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Abstract: Estimating river flood risk helps us to develop strategies for reducing the economic losses 

and making a resilient society. Flood-related economic losses can be categorized as direct asset dam-

age, opportunity losses because of business interruption (BI loss), and high-order propagation ef-

fects on global trade networks. Biases in meteorological data obtained from climate models hinder 

the estimation of BI loss because of inaccurate input data including inundation extent and period. 

In this study, we estimated BI loss and asset damage using a global river and inundation model 

driven by a recently developed bias-corrected meteorological forcing scheme. The results from the 

bias-corrected forcing scheme showed an estimated global BI loss and asset damage of USD 26.9 

and 130.9 billion (2005 purchase power party, PPP) (1960-2013 average), respectively. Although 

some regional differences were detected, the estimated BI loss was similar in magnitude to reported 

historical flood losses. BI loss tended to be greater in river basins with mild slopes such as the Am-

azon, which has a long inundation period. Future flood risk projection using the same framework 

under Representative Concentration Pathway 8.5 (RCP8.5) and Shared Socioeconomic Pathway 3 

(SSP3) scenarios showed increases in BI loss and asset damage per GDP by 0.32% and 1.78% (2061–

2090 average) compared with a past period (1971–2000 average), respectively. 
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1. Introduction 

Floods represent a major natural disaster, and flood risk is expected to increase in 

many regions because of global warming and socioeconomic changes [1–5]. The United 

Nations Office for Disaster Risk Reduction reported that >2 billion people were affected 

by floods between 1998 and 2017, constituting 45% of people affected by meteorological 

disasters such as drought and typhoons [6]. They also reported that total flood-related 

economic impact during that period was US Dollar (USD) 656 billion. Munich-Re, a 

reinsurance company in Germany, reported that economic losses from floods in Europe 

in 2021 reached 54 billion [7]. 

Flood risk is defined as the expected losses due to a particular flood disaster for a 

given area and for a certain period [3]. Flood risk comprises hazard (magnitude and/or 

frequency of flood), exposure affected by flooding, and the system’s vulnerability [8], 

which must be estimated accurately to establish reasonable countermeasures to reduce 

risks, as it is seen that flood control is a major component of adaptation needs [9]. Because 

flood disasters occur worldwide and their impact can propagate to the global economic 

system through supply chain effects, global-scale flood risk assessment has been a focus 
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of recent research. Swiss-Re, a reinsurance company in Switzerland, identified countries 

that may experience large economic impacts from future flood events using gross 

domestic product (GDP) growth and flood risk indices [10]. Mapping flood risk can 

support decision making in land use planning and flood area management [11]. At the 

corporate level, such maps can be applied to create business continuity plans that reduce 

flood risk or minimize flood disaster recovery times [12]. 

Quantification of disaster risks in previous studies can be classified into damage to 

infrastructure or buildings (hereafter “asset damage”) and opportunity loss caused by 

business interruption (hereafter “BI loss”) [13]. Reports of historical floods published by 

the Global Facility for Disaster Risk Reduction(GFDRR) have shown that asset damage 

constitutes a large proportion of total economic losses after natural disasters [14]; 

moreover, BI loss can be as extensive as asset damage in some instances, such as the 2011 

Thailand floods, which caused USD 12 and 13.3 billion (2005 purchase power parity, PPP) 

in asset and BI loss, respectively. Therefore, it is essential to estimate both asset damage 

and BI loss because of flood hazard to improve global-scale flood risk assessments.  

Previous global flood risk assessments have calculated population and GDP 

exposure estimates based on flood return periods. Hirabayashi et al. [1,2] projected that 

greater numbers of people will be affected by floods with return times of >100 years under 

a warmer climate. Ward et al. [15] estimated an annual GDP risk of USD 1383 billion (2005 

PPP) by calculating flood hazard, exposure, and vulnerability on a global scale [16]; they 

overlaid GDP exposure and inundation depth hazard, then calculated the proportion of 

damage using a depth–damage function to represent vulnerability. A more realistic 

estimation of global flood risk was recently proposed, considering the level of flood 

protection required for each region [17]. However, these previous studies solely focused 

on asset damage [15,16,18], and model-based estimation of BI loss due to flood was limited 

to limited regions [19]. 

Previous studies have estimated regional-scale BI loss based mainly on local surveys 

or questionnaires regarding flood damage. For example, BI loss was estimated by Thieken 

et al. [20] for a 2013 flood in Germany and by Yang et al. [21] for the September 2000 Tokai 

heavy rain in Japan. Business interruption data are typically collected through surveys 

that involve companies directly affected by floods; thus, it is difficult to expand the same 

methodology to a global scale. It is also difficult to estimate BI loss using the methods 

typically applied to estimate global asset damage, which focus on the maximum flood 

stage without considering flood duration. To estimate BI loss, a business stagnation period 

should be calculated based on simulated flood duration. Flood risk models could 

potentially simulate reasonable daily inundation depth; however, this process is 

complicated by bias in the meteorological forcing data. Therefore, previous studies have 

estimated global asset damage by directly applying bias correction to the annual 

maximum inundation depth [16]. 

