well as drought severity analysis on a regional, national and global scale [74–76]. Comparatively,  $ET_o$  is applied on smaller spatial scales, including site, field, and regional scales [43,44,46,47,49].

In addition, there was variability in the D series on the monthly and yearly timescales, as clearly shown by Anselin Local Moran's I index [77] (Table 4, Figures S1 and S2). More studies are needed for detailed descriptions. It is easy to see that the major Moran's type of

Water 2022, 14, 988 12 of 15

D series is not significant, that there is a high proportion of High-High (HH) or Low-Low (LL) clusters in the rest sites, and that there are only a few sites representing the High-Low (HL) or Low-High (LH) outlier. The Moran's type spatial distribution of monthly and yearly D also depicted a similar annual trend showing that the HH or LL sites' position will reverse to each other in a year (Figures S1 and S2).

| Table 4 | The site nu | mbers of A | selin I oca | 1 Moran's | Lindex for D se | ries |
|---------|-------------|------------|-------------|-----------|-----------------|------|
|         |             |            |             |           |                 |      |

| Timesclae |         |          |       |       |     |      | Month | ly      |           |         |          |          |        |
|-----------|---------|----------|-------|-------|-----|------|-------|---------|-----------|---------|----------|----------|--------|
| Moran's I | January | February | March | April | May | June | July  | Auguest | September | October | November | December | Yearly |
| NS        | 338     | 370      | 342   | 337   | 328 | 285  | 406   | 435     | 407       | 391     | 367      | 341      | 383    |
| HH        | 97      | 78       | 96    | 95    | 88  | 102  | 63    | 48      | 61        | 67      | 76       | 89       | 79     |
| HL        | 0       | 1        | 3     | 4     | 4   | 3    | 3     | 3       | 2         | 3       | 1        | 1        | 3      |
| LH        | 2       | 4        | 7     | 8     | 7   | 6    | 6     | 5       | 6         | 5       | 5        | 3        | 7      |
| LL        | 114     | 98       | 103   | 107   | 124 | 155  | 73    | 60      | 75        | 85      | 102      | 117      | 79     |

Notes: NS: not significant; HH: High-High Cluster; HL: High-Low Outlier; LH: Low-High Outlier; LL: Low-Low Cluster.

#### 5. Conclusions

The differences between  $ET_p$  and  $ET_o$  at monthly and annual timescales in China were studied between 1961 and 2018. At most sites in most months, the  $ET_p$  was larger than the  $ET_o$ . Except for some similarity in the long-term dependence indicated by the Hurst index and the spatial distribution of the primary period calculated by wavelet analysis, generally there were many differences between the  $ET_p$  and  $ET_o$ .

At different timescales,  $ET_p$  and  $ET_o$  showed some similar situations and some different behaviors. Their values were closer in some months than in others because of the lower influence of the surface resistance of evapotranspiration in the calculation equations. Different spatial distributions in various sub-regions and mainland China were found. These were related to the variation in weather data under different situations. As for the monthly  $ET_p$  and  $ET_o$ , at most of the sites in every sub-region, the  $ET_p$  was higher than the  $ET_o$ . This result provides supportive guidance for the related policy managers to deal with water risk management. The maximum difference was observed in May or July, and the minimum difference was observed in December or January. Different distribution trends of  $ET_p$  and  $ET_o$  were also shown. On the annual scale, the  $ET_p$  and  $ET_o$  showed a similar spatial distribution but different quantities, and there was an obvious difference in the significance, future trend, and primary periods at all stations. This confirmed the discrepancy of the spatial–temporal variations between  $ET_p$  and  $ET_o$ . Overall, our results strongly indicate that researchers should use  $ET_p$  and  $ET_o$  carefully and be sure to differentiate them.

#### **Abbreviations**

 $ET_p$ —potential evapotranspiration;  $ET_o$ —reference crop evapotranspiration;  $R^2$ —coefficient of determination; FAO—Food and Agriculture Organization; R/S—rescaled; MMK—modified Mann–Kendall.

**Supplementary Materials:** The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/w14060988/s1, Figure S1: The Anselin Local Moran's I index distribution of monthly D; Figure S2: The Anselin Local Moran's I index distribution of yearly  $ET_p$ ,  $ET_0$  and D respectively.

**Author Contributions:** Conceptualization, K.X., X.Z. and Y.L.; Methodology, K.X.; Software, K.X.; Validation, X.P. and N.Y.; Original draft preparation writing, K.X. and Y.L.; Review and Editing, A.B., D.L.L., F.L., Y.Z., B.P. and F.L. All authors have read and agreed to the published version of the manuscript.

