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Abstract: Potential evapotranspiration (ETp) and reference crop evapotranspiration (ETo) are two
key parameters in hydrology, meteorology, and agronomy. ETp and ETo are related to each other
but have different meanings and applications. In this study, the ETp and ETo were distinguished
and calculated with the Penman and FAO56 PM equations using the weather data of 551 stations
in China from 1961 to 2018. The differences in their spatiotemporal variations were examined with
an MMK test, an R/S test, and wavelet analysis. The monthly ETp and ETo were close but the ETp

was always larger than the ETo, with values ranging from 1 to 356 mm and 2 to 323 mm, respectively.
Their differences varied in different months and sub-regions. The maximum monthly difference
transferred from south to north and then back to the south in a yearly cycle, showing spatiotemporal
heterogeneity. The annual values of the ETp and ETo were also close, but the ETp was significantly
higher than the ETo. The increasing future trends of ETp but decreasing trends of ETo were tested at
most sites in China. Although the primary periods were almost the same, their spatial distribution
was slightly different. In conclusion, ETp is different from ETo and they should be applied carefully.
This study performs a thorough comparison and reveals the underlying basis of and discrepancy
between ETp and ETo.

Keywords: potential evapotranspiration; reference crop evapotranspiration; R/S analysis; wavelet
analysis; spatiotemporal variability

1. Introduction

Potential evapotranspiration (ETp) and reference crop evapotranspiration (ETo) are
closely connected to actual evapotranspiration (ET) [1,2], leading them to be extensively
used in the fields of hydrology, agronomy, meteorology, and ecology [1–5]. Moreover, an
important practical application of ET in the fields mentioned above is crop evapotran-
spiration (ETc) [6], which is usually calculated by ETp or ETo to evaluate the regional or
global variation in agricultural water quantity [7,8], to assess the impacts or responses to
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climate change [9–11], and to provide useful guidelines for related policy makers. The
accuracy estimation of ETp or ETo is key for achieving these aims. Therefore, the difference
between ETp and ETo needs further analysis. Many recent research involving ETp or ETo
has focused on their variation, regional characteristics [12] or prediction [13], drought or
drying analysis [14], vegetation responses [15], responses to drought [16], the influence
of water resources on agriculture [17], and evapotranspiration rate estimations [18]. The
studied timescales varied from monthly to annual [2,19], and the spatial scales varied
from site [20] to multi-site [19], regional [21], national, and global. Additionally, many
interesting results were obtained, the calculation efficiency was improved, and a software
was created [22].

The development of definitions for ETp and ETo has been a long-term process. Thorn-
thwaite (1948) defined ETp as “the maximal water vapor in an area, including the evapo-
transpiration from crops and the evaporation from water surfaces in order to determine
dry/wet conditions” [23]. Although other definitions have been suggested [24–29], the
definition of ETp has not yet been standardized. Doorenbos and Pruitt (1977) proposed a
clear concept of ETo [30]. The Food and Agriculture Organization (FAO) standardized the
ETo definition as “the ratio of evapotranspiration from a reference crop with an assumed
crop height of 12 cm, a fixed surface resistance at 70 s/m, and albedo of 0.23 which closely
resembles evapotranspiration from an extensive surface of green grass cover without water
stress” [6].

Despite some similarities, there are many differences between ETp and ETo in terms
of their definition, estimation methods, equation types, and application fields. Much of the
previous research has mixed the utilization of these two terms. Instances of this misuse
are as follows. (i) Use of incorrect terminology [31–33]: For example, Sun et al. adopted
the FAO 56 Penman–Monteith equation to estimate ETo, but they named it “potential
evapotranspiration” [34,35]. (ii) The alternative and inconsistent use of the two terms
(Gwate et al., 2018; Lewis and Allen 2017; Zhang 2019) [5,36,37]: When Ding et al. (2020)
adopted the FAO 56 Penman–Monteith equation to estimate ETo in northwest China, they
used both terms—“potential evapotranspiration” and “reference evapotranspiration” [38].
(iii) The application of mixed equations. For example, Oudin et al. (2005) generalized
four different types of ETp, when in fact the FAO-24 and Hargreaves and Samani (1982)
were ETo equations. Burke et al. (2006) adopted an ETo equation to estimate ETp when
conducting a drought analysis [30,39–42].