The recent release of the bias-corrected meteorological forcing data product S14FD 

[22] has enabled direct simulation of daily inundation depth. Using these data, Tanoue et 

al. [19] showed that modeled inundation depth and inundation period were reasonably 

correlated with observations for the 2011 Thailand flood; these findings provided 

estimates of asset damage-related direct economic loss that were similar to estimates from 

the World Bank. Tanoue et al. [19] also demonstrated that BI loss for the 2011 Thailand 

flood was greater than direct economic damage caused by the flood, because of the 

shallow slope of the Chao Phraya River. In the present study, we used the approach 

established by Tanoue et al. [19] in terms of the same modeling framework; we expanded 

the approach to include global river basins, thereby estimating flood-related global asset 

damage and BI loss for present and future scenarios to explore potential changes in flood 

risk impact. Please note that in this study we mainly focused on BI loss and compared its 

importance relative to asset damage which have been well studied in previous studies 

[15,16]. We did not estimate high-order propagation effects (Shughrue et al. [23]), since 
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estimating this effect requires us to use Computable General Equilibrium (CGE) and the 

data used for CGE are limited. 

2. Materials and Methods 

2.1. Overview 

In this study, we calculated BI loss and asset damage based on inundation period and 

inundation depth data derived from flood simulations and a gridded GDP dataset. We 

defined BI loss as the loss of opportunity because of interrupted business activity; we de-

fined asset damage as direct economic damage, such as the destruction of physical assets. 

A summary of the BI loss and asset damage estimation process is presented in Figure 1. 

We determined the occurrence of inundation when the magnitude of modeled daily total 

storage exceeded the local flood protection standard for each grid. BI loss and asset dam-

age were estimated at a scale of 30″ × 30″ (ca. 1 km × 1 km at the equator) and aggregated 

to geographical units such as basins, countries, and continents. 

 

Figure 1. Flowchart of the estimation method of BI loss and asset damage. 

In this study, we used bias-corrected meteorological forcing data. The calculation of 

inundation period and BI loss requires daily inundation extent and depth data; these var-

iables were not examined in previous global flood risk studies [1,3,15], which focused on 

extreme values (e.g., values for 100-year floods, as defined by annual maximum discharge 

or flood water volume). In such studies, biases in discharge or flood water volume caused 

by meteorological forcing errors were corrected by applying the rate of change in dis-

charge or flood water volume from reanalysis products. Therefore, we anticipate that the 

application of bias-corrected atmospheric forcing in this study will improve the represen-

tation of river hydrodynamics simulations, including daily inundation depth and extent. 

Tanoue et al. [19] implemented the Catchment-based Macro-scale Floodplain (CaMa-

Flood) [24] model using this bias-corrected weather scheme; they detected similar inter-

annual and annual variations, as well as similar inundation extent and duration, between 

modeled discharge and in situ observations. 

2.2. Model 



Water 2022, 14, 967 4 of 21 
 

 

The methods and models used for flood simulation in this study were described in 

detail by Tanoue et al. [19]. Briefly, we used CaMa-Flood [24] to calculate daily total water 

storage and inundation depth. CaMa-Flood explicitly calculates river discharge, water 

depth, and flood extent at each model time step on a global scale by assuming complex 

floodplain inundation dynamics as the sub-grid physics. CaMa-Flood is implemented by 

external runoff forcing (typically calculated by rainfall–runoff or land surface models). 

The simulation is conducted at a coarse resolution (in this study, 0.25°, ca. 25 km at the 

equator) to achieve efficient global-scale analysis; however, the simulated flood depth can 

be diagnostically downscaled using high-resolution topography data in post-processing 

(in this study, 30″, ca. 1 km).  

Runoff input for CaMa-Flood was calculated using Minimal Advanced Treatments 

of Surface Interaction and RunOff (MATSIRO) [25], which is a land surface component of 

the Japanese climate model MIROC; it calculates water and energy balance on the land 

surface (including runoff from land to river, which is used as input for CaMa-Flood), us-

ing weather forcing as input. Previous studies confirmed that the combination of CaMa-

Flood and MATSIRO runoff data reasonably simulates river discharge and water level 

along major rivers [24]. Results from CaMa-Flood and MATSIRO have been used for 

global flood risk analysis in many studies [1,2,4,18,25–31]. 

2.3. Data 

2.3.1. Atmospheric Data 

In this study, we used a reduced-bias meteorological forcing dataset obtained from 

the S14FD reanalysis dataset (S14FD-Reanalysis) and bias-corrected global climate model 

(GCM) output forcing dataset (S14FD-GCM) [22], which allowed the use of daily model 

output values without bias correction. S14FD-Reanalysis is a forcing dataset that contains 

global data for 1958–2013 with a grid size of 0.5° and three time resolutions (3-hourly, 

daily, and monthly). S14FD-Reanalysis is based on the Japanese 55-year Reanalysis (JRA-

55) product [32], with each variable corrected using observation datasets such as CRU-

TS3.22 [33] and GPCCv7 [34]. For example, precipitation is corrected for monthly varia-

tion using GPCCv7 data and CRU-TS3.22 data; it is re-calculated using corrected variables 

such as temperature and wind speed. 

The S14FD-GCM dataset includes 11 forcing variables from eight GCMs: GFDL-

ESM2M, IPSL-CM5A-LR, MIROC-ESM-CHEM, HadGEM2-ES, NorESM1-M, MIROC5, 

MIROC-ESM, and MRI-CGCM3 [22]. The GCM dataset was constructed from five GCMs: 

GFDL-ESM2M, HadGEM-ES2, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M. 