**Funding:** This research was funded by National Key Research and Development Program of China (2019YFA0606902), the Science and Technology Project of Tumushuk, Third Division (No. S202102GG018); and the National Natural Science Foundation of China (No. 52079114).

**Informed Consent Statement:** Informed consent was obtained from all subjects involved in the study.

Water 2022, 14, 988 13 of 15

**Data Availability Statement:** The weather data can be found from China Meteorological Data Sharing center (http://data.cma.cn/ (accessed on 8 February 2022)).

**Conflicts of Interest:** The authors declare no conflict of interest.

#### References

- 1. Milly, P.C.D.; Dunne, K.A. Potential evapotranspiration and continental drying. *Nat. Clim. Change* **2016**, *6*, 946–949. [CrossRef]
- 2. Peng, L.; Li, Y.; Feng, H. The best alternative for estimating reference crop evapotranspiration in different sub-regions of mainland China. *Sci. Rep.* **2017**, *7*, 5458. [CrossRef] [PubMed]
- 3. Vörösmarty, C.J.; Federer, C.A.; Schloss, A.L. Potential evaporation functions compared on US watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modeling. *J. Hydrol.* **1998**, 207, 147–169. [CrossRef]
- 4. Yao, N.; Li, Y.; Dong, Q.G.; Li, L.; Peng, L.; Feng, H. Influence of the accuracy of reference crop evapotranspiration on drought monitoring using standardized precipitation evapotranspiration index in mainland China. *Land. Degrad. Dev.* **2020**, *31*, 266–282. [CrossRef]
- 5. Zhang, Y. Estimation of Potential Evapotranspiration by Different Methods in Handan Eastern Plain, China. *Water Sci. Eng.* **2019**, 4, 117.
- 6. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop water requirements. In *Irrigation and Drainage Paper No 56*; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998.
- 7. Ohana-Levi, N.; Ben-Gal, A.; Munitz, S.; Netzer, Y. Grapevine crop evapotranspiration and crop coefficient forecasting using linear and non-linear multiple regression models. *Agric. Water Manag.* **2022**, *262*, 107317. [CrossRef]
- 8. Hu, K.; Awange, J.; Kuhn, M.; Zerihun, A. Irrigated agriculture potential of Australia's northern territory inferred from spatial assessment of groundwater availability and crop evapotranspiration. *Agric. Water Manag.* **2022**, 264, 107466. [CrossRef]
- 9. Gentilucci, M.; Barbieri, M.; Burt, P. (Eds.) Climate and territorial suitability for the Vineyards developed using GIS techniques. In Proceedings of the Conference of the Arabian Journal of Geosciences, Sousse, Tunisia, 2–5 November 2018.
- 10. Saadi, S.; Todorovic, M.; Tanasijevic, L.; Pereira, L.S.; Pizzigalli, C.; Lionello, P. Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. *Agric. Water Manag.* **2015**, 147, 103–115. [CrossRef]
- 11. Fan, J.; Wu, L.; Zhang, F.; Xiang, Y.; Zheng, J. Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015. *J. Hydrol.* **2016**, *542*, 923–937. [CrossRef]
- 12. Saray, M.H.; Eslamian, S.S.; Klove, B.; Gohari, A. Regionalization of potential evapotranspiration using a modified region of influence. *Theor. Appl. Climatol.* **2019**, *140*, 115–127. [CrossRef]
