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Abstract: Sinks configure the surface networks for overland flow processes representations during
1D hydrodynamic modelling. The excessive number of sinks detected from high-resolution DEMs
can boost 1D computational costs significantly. To pursue optimal sink numbers and their optimal
spatial distribution, a Volume Ratio Sink Screening (VRSS) method was developed to screen for
computationally important sinks, while compensating for volume losses from removed (unimportant)
sinks, such that 1D hydrodynamic modelling yields faster computing times without significant loss of
accuracy. In comparison with an existing geometry-based sink screening method, we validated this
method by conducting sensitivity analyses for the proposed screening criteria in three Danish case
areas of distinct topographies. Two iterative procedures were programmed to assess and compare
their sink screening performances in terms of sink number reductions and volume loss reductions,
and a volume loss solver was developed to quantify catchment-wide volume losses in the 1D surface
network. Compared to a geometry-based sink screening method, the VRSS method performs more
robustly and produces more efficient reductions in the number of sinks, as well as efficient reductions
in volume losses.

Keywords: sink screening methods; 1D surface network simplification; volume ratio sink screening
method; 1D hydrodynamic modelling; urban flood modelling

1. Introduction

Climate change and increased urbanization have made urban floods a frequent envi-
ronmental threat, causing human, societal and financial losses [1]. To support the planning
and design of mitigation measures, a range of urban flood inundation models have been
documented in the current scientific literature.

Two-dimensional (2D) hydrodynamic models discretize the rainfall-runoff process
across 2D rectangular grids, where volume interactions are considered as fluxes between
cells determined from 2D Shallow Water Equations (SWEs). These models intrinsically
integrate a large magnitude of spatially varying parametrization (i.e., precipitations, topog-
raphy and surface roughness) with a single-cell response function in a fully distributed
manner, and therefore yield high spatial precision [2–9]. However, such accuracy comes at
a prohibitive computational cost of solving the full 2D SWEs. To reduce computing time,
a range of 2D speed-up approaches including the coarse-grid approach [10–13] along with
sub-grid treatments [14–17] and porosity treatments [18,19], simplified 2D hydrodynamic
model [20–22], Cellular Automata (CA) approach [23–25] and the sub-model approach [26]
have been developed. Aside from the above-mentioned, parallelization technologies based
on multicore Central Processing Units (i.e., OpenMP and MPI libraries) [27–29], Graph-
ics Processing Units [30–32] and cloud computing [33] also demonstrate a considerable
performance improvement for 2D models. In addition, attempts have been made to ex-
plore the static model approach [34–38] and the machine learning approach [39–52]. Yet,
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as they either partially or fully neglect the physical process, these two approaches are both
challenged by providing the detailed flow dynamics (e.g., flow velocity). Especially for
the latter, the challenges inherent in black box models, concerning their data-consuming
nature, inductive biases from training data, explainability, learning transferability across
multiple cases, still require further research effort for in-depth investigation.

Nowadays, the applications towards high-resolution simulations [53], large-scale
simulations [54], real-time simulations [3,55], continuous simulations, flood control opti-
misation and uncertainty analysis [56] make substantial demands on the computational
efficiency of the urban flood models. As opposed to computationally prohibitive 2D sur-
face flood models, 1D surface flood models are also advocated as fast and cost-efficient
alternatives due to their spatial representation approximation when using a 1D surface
network [3–5,57–62]. In these models, a 1D surface network is used to spatially discretize
the rainfall-runoff processes into topographically distinguishable units (referred to as
“subcatchments”), and the hydrological responses of each subcatchment is modelled as
homogeneous units using conceptual models (e.g., linear/nonlinear models). From the
subcatchments’ exit points, the generated hydrographs are linked to a 1D hydraulic wave
routing the flows into delineated preferential flow paths (i.e., stream links). In this way, 1D
surface models represent the flow dynamics of the entire catchment, ultimately obtaining
flow predictions within 1D surface networks.