The S14FD-GCM dataset contains historical (1961–2005) and future (2006–2100) data. 

These datasets represent observed extreme temperature and precipitation data more 

accurately than do other GCM forcing data. According to Tanoue et al. [19], the absolute 

values of annual maximum inundation in these datasets correspond to historical flood 

data. Using the reduced-bias meteorological forcing dataset, we obtained daily water stor-

age data to calculate inundation periods and BI losses. 

2.3.2. Geographical Data 

To determine asset damage in urban areas, we used current land use data from the 

Global Land Cover by National Mapping Organizations (GLCNMO) v2 product [35] to 

calculate the percentage of urban area of each grid. GLCNMO recognizes 20 land use 

categories and has a horizontal resolution of 15″ × 15″. We calculated the percentage of 

urban area at 30″ × 30″ horizontal resolution from GLCNMO. 

We used national mask data derived from the Global Rural-Urban Mapping Project 

v1 (GRUMPv1) [36] to aggregate asset damage or BI loss at the country scale. We applied 

sub-country administrative units used in the flood protection standard dataset FLOPROS 

[17] as a subnational mask. The subnational mask was used to aggregate subnational 

building heights and GDPs as described below. The simulation results were also analyzed 
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on the sub-basin scale; therefore, we created a sub-basin mask by dividing tributaries with 

drainage area > 10,000 km2. 

2.3.3. Socioeconomic Data 

National GDP data were used to estimate gridded GDP values of secondary and ter-

tiary industries and their assets. Although the National Institute for Environmental Stud-

ies publishes global GDP data [37], their horizontal resolution is 0.5° × 0.5°, which is in-

sufficient for flood damage estimation. Previous studies involving flood damage estima-

tion have calculated gridded GDP via multiplication of the GDP per capita of each country 

by the gridded population data [13,34]. However, this approach assumes that GDP per 

capita is homogenous at the country scale; it does not reflect differences between urban 

and rural regions [38]. Therefore, in this study, we assumed that building height within 

each grid was proportional to GDP per capita [39,40]; we derived gridded GDP according 

to the weighted distribution of country GDP with respect to building height data at finer 

resolution, as previous studies showed that building height is proportional to GDP per 

capita in European cities [33,34]. 

Country GDP data were derived from GDP per capita (USD, 2005 PPP) and the total 

population of each country. These datasets were obtained from World Bank Open Data 

(available online: https://data.worldbank.org/ (accessed on 17 January 2022)) for 1960–

2013 (past simulation) and 2014–2100 (future simulation for SSP3). Building height data 

[41] were prepared at 30″ × 30″ resolution using the Advanced Spaceborne Thermal Emis-

sion and Reflection Radiometer global digital elevation model. 

We used data from 11 countries, constituting 319 subnational data in total (Table 1), 

to obtain the relationship between building height and gridded GDP, which we then ap-

plied globally. We searched GDP data including subnational GDP from the government 

or other public institutions of each country and only these countries are available. The 

equation for the relationship between building height and gridded GDP was developed 

as follows. First, we estimated the relationship between the ratio of subnational GDP to 

country GDP (the subnational GDP ratio, s_GDPratio) and the total building height within 

each subnational region to the total building height within the country (subnational build-

ing ratio, s_bldratio) under the assumption that this relationship was linear:  

s_GDPratio = 0.9634 × s_bldratio + 0.0011 (1)

Table 1. Sources of subnational GDP for each country. 

Country Year Data Source Reference 

United 

States 
2017 Bureau of Economic Analysis 

Available online: 

https://apps.bea.gov/itable/iTable.cf

m?ReqID=70&step=1#reqid=70&ste

p=1&isuri=1 (accessed on 17 

January 2022) 

India 2013 
Ministry of Statistics and Programme 

Implementation 

Available online: 

https://www.mospi.gov.in/downloa

d-tables-data (accessed on 17 

January 2022) 

Australia 2016 Australian Bureau of Statistics 

Available online: 

https://ipfs.io/ipfs/QmXoypizjW3W

knFiJnKLwHCnL72vedxjQkDDP1

mXWo6uco/wiki/List_of_Australia

n_states_and_territories_by_gross_s

tate_product.html (accessed on 17 

January 2022) 

Canada 2015 Statistics Canada 
Available online: 

https://www150.statcan.gc.ca/t1/tbl
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1/en/tv.action?pid=3610048701  

(accessed on 17 January 2022) 

Thailand 2010 
National Economics and Social 

Development Board 

Available online: 

https://www.nesdc.go.th/nesdb_en/

main.php?filename=index (accessed 

on 17 January 2022) 

Germany 2015 Federal Statistical Office 

Available online: http://www.de-

info.net/kiso/laenderbip.html  

(accessed on 17 January 2022) 

Brazil 2015 
Brazilian Institute of Geography and 

Statistics 

Available online: 

https://agenciadenoticias.ibge.gov.b

r/agencia-sala-de-imprensa/2013-

agencia-de-noticias/releases/17999-

contas-regionais-2015-queda-no-

pib-atinge-todas-as-unidades-da-

federacao-pela-primeira-vez-na-

serie (accessed on 17 January 2022) 

China 2009 Chinese Statistical yearbook 

Available online: 

http://www.spc.jst.go.jp/statistics/st

ats2010/ (accessed on 17 January 

2022) 