- 13. Silva, C.R.D.; Barbosa, L.A.; Finzi, R.R.; Riberio, B.T.; Dias, N.D.S. Accuracy of air temperature forecasts and its use for prediction of the reference evapotranspiration. *Biosci. J.* **2020**, *36*, 17–22. [CrossRef]
- 14. Um, M.; Kim, Y.; Park, D.; Jung, K.; Wang, Z.; Kim, M.M.; Shin, H. Impacts of potential evapotranspiration on drought phenomena in different regions and climate zones. *Sci. Total Environ.* **2020**, 703, 135590. [CrossRef] [PubMed]
- 15. Yang, Y.; Roderick, M.L.; Zhang, S.; Mcvicar, T.R.; Donohue, R.J. Hydrologic implications of vegetation response to elevated CO<sub>2</sub> in climate projections. *Nat. Clim. Change* **2019**, *9*, 44–48. [CrossRef]
- 16. Li, J.; Wu, C.; Wang, X.; Peng, J.; Dong, D.; Lin, G.; Gonsamo, A. Satellite observed indicators of the maximum plant growth potential and their responses to drought over Tibetan Plateau (1982–2015). *Ecol. Indic.* **2020**, *108*, 105732. [CrossRef]
- 17. Zhao, J.; Wang, Z. Future trends of water resources and influences on agriculture in China. *PLoS ONE* **2020**, *15*, e0231671. [CrossRef]
- 18. Shanmugam, M.; Mekonnen, M.; Ray, C. Grid-Based Model for Estimating Evapotranspiration Rates of Heterogeneous Land Surface. *J. Irrig. Drain. Eng.* **2020**, *146*, 04019030. [CrossRef]
- 19. Malik, A.; Kumar, A.; Ghorbani, M.A.; Kashani, M.H.; Kisi, O.; Kim, S. The viability of co-active fuzzy inference system model for monthly reference evapotranspiration estimation: Case study of Uttarakhand State. *Hydrol. Res.* **2019**, *50*, 1623–1644. [CrossRef]
- 20. You, G.; Arain, M.A.; Wang, S.; Lin, N.; Wu, D.; Mckenzie, S.; Zou, C.; Liu, B.; Zhang, X.; Gao, J. Trends of actual and potential evapotranspiration based on Bouchet's complementary concept in a cold and arid steppe site of Northeastern Asia. *Agr. For. Meteorol.* 2019, 279, 107684. [CrossRef]
- 21. Adhikari, A.; Mainali, K.P.; Rangwala, I.; Hansen, A.J. Various measures of potential evapotranspiration have species-specific impact on species distribution models. *Ecol. Model.* **2019**, *414*, 108836. [CrossRef]
- 22. Guo, D.; Westra, S.; Maier, H.R. An R package for modelling actual, potential and reference evapotranspiration. *Environ. Model. Softw.* **2016**, *78*, 216–224. [CrossRef]
- 23. Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [CrossRef]
- 24. Penman, H.L. Evaporation: An introductory survey. Neth. J. Agri. Sci. 1956, 4, 9–29. [CrossRef]
- 25. Penman, H.L. (Ed.) Vegetation and Hydrology, Tech. Commun. 53, Commonwealth Bureau of Soils; Soil Science: Harpenden, UK, 1963.
- 26. Anon, J. Proceeding of the informal meeting on physics in agriculture. Neth. J. Agri. Sci. 1956, 4, 162–175.
- 27. WMO. *Sites for Wind-Power Installations*; WMO No. 156, Technical Note No. 63; WMO: Geneva, Switzerland, 1963. Available online: https://library.wmo.int/index.php?lvl=notice\_display&id=5475#.YjfmEHpBzDc (accessed on 8 February 2022).