To configure a 1D surface network, a definitive point that distinguishes two processes,
i.e., subcatchment delineations (discretisation) and stream link delineations, is required.
Following different approaches in defining this point, two network extraction technologies
have been categorized [63]: (i) cell-based surface network extractions; (ii) feature-based
surface network extractions. From defining a specific cell (pixel) value as the definitive
point on a flow accumulation raster, the cells with values greater than this threshold value
configure the networks [64–68]. Whereas this accumulation threshold value is adequate to
denote the “start” of concentrated flow in river networks, the definitive threshold of the
channel flow concentration may not suit urban flood modelling since the primary mod-
elling focus has shifted from conveyance flooding (aiming at describing the vulnerability
along stream links) to ponding flooding (aiming at describing the vulnerable sink areas).
Therefore, taking the topographic features of sinks as the indicator, the authors of [62]
introduced the sinks’ pour points as the points denoting the runoff transition process from
sheet-flows into channel-flows, and thus a 1D surface network was identified exclusively
for urban flood modelling. As such, sinks are considered as the critical topographic features
that configure the 1D surface network in urban flood modelling. The number of sinks
detected from high-resolution DEMs are enormous [69–71], and if all were included, then
the complexity of the 1D surface network configured may boost the computing expenses
substantially while yielding minor modelling accuracy improvement. To simplify the 1D
surface network, in the way of reducing the computational cost, a sink screening method
leaving out sinks based on a combination of two geometry-based criteria (sinks’ maximum
depths and volumes) was proposed [62,69,72]. The geometry-based sink screening method
considers two geometric features of detected sinks: maximum depth and volume. If the
maximum depth and volume of a sink are both smaller than the set threshold values, it
is considered to be an artefact sink, thus being filtered out from further computations.
This method leads to over 90% reduction in the number of sinks. Nevertheless, issues of
(i)–(iv) persist:

(i) The criteria reflecting the “small/big” conception concerning the sinks’ geometry
may ignore the sinks’ primary subcatchment behaviour (“strong/poor”) of retaining
runoffs in relation to flood inundations, and therefore may lead to the removal of
strong runoff retention sinks, while saving poor ones, and vice versa;

(ii) Due to the accumulated effect of the converging networks, negligible small volume
losses from excluded sinks may upscale to substantial amounts, leading to massive
overestimated flood volumes concentrated at a specific spot;
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(iii) The method tends to be case-dependent and thus challenged by identifying an
optimal combination of these two criteria, i.e., a balanced result that achieves the
maximal number of removed sinks and the minimal volume losses, simultaneously,
across various landscapes;

(iv) Treating the sink screening process homogeneously, the use of uniform criteria may
overlook the spatial variability in case of large-scale areas (e.g., basins), where the
intensified heterogeneity may affect the final screening results significantly.

To address these issues, we propose a Volume Ratio Sink Screening method (VRSS)
using two criteria: (i) Hydrologic Retention Volume Ratio (HRVratio) and (ii) Volume Loss
Ratio (VLratio). Furthermore, we compare the VRSS method to the geometry-based sink
screening method. This was achieved by sensitivity analyses of different criteria for the
screening processes in terms of sink reductions and volume loss reductions. With the aim
of testing the general applicability and the robustness, the two methods were tested and
compared in three Danish basins (Greve, Copenhagen City Center and Amagerbro) of
distinct topographies.

2. Methodology
2.1. The Volume Ratio Sink Screening Method

The VRSS method conducts the sink screening process from following the three steps,
I–III, see Figure 1. According to [71], the general sinks detected from DEMs are classified
into two categories: actual sinks and artefacts. To preserve the actual sinks only, the first
screening criterion, i.e., the vertical accuracy of the DEMs referring to the Root Mean
Square Error (RMSE), was applied. This value is computed by considering the average
of the squared differences between the elevation value of the DEMs and the one of co-
located points determined from the ground survey. Here, the sinks shallower than the
vertical accuracy are considered as artefacts, thus, they are removed in Step I. Nevertheless,
the number of remaining actual sinks may still be substantial. From a perspective of the
hydrological performance for each sink in urban flood modelling, i.e., runoff retentions and
runoff interceptions, two volume-ratio-based screening criteria, i.e., HRVratio and VLratio,
are proposed and used for the further screening in Steps II and III.