Except for some common misuses, most researchers have used ETo [6,43–49] or ETp
correctly [50–52]. However, their attributions have rarely been compared. For example,
Katerji and Rana (2011) investigated the differences between ETp and ETo by comparing
resistances (namely, the aerodynamic resistance, crop-structure resistance and crop-stomatal
resistance) [53]. They concluded that ETo and ETp were un-equivalent. Xiang et al. (2020)
reviewed the differences between the two terms and grouped the different types of ETp
and ET0 [54]. This was the first study to clearly differentiate ETp and ETo up until now.

Many researchers consider ETp and ETo to be equivalent. Due to the difficulty in
their direct and accurate measurement, the differences in these closely related terms when
supporting and modelling results are often considered to be errors or uncertainties, even
though these can be reduced through the proper choice of the type of ET. Accuracy estima-
tions of ETp and ETo affect both the water-resource and agricultural sectors and contributes
significantly to the national economy [50]. Although there has been progress in differen-
tiating ETp and ETo, a direct quantitative comparison between them is missing, despite
their contributions to the fields of agriculture, engineering, and the environment. Thus, this
research aims to quantitatively compare ETp and ETo at monthly and annual timescales for
mainland China based on their commonly used and standardized methods. The spatiotem-
poral variability characteristics, including trends, abrupt-change years, the wavelet-based
main- and quasi-periods, and the serial long-term dependence, will be systematically com-
pared. This work will provide important references for researchers in a wide range of fields
who directly or indirectly use potential or reference crop evapotranspiration.
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2. Data Collection and Methodology
2.1. Study Area Description and Data Sources

China is located in eastern Eurasia on the west coast of the Pacific Ocean. It has a large
land mass (9.634057× 106 km2); a long distance between its eastern and western boundaries;
a wide range of altitudes, morphologies, and mountains; and a variety of climates. Weather
data from 839 stations of China were downloaded from the Meteorological Data Sharing
Service Network in China (http://data.cma.cn/, accessed on 6 March 2017). The daily
climatic variables include precipitation, wind speed at 10 m (u10), the maximum (Tmax)
and minimum air temperature (Tmin), relative humidity, and hours of sunshine, from
December 1960 to December 2018. The sites with a data-missing ratio >1% were removed.
Missing data were interpolated with the data of 10 adjacent sites on the same day. The data
were cross-examined using the Kendall autocorrelation and Mann–Whitney homogeneity
tests [55]. The test results indicated that the fluctuation of the weather data was fixed
between critical points at a significance level of 5% [56,57]. Finally, a total of 551 sites
were selected.

The digital elevation and the site distribution in mainland China are presented in
Figure 1. There are seven climate zones, including the northwestern desert region, the
Inner Mongolia grassland region, the Qinghai–Tibetan Plateau, the northeastern humid
and sub-humid region, the northern China humid and semi-humid region, the middle
and southern China humid and sub-tropical region, and the southern China humid and
tropical region, which are named as sub-regions I to VII and which contain 46, 47, 39, 69,
108, 190, and 52 weather stations, respectively. Sub-region III contains fewer stations due
to its relatively rough terrain with high elevation range. The analysis will consider both
mainland China and these divided sub-regions.
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2.2. Methodology
2.2.1. Equations for Estimating ETp and ETo

The Penman (1963) equation was selected as the standaridized ETp method, since this
formula was developed from the Penman (1948) equation and is one of the earliest methods
used to calculate ETp [25]. It is a widely used equation [58–60], written as [25]:

ETp =
∆

∆ + γ
(Rn − G) +

6.43γ

∆ + γ
(1 + 0.0536u2)(es − ea) (1)

where ∆ is the slope of the vapor–pressure curve (kPa ◦C−1); γ is the psychrometric constant
(kPa ◦C−1); u2 and T2 are the wind speed (m s−1) and mean air temperature (◦C) at 2 m;
es and ea are the saturation and actual vapor pressure (kPa), respectively (kPa); Rn is the
net radiation (MJ m−2 day−1); and G is the soil heat flux (MJ m−2 day−1). Values of u2 are
obtained based on u10. G at the M th month is estimated by the soil temperature of M+1 th
and M−1 th month:

GM = 0.07 (TM+1 − TM−1) (2)

http://data.cma.cn/
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The standaridized ETo method of the Penman–Monteith equation is written as [6]:

ETo =
0.408∆(Rn − G) + γu2(es − ea)[900/(T2 + 273)]

∆ + γ(1 + 0.34u2)
(3)

Annual ETo or ETp values are found by summing the monthly values.

2.2.2. Trend and Abrupt-Change Year Analysis

The trends and significance of the annual ETo (or ETp) series at the 551 sites were
tested following the modified nonparametric Mann–Kendall (MMK) method [61]. The
MMK considers the effects of self-correlation in time series x(t) (t = 1, 2, . . . , NT, where NT
is the total year number) based on the Mann–Kendall method [62,63]. To show the influence
of serial self-correlation, the MK statistic is modified to the new MMK statistic (Zm) with a
correction factor ns [64]. If Zm is positive/negative, x(t) has an up/downward trend. When
the lag of self-correlation functions is >0 and |Zm| ≥ 1.96, xi is time-dependent and the
trend is significant at a confidence level α = 0.05. The equations are written as follows:

Z∗ =
Z√
ns

1
, where ns

1 =


1 + 2

n1

n1−1
∑

jj=1
(n1 − 1)rjj f or jj > 1

1 + 2 r
n1+1
1 −n1r2

1+(n1−1)r1

n1(r1−1)2 f or jj > 1
(4)

where rjj is the self-correlation coefficient of the time series at the lag-jj.

2.2.3. The Rescaled (R/S) Analysis

The R/S analysis was proposed based on Hurst (1951) [65,66]. For the time series x (t)
(t = 1, 2, ···58), the mean value and cumulative deviation of the sub-series are calculated as:

y(τ) =
1
τ

τ

∑
t=1

x(τ), τ = 1, 2, · · · (5)

F(t, τ) =
τ

∑
u=1

x(u)−y(τ), 1 ≤ t ≤ τ (6)

The range is calculated as:

R(τ) = max
1≤t≤τ

F(t, τ)− min
1≤t≤τ

F(t, τ), F(t, τ)= 1, 2, · · · (7)

Additionally the standardized deviation is computed as:

S(τ)= [
1
τ

τ

∑
t=1

(x (t)−y(τ))2]
1
2 , τ = 1, 2, · · · (8)

The ratio of the range to standardized deviation is described as:

R(τ)
S(τ)

= (Cτ)H , then log (R/S)n = logc + H log n (9)

where C is a constant. By applying Equation (11), the Hurst index (0 < H < 1) is obtained.
H measures the intensity of long-range dependence in x(t). When H = 0.5, the time series
x(t) has a random process. When 0 < H < 0.5 and 0.5 < H < 1, x(t) has reversibility or
sustainability, respectively.



Water 2022, 14, 988 5 of 15

2.2.4. The Wavelet Analysis

A continuous wavelet transform was performed using the Morlet wavelet basis
(Ψ 0) [67]. The wavelet key function is described as:∫ +∞

−∞
Ψ(t)dt = 0 (10)

where t is the year and Ψ(t) is a wavelet function that can form a cluster of functions on the
timeline (Li et al., 2019):

Ψa,b(t)=|a|−
1
2 Ψ
(

t− b
a

)
, a, b ∈ R, a 6= 0 (11)

where Ψa,b(t) is a sub-wavelet, a is a wavelet-length scale factor, and b is a factor that shows
the translation in time. The multi-Morlet-wavelet was selected as a basic function here.