Japan 2014 Cabinet Office, Government of Japan 

Available online: 

http://www.esri.cao.go.jp/jp/sna/dat

a/data_list/kenmin/files/contents/m

ain_h26.html (accessed on 17 

January 2022) 

South Africa 2010 Statistics South Africa 

Available online: 

https://ipfs.io/ipfs/QmXoypizjW3W

knFiJnKLwHCnL72vedxjQkDDP1

mXWo6uco/wiki/List_of_South_Afr

ican_provinces_by_gross_domestic

_product.html (accessed on 17 

January 2022) 

Chile 2017 Central Bank of Chile 

Available online: 

https://si3.bcentral.cl/siete/EN/Siete

/Cuadro/CAP_CCNN/MN_CCNN7

6/CCNN2013_P0_V2 (accsessed on 

17 January 2022) 

Using this relationship, we obtained a maximum correlation coefficient of 0.91 for a 

lower building height limit of 6.0 m. Next, we derived the ratio of gridded GDP to country 

GDP (gridded GDP ratio, g_GDPratio) from the ratio of gridded building height to total 

building height within the country (gridded building height ratio, g_bldratio) and the rela-

tionship between s_GDPratio and s_bldratio. For a building height of 0, we converted g_GDP 

to 0. Finally, we converted g_GDPratio such that the total GDP ratio per country was equal 

to 1. 

g_GDP = g_GDPratio × country GDP 

= (0.9634 × g_bldratio + 0.0011) × country GDP 
(2)

In the absence of a relevant dataset for secondary and tertiary industries, their GDP 

ratios were derived by subtracting the percentage of primary industry GDP, derived from 

2010 World Bank Open Data values, from 1. For countries with missing data, we used the 

global average. 

We assumed that assets would be 2.8 × GDP in urban areas [42] and equal to GDP in 

other areas [16]. The factor 2.8 was derived from the relationship between GDP per capita 
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and capital produced per capita in urban areas. The urban area was calculated using 

GLCNMO, as described in Section 2.3.2. 

2.4. Calculation of Inundation Period and Annual Maximum Inundation Depth 

We calculated inundation period and annual maximum inundation depth at 30″ × 

30″ resolution (ca. 1 km × 1 km at the equator) from calculated daily water storage at 0.25° 

× 0.25° (ca. 25 km × 25 km at the equator) using the FLOPROS dataset [17] and a high-

resolution digital elevation model. The method was described in detail by Tanoue et al. 

[19]. Briefly, to reflect the effects of current flood protection standards, we calculated the 

overflow flood water depth at 0.25° × 0.25° resolution from calculated daily total storage 

and total storage data corresponding to current flood protection standards obtained from 

FLOPROS. Inundation was calculated only when the calculated daily total storage ex-

ceeded the total storage, which is equivalent to the current flood protection standard. To-

tal storage corresponding to the current flood protection standard was calculated using 

the Gumbel distribution with L-moment methods from the annual maximum total storage 

for 1961–2005. The overflow flood water depth was downscaled to a horizontal resolution 

of 30″ × 30″ using a high-resolution digital elevation model. The flooded area fraction was 

calculated at the same resolution. 

2.5. Estimation of BI Loss and Asset Damage 

2.5.1. BI Loss Estimation 

BI loss was categorized into an indirect and consequential effect [43] and defined as 

loss caused by the inability of people to perform work due to workplace destruction or 

inaccessibility [44]. In this study, BI loss was calculated from the inundation period, grid-

ded GDP, and the GDP ratio of secondary and tertiary industries. 

We assumed that no daily production occurred during inundation periods; we de-

fined the BI period as a period of linear recovery after inundation. Thus, BI loss was cal-

culated as the difference in secondary and tertiary industry production between non-flood 

and flood periods, as follows:  

BI loss = �IP +  
BIP

2
� ×

 AP

Nd
 (3)

BIP =  IP × a (4)

where IP is the inundation period, BIP is the BI period, AP is the annual production of 

secondary and tertiary industries, and Nd is the number of days per year. For each coun-

try, the daily production of secondary and tertiary industries was obtained by dividing 

GDP by the number of days in the corresponding year (assuming constant daily produc-

tion), then multiplying the result by the GDP ratio of secondary and tertiary industries for 

each country. 

The BI period was assumed to be proportional to the inundation period (Equation 

(4)). The proportional constant α is difficult to obtain on a global scale because it varies 

regionally [19] and the available examples are limited. There are three available examples 

which estimated this constant in a survey of past flood (Japan, USA, and Thailand). In 

Japan, the BI period is twofold longer than the inundation period according to the results 

of a survey on flood events in Japan [45]. In the USA, a restaurant hit by a typhoon was 

closed for 84 days because of inundation, then returned to its pre-typhoon state 211 days 

after its closure, which is 2.5-fold longer than the inundation period. In Thailand 2011 

floods, BI period is more than 10 times longer than inundation period which is estimated 

based on analysis of interview reports [19]. As mentioned before, this constant differs 

from region to region and the estimation methods. In this study, we determined this con-

stant as two based on the above surveys of past floods. We note that applying the results 

of these three cases globally is a very simplistic assumption, and this is recommended to 

be revised when more data becomes available. 
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2.5.2. Asset Damage Estimation 

In this study, asset damage was defined as the damage caused by the most severe 

flood in each year in order to make a fair comparison to previous studies which typically 

estimated it by annual maximum flood depth [10,14,17]. Asset damage was calculated 

through the multiplication of asset value by the fraction of assets with flood-related dam-

age. Assets were calculated through the multiplication of GDP by the asset coefficient, 

following a common practice in previous studies. In this study, we used the annual max-

imum inundation depth to calculate asset damage for the most severe flood in each year. 