In order to identify the computational importance of each sink in relation to the specific
urban flood inundation simulation, the sinks’ runoff retention performance (poor/strong)
relative to the specific rainfall amounts is evaluated based on HRVratio computed as a
volume ratio between the sink’s capacity (Csink) and the received total runoff volumes
(Vruno f f ). Thus, if we consider the spillover as a transition moment (ti) indicating when
a sink uses up all its retention capacity and generates runoff only—performing like sub-
catchments, then these “unimportant” sinks that cause quicker spillover during a rain
event should be modelled as part of the subcatchments for runoff generation rather than
retention storage units. To substitute those subcatchments from screened “unimportant”
sinks, “important” sinks should initiate another round of catchment delineation resulting
in “dissolved subcatchments”, i.e., an updated subcatchment delineation (discretisation)
(Figure 1b):

HRVratio =
Csink

Vruno f f
× 100% =

S1

(S1 + S2)
(1)

Csink = R2
cell ×

m

∑
i=1

Di (2)

Vruno f f = R2
cell ×

n

∑
i=1

Ai (3)

where Rcell is the resolution of the employed DEMs; Di is the sink depth value represented
in Celli, and Ai is the total rainfall depth value contained by Celli in distributed rainfall
raster datasets; m is the total number of cells for each sink and n is the total number of cells
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in each sink’s subcatchment; S1 and S2 are the accumulated rainfalls in the hyetograph, see
Figure 1c, and ti indicates the time when the unimportant sink starts spilling. Therefore,
the sinks with poor runoff retention are filled up quickly before ti, and their dynamic filling
process is considered insignificant. Thus, such representations are disregarded.

Figure 1. (a) The workflow behind the VRSS method, where light grey boxes represent input data;
Step I represents the removal of artefact sinks; Step II represents a computationally significant sink
selection; Step III represents the control of volume losses. (b) The sink screening process: before
and after, where pour points denote a transition point indicating runoff converted from sheet flow
(orange) to channel flow (blue lines). (c) Rainfall hyetograph, where the poor runoff retention sinks
tend to be filled up rapidly before the time of ti, and a smaller HRVratio indicates a smaller proportion
of S1 with earlier ti in relation to the temporal variation of a rainfall event. Notes: increasing blue
colouring for sinks symbolizes larger volumes.

By exclusively involving the computationally important sinks, the 1D surface network
can be simplified substantially due to the reduced sink numbers. However, as reported
by [60], the removed computationally unimportant sinks may illustrate a runoff intercep-
tion effect that attenuates the flow propagation. Thus, neglecting the volume may result
in higher surface flow peaks (i.e., flood depths and flood volumes), faster flow velocity,
as well as shorter peak time in the subsequent 1D hydraulic computations. Furthermore,
although such volume losses may be insignificant for the 1D surface network at the small
catchment scale, the convergence of streams may trigger the accumulation and the con-
centration of the erroneous volumes, thus causing significant overestimations in some
specific downstream areas. Therefore, in order to limit such impacts of volume losses in
the 1D surface network, VLratio compares the aggregated volume losses (VLaggr) to the
downstream important sink’s retention capacities (Csink).

VLratio =
VLaggr

Csink
× 100% (4)

VLaggr =
n

∑
i=1

Vi (5)

where Vi is the volume loss from the computationally unimportant sinki (i.e., light blue
sinks, Figure 1b) that were removed in Step II, and n is the number of computationally
unimportant sinks located within the subcatchment’s updated sub-catchments (i.e., dark
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orange subcatchment) from the computationally significant sink (i.e., the dark blue sinks,
Figure 1b). Thus, VLratio assesses the computational significance of volumes for the VLaggr
concerning the runoff interception effect. If such an aggregated volume loss is relatively
high compared to the important sinks included, then it cannot be ignored but it can be
added to the downstream important sinks’ capacities. Otherwise, insignificant volumes
can be removed.