The primary period has a maximum vibration intensity showing the significance or
insignificance which is read from the bright color-belt of the wavelet map. The quasi-
period has a secondary maximum vibration intensity [68]. The MATLAB 2019b software
(MathWorks, Natick, MA, USA) was used to perform these analyses.

A schematic of general framework adopted in this research is presented in Figure 2.
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3. Results
3.1. The Differences between Monthly ETp and ETo

3.1.1. Temporal Differences

The temporal variations in the monthly ETp and ETo between 1961 and 2018 averaged
from 551 sites across China are presented in Figure 3. The monthly ETp and ETo fluctuated
periodically and their peaks and valleys varied synchronically. The monthly ETp were
larger than the monthly ETo between 1961 and 2018. The monthly ETp and ETo differed
clearly in their values.

To further show the value differences, the scatter plots of ETp and ETo between 1961
and 2018 in the 12 months of the year are shown in Figure 4. The monthly ETp and ETo
ranged from 1 to 356 mm and from 2 to 323 mm, respectively. Most of the data-points were
in the upper-left side of the 1:1 line, and some large values were in the upper-right part
of the 1:1 line. These generally indicated a larger monthly ETp than ETo, especially in the
cold months of November to March. The deviations of the monthly ETp from ETo were
larger and increased with the increase in their values. Furthermore, the slopes of the linear
function ranged between 1.11 and 1.30, indicating deviations of 11–30% from the monthly
ETp to ETo. There were very high R2 values (0.89–0.95) representing a linear correlation
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between ETp and ETo, which confirmed the similarity in their patterns. Although there
were slight differences in the R2 values of the cold months and warm months, this may be
due to the variation in the meteorological data, which were using different weights in the
two ET equations. Across the entire study area in each month, the relationship between the
two was generally close.
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The variations in long-term mean monthly ETp, ETo, and their differences D (=ETp − ET0)
were also compared for the different sub-regions (Figure 5). The monthly ETp, ETo, and
D showed peaks from around May to July. The peak values of ETp and ETo ranged from
144 to 218 mm and 116 to 176 mm for the sub-regions I to VII and for Mainland China,
respectively. The peaks in the sub-regions ranked in the order of I > II > V > Mainland
China > IV > VII > VI > III. The interannual variations in ETp and ETo were larger for the
arid and semi-arid sub-regions (I and II) than the semi-humid and humid sub-regions (III,
VI and VII). The monthly ETp were generally larger than the monthly ETo for the same
month and the same region. The D values varied within the months of the year, reaching
as high as 42 mm in July for the arid and semi-arid sub-region I.
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Figures 3–5 show that the monthly ETp was larger than ETo under most conditions.
Although previous research has investigated the temporal variations in monthly ETp or
ETo, seldom has research directly compared their values with the aim of differentiating the
two variables.

3.1.2. Spatial Differences

The spatial distribution of the long-term mean monthly D (=ETp − ETo) in the
12 months of the year (Figure 6) exhibited variable ranges between ETp and ETo across
China. The results showed that: (1) The monthly D varied with the months. In cold and
cool seasons (October to March), the smallest D values were in northeastern China and the
areas of northwestern China. D values were mostly positive in mainland China, since the
ETp values were generally larger than the ETo. (2) In the warm and hot seasons (April to
September), the smallest D values were observed in southeastern or northeastern China.
These were mostly positive but were occasionally negative, reaching as low as −9 mm
month−1. The D values in sub-regions II (the Inner Mongolia grassland), III (the Qinghai–
Tibetan Plateau), and V (northern China) were large. (3) In sub-region IV (northeastern
China), the D values ranged between 2 and 33 mm month−1 in the year and did not change
as much as other regions. (4) In general, the spatial distributions of the monthly D were
both site- and region-specific.

The detailed differences in the D for the various sub-regions and months are presented
in Table 1.

Table 1. Values of the monthly D in different sub-regions and months. Unit: mm month−1.