The damage fraction was derived using a damage–depth function proposed by Huizinga 

et al. [46], which incorporates diverse regions and sectors that experience flood damage. 

These regions are classified into the following continents, based on geographical classifi-

cation by the World Bank and Dottori et al. [47]: Europe, North America, Central and 

South America, Asia, Africa, and Oceania. The sectors included residential, commercial, 

industrial, transport, infrastructure, and agriculture sectors. In this study, we averaged 

residential, commercial, and industrial damage for each inundation depth and region. 

2.6. Validation Dataset 

We used the Emergency Events Database (EM-DAT, Available online: 

http://www.emdat.be (accessed on 17 January 2022)) and World Bank data to validate our 

estimation methods. EM-DAT contains occurrence and effects data for >22,000 disasters 

worldwide from 1900 to the present day, based on data from UN agencies, non-govern-

mental organizations, insurance companies, research institutes, and press agencies. 

The World Bank commissioned the Damage, Loss and Needs Assessment guidance 

notes to quantify and understand the social, economic, and financial impacts of disasters 

[48]. The Global Faculty for Disaster Risk Reduction website lists approximately 60 re-

ports; of these, we used reports that described flood events occurring during our calcula-

tion period and applied the same definition of BI loss as the present study. These targeted 

flood events are summarized in Table 2. The targeted industries were secondary and ter-

tiary industries based on the manual for economic evaluation of flood control investments 

[45]. 

Table 2. Overview of targeted flood events. 

Country Year 
Loss  

(USD 2005 PPP) 
Targeted Industry Characteristics 

Namibia 2009 56 million 

Infrastructure, 

Industry, Commerce, 

Tourism 

Floods were caused by heavy 

rainfalls and exacerbated by drainage 

system that were unable to handle 

the volumes of water 

Moldova 2010 5.34 million 

Energy, 

Roads, 

Railways, 

Water 

and Sanitation 

Heavy rainfalls breached dams. The 

overall situation improved slowly 

since repairing dams was delayed 

and outflow from inundation area 

back to river was limited. 

Pakistan 2010 1.21 billion 

Transport and 

Communications, 

Water Supply and 

Sanitation, 

Energy, 

Private Sector and 

Industries, 

Financial Sector 

Heavy rainfalls in monsoon season 

caused landslide and flash flood 

which broke major embankments 

and canals. 

Pakistan 2011 121 million 

Transport and 

Communications, 

Water Supply and 

Heavy rainfalls in monsoon season 

caused flash flood. 
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Sanitation. Energy, 

Private Sector, 

Industries and 

Financial Sector 

Thailand 2011 13.3 billion 

Transport, 

Telecommunication, 

Electricity, 

Water Supply and 

Sanitation, 

Manufacturing, 

Tourism, 

Finance 

and Banking 

Heavy rainfalls overflowed or 

breached 10 major flood control 

systems. 

Malawi 2012 0.60 million 

Transport,  

Water 

and Sanitation 

Heavy rainfall caused flood twice. 

Nigeria 2012 1.65 billion 

Manufacturing, 

Commerce,  

Oil, 

Electricity 

Heavy rainfalls caused river flood 

which breached irrigation reservoirs. 

Losses estimated by EM-DAT or the World Bank are typically expressed in terms of 

nominal GDP, in local currency. We converted these values to USD (2005 PPP) to match 

the currency of estimated BI loss, but this conversion was difficult because of missing data. 

Therefore, we calculated the ratio of estimated loss with respect to the nominal GDP for 

each country (derived from World Bank Open Data) and multiplied the result by GDP 

(2005 PPP). 

2.7. Simulation Conditions 

In this study, we validated the estimation method and analyzed past floods by con-

ducting a reanalysis simulation, then compared past and future flood impacts on the econ-

omy by conducting a GCM simulation. For the reanalysis simulation, we used the S14FD-

Reanalysis forcing dataset and past GDP data for 1960–2013. For the GCM simulation, we 

used a historical S14FD-GCM (1961–2005) dataset and GDP data to estimate past flood 

impacts on the economy; we used a future S14FD-GCM dataset for Representative Con-

centration Pathways 8.5 (RCP8.5) (2006–2098) and GDP data for Shared Socioeconomic 

Pathway 3 (SSP3) to estimate future flood impacts on the economy.  

3. Results 

3.1. Reproducibility of Economic Loss Caused by Past Floods 

We compared simulated asset damage and BI loss to reported values, with the aim 

of confirming that CaMa-Flood was able to reproduce the general trend of global flood 

risk. Globally, annual total BI loss and asset damage averaged from 1960 to 2013 were 

estimated to be USD 26.9 and 130.9 billion (2005 PPP), respectively, in the reanalysis sim-

ulation. To validate the method for estimating BI loss and asset damage with flood pro-

tection, we compared the estimation results with reported values and previous studies, 

respectively. 