2.2. Sink Screening Experiment Design

In general, the VRSS method first removes artefact sinks using the vertical accuracy
criterion, then determines sink reduction (i.e., the computationally important sinks) using
the HRVratio and further deals with the volume losses of the removed computationally
unimportant sinks based on the VLratio. In contrast, the geometry-based sink screening
method determines the sink reductions using the criteria of the maximum depth and
the volume concurrently, while the volume losses are controlled by the volume criterion.
As such, sink reductions and volume losses are identified as the two common outcomes
for both sink screening methods. From following those two aspects, we conducted the
sensitivity analysis for their proposed criteria and compared their discrepancies.

For sink reduction tests (Section 2.2.1), as the topological complexity of the 1D surface
network is based on the number of sinks as well as their spatial configuration, the sink
reductions unfolded thus: (i) the total number of sink reductions (Section 2.2.1-(i)) and (ii)
the spatially varying reduction of sinks (Section 2.2.1-(ii)), where their individual effects
were investigated individually.

For volume loss tests (Section 2.2.2), in order to address the influence of volume
losses, a volume loss spreading solver that quantifies the volume losses in the 1D surface
network was developed (Section 2.2.2-(i)), and the reduction of the volume losses is further
investigated (Section 2.2.2-(ii)).

2.2.1. Sink Reduction Tests

(i) The total number of sink reductions.
To quantify the reduction effect of the two approaches in the total number of sinks,
an iteration procedure was programmed to obtain the sensitivity analysis results (the
detailed workflow is illustrated in Figure A1a, Appendix A). By adopting stepwise
incremental threshold values, this procedure was executed using different criteria
(i.e., maximum depth, volume and HRVratio) within their predefined iteration ranges.
For the geometry-based approach, a concatenation of the maximum depth and vol-
ume based on the logic operator “AND” is used. In order to clarify their individual
reduction effect, each criterion was investigated in an independent iteration. Next,
their combined effect was analysed and discussed to address their mutual interfer-
ence. The detailed parameter settings for the sensitivity analysis are elaborated in
Appendix B. To compare the results derived from different criteria, the obtained
results were interpreted and analysed by: (i) the curves for the sink reduction reflect-
ing the total number of the reduced sinks in relation to the change of the threshold
values, and (ii) boxplots illustrating the distribution of the results. Here, the reduction
rate (reduction rate = reduced number o f sinks/origin number o f sinks × 100%) was
taken as the indicator. Six accumulated rainfalls of 30 mm, 50 mm, 70 mm, 90 mm,
110 mm and 130 mm covering rainfall return periods of 10–100 years were used to
explore the HRVratio’s responses to various rainfall variations.

(ii) Spatially varying reduction of sinks.
The use of HRVratio enables adaptive reductions over the variation of rainfalls. To in-
voke a spatially varying reduction based on rainfall heterogeneity, a rainfall recorded
from a radar source (also referred to as “radar rainfall”) was used to compute each
sink’s HRVratio, and the matching HRVratio-derived curves were produced from the
same iteration procedures (Figure A1a, Appendix A). For comparison, other HRVratio-
derived curves, disregarding the rainfall heterogeneity, were generated by assuming
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statistic values (i.e., maximum, mean and minimum) of associated radar rainfall cells
as accumulated rainfalls. In addition, threshold values of 5%, 15% and 25% were
selected as representatives of HRVratio, and the spatial variations of the removed
sinks were summarized cell-wise (1000 m resolution) based on the radar rainfall grids
of each of the three cases. Finally, the sink reduction rate was used as the indicator to
maintain the comparison consistency for all three case areas.

2.2.2. Volume Loss Reduction Tests

(i) Quantification of volume losses (the volume loss spreading solver).
In order to evaluate the volume loss accumulations over the convergence of stream
branches, a volume loss spreading solver was developed to quantify the volume
discrepancies in the 1D surface network. As suggested by Figure A1c in Appendix A,
the general workflow illustrates two successive computations: (i) flood volume com-
putations (i.e., blue zones, Figure A3c) and (ii) volume loss computations (i.e., red
zones, Figure A3c). In order to quantify the flood volumes for each sink (i.e., Vspilled),
a link-based fast-inundation spreading algorithm, as reported by [26], was used to
enable a filling-and-spilling routine that distributes flood volumes to all sinks rapidly
from following the sequence of the Shreve stream order [73]. Furthermore, the re-
moved sinks contain volumes for storing of water, so an exclusion hereof may result
in identical volumetric overestimations at downstream via the spillover (Figure A3a).
Therefore, we modelled the overestimated volumes as the oil liquids following a
spilling-and-remaining routine. Detailed computational equations, processes and the
computation example are provided in Appendix C.