Month
Sub-Region

I II III IV V VI VII

January 15 11 9 20 6 16 16
February 15 15 12 20 8 17 16

March 22 26 21 27 17 25 21
April 27 34 28 30 24 30 24
May 31 39 34 32 31 35 27
June 30 40 36 29 31 35 25
July 30 42 35 29 27 30 28

August 29 42 33 28 26 29 28
September 27 38 30 24 26 28 24

October 24 31 24 24 20 26 23
November 18 19 14 22 11 19 19
December 16 12 10 21 7 16 18



Water 2022, 14, 988 8 of 15Water 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 6. The spatial distribution of the long-term mean monthly D in mainland China (the site 
values were interpolated by the Kriging method in ArcGIS 10.3). 

The detailed differences in the D for the various sub-regions and months are pre-
sented in Table 1. 

Table 1. Values of the monthly D in different sub-regions and months. Unit: mm month−1. 

Month 
Sub-Region 

I II III IV V VI VII 
January 15 11 9 20 6 16 16 

February 15 15 12 20 8 17 16 
March 22 26 21 27 17 25 21 
April 27 34 28 30 24 30 24 
May 31 39 34 32 31 35 27 
June 30 40 36 29 31 35 25 
July 30 42 35 29 27 30 28 

August 29 42 33 28 26 29 28 
September 27 38 30 24 26 28 24 

October 24 31 24 24 20 26 23 
November 18 19 14 22 11 19 19 
December 16 12 10 21 7 16 18 

3.2. The Differences between Annual ETp and ETo 

3.2.1. Temporal and Spatial Differences 
The annual variations in the ETp and ETo in different sub-regions of China are pre-

sented in Figure 7. The fluctuating patterns of the ETp and ETo in the same sub-region 
were generally similar. The general sub-region ranks of the annual ETp and ETo values 
were sub-region I > III > II > VII > IV > V > VI > mainland China. The annual D values 
ranged from 256 mm to 315 mm for sub-regions I to VII and mainland China. It was ob-
served that the annual ETp differed with the ETo and the differences varied within the 
different sub-regions. 

Figure 6. The spatial distribution of the long-term mean monthly D in mainland China (the site
values were interpolated by the Kriging method in ArcGIS 10.3).

3.2. The Differences between Annual ETp and ETo

3.2.1. Temporal and Spatial Differences

The annual variations in the ETp and ETo in different sub-regions of China are pre-
sented in Figure 7. The fluctuating patterns of the ETp and ETo in the same sub-region were
generally similar. The general sub-region ranks of the annual ETp and ETo values were
sub-region I > III > II > VII > IV > V > VI > mainland China. The annual D values ranged
from 256 mm to 315 mm for sub-regions I to VII and mainland China. It was observed
that the annual ETp differed with the ETo and the differences varied within the different
sub-regions.
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regional ETp and ETo values were computed using the site-specific weight coefficients obtained from
the Theson-polygon method in ArcGis. (a) ETp and (b) ETo.

The spatial distribution of the long-term mean annual ETp, ETo and D in mainland
China are presented in Figure 8. The spatial distribution pattern of the annual ETp and ETo
were similar; low values appeared in northeastern, central, and southern China, but large
values appeared in northwestern and southern China. The ranges of the annual ETp and
ETo differed from 778 to 1738 mm and from 585 to 1357 mm, respectively. The annual D
values ranged from 36 to 681 mm and the highest values occurred in northwestern China
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and northern China. Therefore, in the areas with high D values, the differences in ETp and
ETo should be considered in case their incorrect utilization should cause deviations.
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3.2.2. The Trends and Long—Term Dependence

To further compare the intrinsic features, the annual ETp and ETo for all the sites were
mapped (Figure 9). Although the trend distribution of the annual ETp and ETo looked
similar—namely, with more increasing trends seen in central, northern, and small areas
of southern China—more sites had decreasing trends in their annual ETo. Their trend
significance was also different.
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The detailed numbers of the sites with different trends and significance are given
in Table 2. In all the seven sub-regions, more sites had increasing trends in annual ETp
than ETo. Thus, due to the differences in spatiotemporal distributions, the ETp and ETo
must be used carefully and correctly in hydrology and meteorology research. Our results
were different from those of Han et al. (2012), who investigated ETp trends between
1956 and 2005 at 244 sites in China and found decreasing ETp trends for 59.7%, 50%, and
64.2% of the total stations in the arid/semi-arid, semi-humid, and humid regions of China,
respectively [51]. This was not surprising, since the studied station numbers and the
studied period of the two were very different.