We compared our simulated past BI loss to BI loss reported in the World Bank his-

torical flood data described in Section 2.6 (Figure 2). The comparison results include error 

related to BI loss without considering flood protection in some countries. Estimated BI 

losses calculated for Namibia, Moldova, Pakistan (2011), Thailand, and Malawi were sim-

ilar to the World Bank values. In other countries, estimated BI losses including flood pro-

tection were smaller than World Bank values. 
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Figure 2. Comparison of simulated BI loss (red bars) with World Bank values (gray bars). Data are 

shown on a logarithmic scale; error bars indicate uncertainties related to the inclusion of BI loss data 

that do not consider flood protection. 

To validate the methodology of asset damage estimation, we compared calculated 

global asset damage with values obtained from previous studies [3,15]. Ward et al. [15] 

estimated annual global asset damage averaged from 1960 to 1999 at USD 94 billion (2005 

PPP), whereas the annual global asset damage estimated in this study was USD 96 billion 

(2005 PPP) for the same period. Alfieri et al. [3] estimated that the annual global asset 

damage averaged from 1976 to 2005 in targeted river basins with drainage area > 5000 km2 

was USD 65 billion (2005 PPP), whereas the annual global asset damage estimated in this 

study was USD 56.7 billion (2005 PPP) for the same period and conditions. Therefore, we 

conclude that our method of calculating asset damage was sufficiently accurate, at least 

for global long-term averages. 

The spatial distribution of annual BI loss and BI loss per GDP averaged from 1960 to 

2013 according to river basin drainage area (≥10,000 km2) are shown in Figure 3. 

 

(a) 
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(b) 

Figure 3. (a) BI loss. (b) Percentage of BI loss per GDP in river basins with drainage area ≥ 10,000 

km2, averaged from 1960 to 2013. River basins with area < 10,000 km2 are indicated in gray and 

minimal BI loss are indicated in white. 

BI loss exceeded USD 50 million (2005 PPP) in drainage areas of America and Europe, 

as well as the Tigris, Euphrates, Chao Phraya, and Yellow Rivers, where GDP was high 

and slopes were mild (Figure 3a). In America and Europe, high GDP contributed to high 

BI loss. In drainage areas of the Tigris, Euphrates, Chao Phraya, and Yellow Rivers where 

slopes were mild, inundation periods were prolonged, resulting in high BI loss. BI loss 

was USD < 1 million (2005 PPP) in most parts of South America and Africa, where GDP 

was USD < 50 billion (2005 PPP) in most targeted river basins. 

To remove the effects of economic scale, we calculated BI loss as a percentage of GDP 

for each basin (Figure 3b). The Amazon, Congo, Shebelle, Niger, Indus, Diamantina and 

Chao Phraya River basins had values > 0.3% of GDP (i.e., more than double the global 

average of 0.12%). These areas had long inundation periods because of their shallow 

slopes. For example, the Niger inland delta is completely inundated for long periods in 

the rainy season [49]. In contrast, America and Europe had greater absolute BI loss than 

other regions (Figure 3a), but they showed a relative BI loss of <0.1% of GDP, which was 

smaller than the global average. The economic impact of floods in these regions was 

smaller because of their high GDP; thus, the ratio of BI loss to GDP was smaller than in 

countries with lower GDP. 

3.2. Assessment of Climate Change Impact on Flood-Related Economic Loss 

We projected future BI loss and asset damage using bias-corrected S14FD-GCM forc-

ing data, S14FD-Reanalysis data, and output from CaMa-Flood driven by S14FD-GCM. 

We used average values produced by five GCMs to compensate for uncertainties in each 

GCM. 

We compared changes in the percentage of BI loss to GDP over time with changes in 

asset damage relative to GDP according to S14FD-Reanalysis and S14FD-GCM data (Fig-

ure 4). 
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Figure 4. Changed in flood-related global annual BI loss (red line) and asset damage (blue line) from 

1961 to 2098. Shaded areas indicate the range of maximum and minimum values of S14FD-GCM 

simulation results. Gray line indicates S14FD-Reanalysis product values. 

First, to validate the results from GCM simulation, we compared the calculation re-

sult of BI loss and asset damage from historical GCM simulation (available for 1961–2005) 

against data from the reanalysis simulation. We assumed that the reanalysis simulation 

was expected to have smaller uncertainty because its forcing data was constrained by past 

meteorological observations, while GCM simulations were based on model experiments. 

Global total annual BI loss from reanalysis simulation averaged through 1961 to 2005 was 

USD 23.1 billion (2005 PPP), whereas average total annual BI loss from the GCM simula-

tion was USD 25.8 billion (2005 PPP). The maximum variation of each GCM from the av-

erage value was 33.0%. In contrast, global total annual asset damage and asset damage 

per GDP from S14FD-Reanalysis was USD 109.7 billion (2005 PPP), whereas the average 

global total annual asset damage and asset damage per GDP from the GCM simulation 

was USD 142.5 billion (2005 PPP). The maximum variation of each GCM from the average 

value was 43.2%. The results from reanalysis simulation and GCM simulation of BI loss 

and asset damage were similar between simulations. Therefore, we concluded that aver-

aged BI loss and asset damage from the GCM simulation were sufficiently accurate for 

estimating future BI loss and asset damage. 

Next, we estimated future BI loss and asset damage for the future (near-term 2021–

2050 and long-term 2061–2090) and compared them with the estimates for the past period 

(1971–2000). The results are summarized in Table 3. Among all GCMs, the maximum de-

viations from the average BI loss and asset damage were 137.9% and 101.2%, respectively. 