(ii) The reduction of volume losses.
In order to quantify impacts of the volume losses, which in turn proves the sensitivity
of VLratio, the redistributed volume losses were computed by using the volume loss
spreading solver and an iterative procedure was programmed to conduct sensitivity
analysis using different VLratio threshold values (see Figure A1b). Thus, the stepwise
reductions in volume losses were investigated from the curves for the volume loss
reduction, and were further discussed from the perspectives of (i) the source volume
losses, (ii) the spilled volume losses and (iii) the remaining volume losses, where the

RMSE =
√

1
n ∑n

i=1 VL2
i is taken as the indicator, and n is the total number of streams

(polylines) or sink polygons. The detailed parameter settings for the sensitivity
analysis are elaborated in Appendix B. To retrieve the consistent source volume
losses for each case, the screening results based on HRVRadar

ratio of 15% were used.
The spatially varying reductions in volume losses were investigated from maps,
and VLratio values of 50%, 20% and 5% were considered as representative threshold
values. Once again, identical grid meshes (Section 2.2.1-(ii)) were used to sum up the
VLsource for each cell, while networks (polylines) and sink polygons were applied to
explore the redistributed volume losses in VLspilled and VLremaining.

3. Case Studies

Three Danish case areas (Greve, a town in Greater Copenhagen; City Center of Copen-
hagen; Amagerbro, a city district in Copenhagen) were selected to validate the robustness
and general applicability of the two sink screening methods in landscapes with different
topographies. All three areas suffered from urban floods during the extreme rainfall event
on 2 July 2011. Both the City Center of Copenhagen and Amagerbro are heavily urbanized,
while Greve is a suburb of Copenhagen, characterized by a combination of urban and rural
areas. As shown in Figure 2, case boundaries were delineated by the Basin tool and sink
detections were determined by the Fill tool in ArcGIS Desktop 10.6 [74]. A high-resolution
1.6 m digital hydrologically conditioned elevation model, DHyM [75], was used as input
in the analyses. However, in order to avoid underestimations in sink volumes and in the
number of sinks, a method was used where building elevations were extracted from the
commensurate digital surface model (DSM) substituting the DHyM’s ground elevations to
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ensure precise representations of building topographies [69]. A summary of topographic
characteristics and sink statistics for the three case areas is presented in Table 1. The radar
rainfall (see Figure 2) recorded from the extreme event on 2 July 2011 was selected for the
analyses. A summary of the radar rainfalls’ cell values (mm) for the three cases is presented
in Table 1.

Table 1. Topographic overviews, sink statistics and radar rainfall statistics for the three case areas on
2 July 2011.

Greve Copenhagen City
Center Amagerbro

Topographic
overviews

Elevation
(m)

Min. −1.29 −0.89 −5.16

Max. 80.62 98.55 87.8

Mean 22.37 12.87 4.26

St. dev. 15.08 7.91 4.99

Slope
(%)

Mean 9 30 17

St. dev. 19 49 36

Sink
statistics

Total number 30,556 13,899 7356

Max. depth
(m)

Min. 0.05 0.05 0.05

Max. 20.6 22.27 26.3

Mean 0.18 0.28 0.22

St. dev. 0.48 1.26 0.95

Volume
(m3)

Min. 0.13 0.13 0.13

Max. 5,027,476 602,870 564,441

Mean 485 210 278

St. dev. 33,930 6200 9976

Sum. 14,819,660 2,918,790 2,044,968

Radar
rainfall

statistics

Rain
amounts

(mm)