The spatial distributions of the Hurst index for the annual ETp and ETo were mapped
and are presented in Figure 10. The detailed number of sites that had different ranges of
the Hurst index in each sub-region are given in Table 3. The spatial distribution of the two
terms were generally similar—namely, most sites had Hurst indices larger than 0.5. The
sites that had different ranges of the Hurst index were also very close, but the number of
ETp for H < 0.5 was almost 2.5 times that of ETo at 19 and 8 sites, respectively. This implied
that the future ETp and ETo of most stations will maintain consistent with the previous
trend, while several sites’ ETp and ETo will probably go in the opposite direction. When
the Hurst index was combined with the result of the MMK test, the ETo trend of most sites
showed an insignificant decrease, while a few sites’ ETo trend was reversed to increase
in the future. In that situation, the trend of the ETp can be derived by comparing with
the ETo.
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Table 2. The station numbers of annual ETo and ETp, which had different trends and levels of
significance in different sub-regions.

Term Trend
Sub-Region

Subtotal
I II III IV V VI VII

ETP

Significant increase
Insignificant increase

3 5 2 2 8 25 5 50
23 24 19 36 55 117 29 303

No trend 0 0 0 0 0 4 0 4
Insignificant decrease 20 15 16 28 41 43 18 181
Significant decrease 0 3 2 3 4 1 0 13

ET0

Significant increase 0 1 0 2 5 14 3 25
Insignificant increase 17 16 9 24 34 60 16 176

No trend 0 0 0 0 1 4 0 5
Insignificant decrease 27 27 25 36 60 100 30 305
Significant decrease 2 3 5 7 8 12 3 40
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Table 3. The station numbers of the Hurst coefficient for annual ETo and ETp in different sub-regions.

Sub-Region I II III IV V VI VII Subtotal

ETP
0.5 < H < 1 43 43 38 65 105 186 52 532
0 < H < 0.5 3 4 1 4 3 4 0 19

ET0
0.5 < H < 1 45 47 39 69 106 186 51 543
0 < H < 0.5 1 0 0 0 2 4 1 8

3.2.3. The Wavelet Periods

The variations in the wavelet spectrum and the wavelet variance for the annual ETp
and ETo between 1961 and 2018 in mainland China are presented in Figure 11. The vibration
intensity and fluctuation characteristics of the annual ETp and ETo were very similar. The
primary and secondary periods of the annual ETp and ETo were almost same, being about
10 and 2 years, respectively, though somewhat weak. This was reasonable, since their
annual variation patterns were very similar, although their values were very different (see
Figure 7). Among the different time intervals, there were significant periods of four years
between 1961 and 1970.

The spatial distributions of the primary periods in the annual ETp and ETo for all the
studied sites are mapped and presented in Figure 12. In general, sites with shorter periods
and with longer periods have similar distribution characteristics for both the annual ETp
and ETo. They were mainly distributed in sub-regions V-VII, while a few were distributed
in the other sub-regions.
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4. Discussion

Though differentiating ETp and ETo seems easy, it is in fact very difficult and can
greatly impact their further application. The standard method of the FAO-56 PM equation
for ETo [6] has been universally accepted. However, no standard method for the ETp has
been proposed. This research takes the Penman (1963) equation as the standard method for
ETp, considering it is a combination-type equation and has generally good performance [25].
Moreover, several pieces of research found that the value of ETp was higher than that of
ETo on a daily scale; for example, the root mean square errors between ETp and ETo
were 1.88 mm/d and 0.93 mm/d in the Senegal River Valley and North China Plain,
respectively [69,70]. These research specialized the wind effects and the dynamic process
of vaporization by adding specific numbers to represent the study area. However, this is
still not a universal method. The Thornthwaite (1948) equation is also used to calculate
ETp, requiring only temperature data [23]. However, it tends to underestimate ETp in
humid regions [71,72]. There may be other better ETp equations used in different countries.
Nevertheless, there are apparent differences, especially in the spatiotemporal variations,
between the ETp and ETo, at monthly, annual, and other timescales.