Water 2022, 14, 988 14 of 15

28. Jensen, M.E. Water Consumption by Agricultural Plants. In *Plant Water Consumption & Response. Volume II. Water Deficits and Plant Growth*; Kozlowski, T.T., Ed.; Academic Press: New York, NY, USA; London, UK, 1968; pp. 1–22.

- 29. Granger, R.J. An examination of the concept of potential evaporation. J. Hydrol. 1989, 111, 9–19. [CrossRef]
- 30. Doorenbos, J.; Pruitt, W. Guidelines for Predicting Crop Water Requirements, Irrigation and Drainage Paper No. 24; FAO: Rome, Italy, 1977.
- 31. Ochoa-Sánchez, A.; Crespo, P.; Carrillo-Rojas, G.; Sucozhañay, A.; Célleri, R. Actual Evapotranspiration in the High Andean Grasslands: A Comparison of Measurement and Estimation Methods. *Front. Earth Sci.* **2019**, 7, 55. [CrossRef]
- 32. Chen, S.; Liu, Y.; Axel, T. Climatic change on the Tibetan Plateau: Potential Evapotranspiration Trends from 1961–2000. *Clim. Change* **2006**, *76*, 291–319.
- 33. Seiller, G.; Anctil, F. How do potential evapotranspiration formulas influence hydrological projections? *Hydrolog. Sci. J.* **2016**, *61*, 2249–2266. [CrossRef]
- 34. Sun, C.; Zheng, Z.; Chen, W.; Wang, Y. Spatial and Temporal Variations of Potential Evapotranspiration in the Loess Plateau of China during 1960–2017. *Sustainability* **2020**, *12*, 354. [CrossRef]
- 35. Sun, S.; Lei, S.; Jia, H.; Li, C.; Zhang, J.; Meng, P. Tree-Ring Analysis Reveals Density-Dependent Vulnerability to Drought in Planted Mongolian Pines. *Forests* **2020**, *11*, 98. [CrossRef]
- 36. Gwate, O.; Mantel, S.K.; Palmer, A.R.; Gibson, L.; Munch, Z. Measuring and modelling evapotranspiration in a South African grassland: Comparison of two improved Penman-Monteith formulations. *Water SA* **2018**, *44*, 482–494. [CrossRef]
- 37. Lewis, C.S.; Allen, L.N. Potential Crop Evapotranspiration and Surface Evaporation Estimates via a Gridded Weather Forcing Dataset. *J. Hydrol.* **2017**, *546*, 450–463. [CrossRef]
- 38. Ding, H.; Xingming, H.; Ying, H.; Jingxiu, Q. Uncertainty assessment of potential evapotranspiration in arid areas, as estimated by the Penman-Monteith method. *J. Arid. Land* **2020**, *12*, 166–180.
- 39. Oudin, L.; Hervieu, F.; Michel, C.; Perrin, C.; Andreassian, V.; Anctil, F.; Loumagne, C. Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2: Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling. *J. Hydrol.* 2005, 303, 290–306. [CrossRef]
- 40. Jensen, M.E.; Burman, R.D.; Allen, R.G. Evapotranspiration and Irrigation Water Requirements; Agriculture Society Civil Engineering: New York, NY, USA, 1990.
- 41. Hargreaves, G.H.; Samani, Z.A. Estimating potential evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 225–230. [CrossRef]
- 42. Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [CrossRef]
- 43. Dinpashoh, Y.; Jhajharia, D.; Fakheri-Fard, A.; Singh, V.P.; Kahya, E. Trends in reference crop evapotranspiration over Iran. *J. Hydrol.* **2011**, 399, 422–433. [CrossRef]
- 44. Feng, Y.; Cui, N.; Zhao, L.; Hu, X.; Gong, D. Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China. *J. Hydrol.* **2016**, *536*, 376–383. [CrossRef]
- 45. Gong, L.; Xu, C.; Chen, D.; Halldin, S.; Chen, Y.D. Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. *J. Hydrol.* **2006**, 329, 620–629. [CrossRef]
- 46. Hargreaves, G.H.; Allen, R.G. History and evaluation of Hargreaves evapotranspiration equation. *J. Irrig. Drain. Eng.* **2003**, 129, 53–63. [CrossRef]
- 47. Li, Z.; Zheng, F.; Liu, W. Spatiotemporal characteristics of reference evapotranspiration during 1961–2009 and its projected changes during 2011–2099 on the Loess Plateau of China. *Agr. For. Meteorol.* **2012**, *154*, 147–155. [CrossRef]
- 48. Mcvicar, T.R.; Van Niel, T.G.; Li, L.; Hutchinson, M.F.; Mu, X.; Liu, Z. Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. *J. Hydrol.* **2007**, *338*, 196–220. [CrossRef]
- 49. Tabari, H.; Marofi, S.; Aeini, A.; Talaee, P.H.; Mohammadi, K. Trend analysis of reference evapotranspiration in the western half of Iran. *Agr. For. Meteorol.* **2011**, *151*, 128–136. [CrossRef]
- 50. Chattopadhyay, N.; Hulme, M. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. *Agr. For. Meteorol.* **1997**, *87*, 55–73. [CrossRef]
- 51. Han, S.; Xu, D.; Wang, S. Decreasing potential evaporation trends in China from 1956 to 2005: Accelerated in regions with significant agricultural influence? *Agr. For. Meteorol.* **2012**, *154*, 44–56. [CrossRef]
- 52. Wang, K.; Xu, Q.; Li, T. Does recent climate warming drive spatiotemporal shifts in functioning of high-elevation hydrological systems? *Sci. Total Environ.* **2020**, *719*, 137507. [CrossRef]
- 53. Katerji, N.; Rana, G. Crop reference evapotranspiration: A discussion of the concept, analysis of the process and validation. *Water Resour. Manag.* **2011**, 25, 1581–1600. [CrossRef]
- 54. Xiang, K.; Li, Y.; Horton, R.; Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration -a review. *Agric. Water Manag.* **2020**, 232, 106043. [CrossRef]
- 55. Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; Elsevier: Amsterdam, The Netherland, 1992.
- 56. Ayantobo, O.O.; Li, Y.; Song, S.; Yao, N. Spatial comparability of drought characteristics and related return periods in mainland China over 1961–2013. *J. Hydrol.* **2017**, *550*, 549–567. [CrossRef]
- 57. Yao, N.; Li, Y.; Lei, T.; Peng, L. Drought evolution, severity and trends in mainland China over 1961–2013. *Sci. Total Environ.* **2018**, 616, 73–89. [CrossRef]
- 58. Li, S.; Kang, S.; Zhang, L.; Zhang, J.; Du, T.; Tong, L.; Ding, R. Evaluation of six potential evapotranspiration models for estimating crop potential and actual evapotranspiration in arid regions. *J. Hydrol.* **2016**, *543*, 450–461. [CrossRef]