Min. 23.6 77.4 88.09

Max. 109.19 147.5 133

Mean 58.97 104.68 111.46

St. dev. 26.82 12.2 14.69
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Figure 2. Locations and radar rainfall datasets for the three case areas: Greve, Copenhagen City
Center and Amagerbro. Each radar rainfall cell represents the accumulated rainfall for an area of
1000 m × 1000 m. Base map shown in this paper is from source: Esri, DigitalGlobe, GeoEye, Earthstar
Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo,
and the GIS User Community.
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4. Results
4.1. Total Number of Sink Reductions

The curves in Figure 3 compare the screening process using maximum depth, volume
and HRVratio for the three case areas, and the boxplots represent the associated distributions.
All HRVratio curves show up to 99% reduction ratio in the total number of sinks. In response
to the variation of accumulated rainfalls (30–130 mm), the buffers enveloped by the curves
for HRV30mm

ratio and HRV130mm
ratio cover all possible changes in the screening results. Notably,

with increased accumulated rainfalls, a sharper rise of the reduction ratio was found with
a more significant gradient indicating accelerated reductions in the total sink numbers,
e.g., HRV30mm

ratio of 40% reduction rate vs. HRV130mm
ratio of 90% reduction rate, when HRVratio

is 10% for Greve. In accordance with this, the decreased variance of distributions was
identified as the squeezed boxes for HRVratio, suggesting more densified distributions of
screening results. In addition, increased median values (red horizontal lines in Figure 3b)
were identified, corresponding to an upward shift of the overall distributions for the
reduction rate of sinks. In other words, a larger accumulated rainfall value triggers a
more concentrated distribution of screening results towards the high reduction rate range,
e.g., for HRV130mm

ratio , the reduction rates are mostly squeezed into a range of 90–98%, thereby
avoiding a screening effort (iteration times) for insignificant reductions in case of extreme
rainfalls. Here, HRVratio demonstrated the adaptive reduction implying an efficient sink
reduction in the total number of sinks. The curves based on the maximum depth present
over 98% reduction ratio in the total number of sinks for the three cases. A sink reduction
of >65% was obtained when the first threshold value of 0.1 m maximum depth was used.
Although this significant reduction was yielded quickly, over half of it occurred merely
using the first threshold value, which seems excessive. Likewise, the next reduction rate
spiked 80% when using the second threshold value (maximum depth of 0.15 m), and more
than 90% of the sinks were filtered away using the third threshold value (maximum depth
of 0.2 m). Overall, for high reduction rates of >60% and substantial differences of reduction
rates of >20 percentage points in all three cases, the curves based on the maximum depth
illustrate a coarse (imprecise) screening process, as well as reflecting an oversensitive
screening response, which is considered problematic, particularly when sink reductions
of <65% are intended. In contrast, the curves based on the volume show more densified
screening results due to the small increment value of 0.128 m3, constituting intuitively fine
(detailed) curves. Here, a greater number of screening results (5–8 points, each represents
one iteration) were seen before the number of sinks was halved, while minor differences of
<20 percentage points were found between screening results. However, a ceiling effect was
spotted for the three case areas’ screenings, in which their maximum reduction rates were
limited <85%. Due to considerable variation in sinks’ volume values, e.g., the standard
deviation of volumes = 33.9 m3 for Greve (Table 1), the use of iteration ranges 0–10 m3 is
insufficient and covers only 85% of the total sinks. Whereas extending the iteration range
may cover the remaining 15% of the sinks, the subsequent iteration works (iteration times)
are tedious particularly when the incremental value of 0.128 m3 is used to include several
order of magnitudes higher volumes, e.g., 5,027,476 m3 for Greve.
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Figure 3. (a) Curves for sink reduction rate. The upper two x-axes represent the maximum depth and
the volume; the lower x-axis stands for HRVratio. (b) Boxplots for the distribution of sink reduction
rate. A and B belong to the geometry-based screening, with maximum depth and volume threshold
values shown as grey boxes. H3–H13 belong to the HRVratio computed based on six accumulated
rainfalls of 30–130 mm with threshold values shown as orange boxes. The upper and lower ends of
the bars represent maximum and minimum value of sink reduction rate; the upper and lower ends of
the boxes represent third quartile (0.25) and first quartile (0.75); the red lines represent the median
value. Note: A = maximum depth; B = volume; HR = HVRRadar

ratio ; H3 = HVR30mm
ratio ; H5 = HVR50mm

ratio ;
H7 = HVR70mm

ratio ; H9 = HVR90mm
ratio ; H11 = HVR110mm

ratio ; H13 = HVR130mm
ratio .