Global annual BI loss and asset damage were projected to increase by 34.6- and 34.7-fold, 

respectively, from 1971–2000 to 2061–2090. Global annual BI loss and asset damage per 

GDP during 2061–2090 are projected to be 4.2- and 4.2-fold greater, respectively, than 

those values during 1971–2000, indicating that increases in BI loss and asset damage are 

anticipated because of climate change.  
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Table 3. GCM simulation results. 

 
Annual Average (Billion USD 

(2005 PPP)) 
Annual Average per GDP 

 1971–2000 2021–2050 2061–2090 1971–2000 2021–2050 2061–2090 

BI loss 27.2 435.5 940.4 0.10% 0.29% 0.42% 

Asset damage 150.0 2586.1 5201.3 0.55% 1.74% 2.33% 

Comparisons of the spatial distributions of past (1971–2000) and future (2061–2090) 

BI loss and percentage of BI loss relative to GDP are shown in Figure 5. The target river 

basins were basins with area ≥ 10,000 km2. The average Bl loss and percentage of BI loss 

relative to GDP in the targeted river basins were USD 951.7 million (2005 PPP) and 0.81%, 

respectively. Future BI loss was projected to exceed USD 5 billion (2005 PPP) in most parts 

of China, Thailand, and the Nile River, representing an increase of USD > 1 billion (2005 

PPP) relative to past values. In most parts of America and Australia, BI loss was projected 

to increase by USD <100 million (2005 PPP), despite their economic growth. The percent-

age of BI loss relative to GDP was projected to exceed 1.5% in the part of Nile and Niger 

Rivers and some river basins in Sub-Sahara, Indonesia, and Thailand. The percentage of 

BI loss relative to GDP is expected to increase by >1.0% in drainage areas of the Nile and 

Niger Rivers; it is expected to decrease in most regions of South America, the Middle East, 

and Australia. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5. (a) Future BI loss (2061–2090). (b) Difference in BI loss between the future and past (1971–

2000) study intervals. (c) Future percentage of BI loss relative to GDP. (d) Difference in the percent-

age of BI loss relative to GDP between future and past study intervals. Gray area indicates basins 

with area < 10,000 km2. White area indicates basins with minimal BI loss or percentage of BI loss 

relative to GDP. 

4. Discussion 

4.1. Reanalysis Estimation vs. World Bank Estimation 

As shown in Figure 2, BI losses estimated in this study were smaller than BI loss 

reported by the World Bank for historical floods in various countries. In Pakistan, land-

slides were triggered by heavy rain and floods in 2010, causing severe damage to infra-

structure. In the present study, we defined BI loss as loss related to business interruption 

caused only by floods, which resulted in underestimation. In 2012, severe floods in Nige-

ria drastically reduced productivity in commercial and industrial properties located near 

the Niger River, resulting in BI loss comparable to asset damage. Reduced productivity at 

these companies influenced productivity in other areas. In particular, the oil sector expe-

rienced greater flood impacts because of losses in associated sectors such as infrastructure. 

We did not include such indirect losses in our BI loss estimates, unlike Carrera et al. [50]; 

therefore, our BI loss estimates were smaller than the estimates from the World Bank. 

4.2. Comparsion of Estimated BI Loss Against Estimated Asset Damage 

Previous asset damage-focused studies underestimated the economic impacts of 

floods, particularly in regions where the percentage of BI loss relative to asset damage was 

high. We compared the relative impacts of BI loss and asset damage on regional econo-

mies using reanalysis simulation results. Globally, the ratio of BI loss to asset damage av-

eraged from 1960 to 2013 was 20.6%. This value was highest in African regions (22.1%) 

and Europe (26.9%), while it was lowest in South America (6.1%). The ratio of BI loss to 

asset damage for river basins with area ≥10,000 km2 is shown in Figure 6. The ratio of BI 
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loss to asset damage exceeded 100% in some areas, indicating that its influence on eco-

nomic damage cannot be ignored in flood risk estimation for these areas. 

 

Figure 6. The percentage of BI loss to asset damage. 

4.3. The Impact of Flood Protection on BI Loss Estimation 

As shown in Figure 2, flood protection had a great effect on estimated BI loss. For 

example, in Malawi in 2012, the BI loss estimates with and without flood protection were 

USD 0.35 and 138 million (2005 PPP), respectively. To explore the effects of flood protec-

tion on estimated BI loss at the regional scale, we compared our reanalysis simulation 

results obtained with and without flood protection. 

The global annual total BI loss and asset damage averaged from 1960 to 2013 without 

flood protection were USD 1864 and 3771 billion (2005 PPP), respectively. Flood protec-

tion led to BI loss and asset damage reductions of 98.6% and 96.5%, respectively. The ratios 

of BI loss to asset damage with and without flood protection, stratified according to con-

tinent, are shown in Figure 7. BI loss and asset damage were derived from annual average 

reanalysis simulation values. On all continents, the ratio of BI loss to asset damage de-

creased by an average of 30% with and without flood protection; Australia and North 

America were consistent with the global average, whereas South America showed a 20% 

decrease. These results suggest that flood protection has a greater effect in reducing BI 

loss than in reducing asset damage. 
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Figure 7. Ratio of BI loss to asset damage for each continent, with and without flood protection. 