Since the monthly and annual values, ranges, seasonal changes, spatial distributions,
long-term dependent characteristics, periods, trends, and significance of ETp and ETo
differed at most of the sites in the sub-regions and in mainland China, in the future
the unitization of the two terms should be approached more carefully. Not only do the
quantitative characteristics of ETp and ETo differ, but the application scale differs as well.
ETp has been suitably applied to studies with a larger spatial scale, including the rainfall-
runoff modeling of many catchments [39], discharge projections [73], and the attribution of
evapotranspiration changes under non-water-limited conditions [15], as well as drought
severity analysis on a regional, national and global scale [74–76]. Comparatively, ETo is
applied on smaller spatial scales, including site, field, and regional scales [43,44,46,47,49].

In addition, there was variability in the D series on the monthly and yearly timescales,
as clearly shown by Anselin Local Moran’s I index [77] (Table 4, Figures S1 and S2). More
studies are needed for detailed descriptions. It is easy to see that the major Moran’s type of
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D series is not significant, that there is a high proportion of High-High (HH) or Low-Low
(LL) clusters in the rest sites, and that there are only a few sites representing the High-Low
(HL) or Low-High (LH) outlier. The Moran’s type spatial distribution of monthly and
yearly D also depicted a similar annual trend showing that the HH or LL sites’ position
will reverse to each other in a year (Figures S1 and S2).

Table 4. The site numbers of Anselin Local Moran’s I index for D series.

Moran’s I

Timesclae Monthly
YearlyJanuary February March April May June July Auguest September October November December

NS 338 370 342 337 328 285 406 435 407 391 367 341 383
HH 97 78 96 95 88 102 63 48 61 67 76 89 79
HL 0 1 3 4 4 3 3 3 2 3 1 1 3
LH 2 4 7 8 7 6 6 5 6 5 5 3 7
LL 114 98 103 107 124 155 73 60 75 85 102 117 79

Notes: NS: not significant; HH: High-High Cluster; HL: High-Low Outlier; LH: Low-High Outlier;
LL: Low-Low Cluster.

5. Conclusions

The differences between ETp and ETo at monthly and annual timescales in China were
studied between 1961 and 2018. At most sites in most months, the ETp was larger than the
ETo. Except for some similarity in the long-term dependence indicated by the Hurst index
and the spatial distribution of the primary period calculated by wavelet analysis, generally
there were many differences between the ETp and ETo.

At different timescales, ETp and ETo showed some similar situations and some differ-
ent behaviors. Their values were closer in some months than in others because of the lower
influence of the surface resistance of evapotranspiration in the calculation equations. Dif-
ferent spatial distributions in various sub-regions and mainland China were found. These
were related to the variation in weather data under different situations. As for the monthly
ETp and ETo, at most of the sites in every sub-region, the ETp was higher than the ETo. This
result provides supportive guidance for the related policy managers to deal with water risk
management. The maximum difference was observed in May or July, and the minimum
difference was observed in December or January. Different distribution trends of ETp and
ETo were also shown. On the annual scale, the ETp and ETo showed a similar spatial
distribution but different quantities, and there was an obvious difference in the significance,
future trend, and primary periods at all stations. This confirmed the discrepancy of the
spatial–temporal variations between ETp and ETo. Overall, our results strongly indicate
that researchers should use ETp and ETo carefully and be sure to differentiate them.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14060988/s1, Figure S1: The Anselin Local Moran's I index
distribution of monthly D; Figure S2: The Anselin Local Moran's I index distribution of yearly ETp,
ETo and D respectively.
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