Water 2022, 14, 988 15 of 15

59. Xu, K.; Yang, D.; Yang, H.; Li, Z.; Qin, Y.; Shen, Y. Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective. *J. Hydrol.* 2015, 526, 253–264. [CrossRef]

- 60. Yang, Y.; Chen, R.; Song, Y.; Han, C.; Liu, J.; Liu, Z. Sensitivity of potential evapotranspiration to meteorological factors and their elevational gradients in the Qilian Mountains, northwestern China. *J. Hydrol.* **2019**, *568*, 147–159. [CrossRef]
- 61. Yue, S.; Wang, C.Y. Regional Streamflow Trend Detection with Consideration of Both Temporal and Spatial Correlation. *Int. J. Climatol.* **2002**, 22, 933–946. [CrossRef]
- 62. Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [CrossRef]
- 63. Kendall, M.G. Rank Auto Correlation Methods. Brit. J. Psychol. 1976, 25, 86–97.
- 64. Li, Y.; Horton, R.; Ren, T.; Chen, C. Prediction of annual reference evapotranspiration using climatic data. *Agric. Water Manag.* **2010**, 97, 300–308. [CrossRef]
- 65. Mandelbrot, B.B.; Wallis, J.R. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. *Water Resour. Res.* **1969**, *5*, 967–988. [CrossRef]
- 66. Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civil. Eng. 1951, 116, 770–808. [CrossRef]
- 67. Liu, Y.; Li, L.; Chen, C. Spatiotemporal Variability of Monthly and Annual Snow Depths in Xinjiang, China over 1961–2015 and the Potential Effects. *Water* 2019, 11, 1666. [CrossRef]
- 68. Li, L.; Yao, N.; Li, Y.; Liu, D.L.; Wang, B.; Ayantobo, O.O. Future projections of extreme temperature events in different sub-regions of China. *Atmos. Res.* **2019**, 217, 150–164. [CrossRef]
- 69. Djaman, K.; Balde, A.B.; Sow, A.; Muller, B.; Irmak, S.; N'Diaye, M.K.; Manneh, B.; Moukoumbi, Y.D.; Futakuchi, K.; Saito, K. Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley. *J. Hydrol.* **2015**, 3, 139–159. [CrossRef]
- 70. Liu, X.; Xu, C.; Zhong, X.; Li, Y.; Yuan, X.; Cao, J. Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement. *Agric. Water Manag.* **2017**, *184*, 145–155. [CrossRef]
- 71. Sentelhas, P.C.; Gillespie, T.J.; Santos, E.A. Evaluation of FAO Penman–Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada. *Agric. Water Manag.* **2010**, *97*, 635–644. [CrossRef]
- 72. Valipour, M.; Sefidkouhi, M.A.G.; Raeini, M. Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. *Agric. Water Manag.* **2017**, *180*, 50–60. [CrossRef]
- 73. Dakhlaoui, H.; Seibert, J.; Hakala, K. Sensitivity of discharge projections to potential evapotranspiration estimation in Northern Tunisia. *Reg. Environ. Change* **2020**, *20*, 34. [CrossRef]
- 74. Burke, E.J.; Brown, S.I.J.; Christidis, N. Modeling the Recent Evolution of Global Drought and Projections for the Twenty-First Century with the Hadley Centre Climate Model. *J. Hydrometeorol.* **2006**, *7*, 1113–1125. [CrossRef]
- 75. Li, Y.; Sun, C. Impacts of the superimposed climate trends on droughts over 1961–2013 in Xinjiang, China. *Theor. Appl. Climatol.* **2017**, *129*, 977–994. [CrossRef]
- 76. Yao, N.; Li, L.; Feng, P.; Feng, H.; Liu, D.L.; Liu, Y.; Jiang, K.; Hu, X.; Li, Y. Projections of drought characteristics in China based on a standardized precipitation and evapotranspiration index and multiple GCMs. Sci. Total Environ. 2020, 704, 135245. [CrossRef]
- 77. Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [CrossRef]