Data are derived from annual averaged reanalysis simulation values. 

To test this hypothesis, we targeted four river basins whose ratios of BI loss to asset 

damage were similar without flood protection (ca. 130%) but different with flood protec-

tion. Figure 8 shows the relationship between the ratio of BI loss to asset damage and the 

number of floods in targeted river basins (Yangtze, St. Lawrence, Senegal, and Niger). We 

defined the number of floods as the number of years in which the calculated annual max-

imum inundation depth exceeded the flood protection of the region at least once. The 

number of floods and the ratio of BI loss to asset damage were slightly lower in river 

basins with low flood protection level (FPL). For example, in Niger (FPL, 2 years), the 

number of floods slightly decreased from 54 to 40 with flood protection, while the ratio of 

BI loss to asset damage remained nearly constant, shifting from 143.2% to 121.8%. 

In Senegal (FPL, 6 years), the reduction in the number of floods with flood protection 

was the same as the reduction in Niger, but the ratio of BI loss to asset damage decreased 

from 120.6% to 36.1%. In Senegal, FPL was sufficiently high to delay the day at which 

inundation depth exceeded FPL, although it did not prevent inundation, resulting in a 

decrease only in the ratio of BI loss to asset damage. Both the number of floods and the 

ratio of BI loss to asset damage decreased in basins with high FPL. In the Yangtze basin 

(FPL, 20 years), the number of floods significantly decreased from 54 to 4, while the ratio 

of BI loss to asset damage decreased from 131.3% to 33.0%. These results demonstrate that 

flood protection has a greater effect on BI loss than on asset damage; moreover, flood pro-

tection is important in the estimation of BI loss. 
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Figure 8. Relationship between the ratio of BI loss to asset damage and the number of floods exceed-

ing flood protection in targeted river basins. Filled and empty circles indicate results with and with-

out flood protection. Circle size is proportional to the sum of annual average asset damage and BI 

loss for each river basin. 

4.4. Comparison of Future Estimated BI Loss and Asset Damage 

The ratio of BI loss to asset damage tends to be greater in river basins with low FPL. 

However, our simulations showed that future ratios of BI loss to asset damage will be 

high even in large river basins with high FPL (Figure 9). Future BI loss to asset damage 

ratios exceeded 15% in most parts of Africa, where FPL is generally low. The BI loss to 

asset damage ratio is also expected to increase in most parts of China, India, and central 

Africa, as well as regions of Europe and America with high FPL. For example, the Missis-

sippi River basin has an FPL of >50 years, but the BI loss to asset damage ratio is projected 

to increase by approximately 17.3% relative to past values. In contrast, the BI loss to asset 

damage ratio is projected to decrease in most parts of South America and Australia. 
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(a) 

 

(b) 

Figure 9. (a) BI loss to asset damage ratio averaged from 2061 to 2090 and (b) the difference in this 

ratio between past (1971–2000) and future study intervals for river basins with area ≥ 10,000 km2. 

Gray areas indicate basins with area < 10,000 km2. 

The BI loss to asset damage ratio is projected to increase in river basins with high FPL 

presumably because of the increase in the number of floods with large return periods. As 

the flood return period increases, asset damage reaches a peak because the damage ratio 

reaches 1.0 at a specific inundation depth; in contrast, BI loss continues to increase during 

long inundation periods, resulting in an increase in the BI loss to asset damage ratio. 

5. Conclusions 

In this study, we developed a method to estimate flooding-related BI loss on a global 

scale. Estimated historical flood losses including BI loss showed magnitudes similar to 

losses reported by the World Bank. The estimated global BI loss and asset damage for the 

past study interval (1960–2013) were USD 26.9 and 130.9 billion (2005 PPP) per year, re-

spectively. 

BI loss tended to be greater in river basins with mild slopes such as the Amazon, 

which has long inundation periods. Future flood risk projection using the same frame-

work under RCP8.5 and SSP3 scenarios showed increases in BI loss and asset damage per 

GDP by 0.32% and 1.78% (2061–2090 average), compared with values from the past inter-

val (1971–2000 average), respectively. BI loss is projected to exceed 1.5% of the local GDP 

in some river basins with very flat terrains (such as the Nile, some river basins in Indone-

sia, and the Chao Phraya River basins), where floods will increase because of climate 

change. 

In our historical simulation, the ratio of BI loss to asset damage was greater in river 

basins with FPL, which exhibited longer inundation periods and greater frequency of 

flood events than did regions with high FPL. This ratio is projected to increase even in 

river basins with high FPL, if flood magnitudes increase to the extent of basins such as the 

Mississippi River basin. Our results demonstrated that BI loss is not negligible in the esti-

mation of global flood risk; notably, the projected risk changes with local FPL and flood 

magnitude. 

The estimation values in this study might remain the scope of first order estimation 

due to the uncertainties of model, dataset, and methods. To conduct more realistic esti-

mation of economic losses due to flood hazard, further improvements are needed espe-

cially on the estimation method of business interruption period and spatial distribution 

of assets. As mentioned before, we estimated these two parameters with data from limited 
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cases in limited areas, and it is necessary to consider methods that can be applied more 

appropriately on a global scale. Although these limitations exist, we believe this study is 

useful since it provided the first estimate of BI loss due to flood on a global scale including 

its future change and discussed the relative importance of BI loss compared to the direct 

asset damage. 
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