4.2. Spatially Varying Sink Reductions

Figure 4 compares the HRVratio-derived curves (red) corresponding to radar rainfalls
to the HRVratio-derived curves (dark blue, sky blue and green) corresponding to three
accumulated (uniform) rainfalls, referring to the maximum, mean and minimum values
of radar rainfall pixels in Table 1. Furthermore, the maps in Figure 4 depict detailed
spatially varying reductions when using HRVratio = 5%, 15% and 25%. Enveloped by
curves based on maximum and minimum values, the light blue zones indicate possible
deviations of the reduction rates in relation to the impact of rainfall heterogeneity for the
three case areas. Compared with Copenhagen City Center and Amagerbro, Greve obtained
the most significant deviations of the total number of sink reductions. This is ascribed
to the different significances of rainfall heterogeneity reflected by the three cases’ radar
rainfalls, i.e., standard deviation of 26.8 mm for Greve vs. standard deviation of 12.2 mm
and 14.7 mm for the other two case areas. As a result of the adaptive screening described in
Section 4.1, the associated maps disclosed spatially varying reductions being scaled with
accumulative rainfalls, as expressed by corresponding radar rainfall cells (Figure 2).
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Figure 4. Spatially varying reductions of HRVratio computed based on the radar rainfalls of the three
case areas. The curves present the deviation of the screening processes due to the impact of rainfall
heterogeneity. The maps demonstrate how the reductions vary spatially for the three HRVratio of 5%,
15% and 25%.

4.3. Distribution and Redistribution of Volume Losses

Based on the sink removal at HRVratio = 15% (Figure 4), Figure 5a shows the dis-
tribution of volume losses, as illustrated by VLsource in radar rainfall cells (A), and the
redistributed volume losses as illustrated by VLspilled in networks and VLremaining in sink
polygons (B). In accordance with the map of Figure 4 at HRVratio = 15%, the pattern sim-
ilar to the rainfall spatial variation was observed for cells of VLsource, e.g., Greve. As the
cell-based summarised volume losses rely on the number of removed sinks and their
associated volumes, the distribution of VLsource, most likely, replicates the distribution of
removed sinks. In the generated networks, the progressively darkened colours reflect the
rise of VLspilled in relation to streams converging, and the highest VLspilled mounted at the
termination point of networks, which suggests significant overestimations, i.e., 60,000 m3

for Greve, 20,000 m3 and 3000 m3 for the other two cases. In the generated sink poly-
gons, VLremaining of 1200–1500 m3 were spotted in the westernmost upstream regions of
Greve. With the small accumulated rainfall of 23.6 mm, the generated runoff volumes
were insufficient to top the local VLsource over the spilling level. Thus, these VLsource were
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retained locally and converted into equivalent VLremaining. Likewise, Copenhagen City Cen-
ter and Amagerbro obtained VLremaining of 1000–3000 m3 and 1000–2000 m3 in upstream
regions. However, due to the progressively increased rainfalls for the central and down-
stream regions of Greve, most VLsource were carried away along with massive spillovers,
and, therefore, marginal VLremaining were found in those areas. In contrast, for the other
two cases, the immense capacity of downstream sinks took in the substantial VLspilled from
upstream spillovers, and thus higher VLremaining (i.e., 6000–10,000 m3 for Copenhagen City
Center and 5000–6000 m3 for Amagerbro) were identified for these areas.

Figure 5. (a) Distribution and redistribution of volume losses for three case areas. A: Distribution
of source volume losses. B: Re-distribution of volume losses illustrated as networks (VLspilled) and
sinks (VLremaining). (b) Variation in volume losses of three selected sinks when using different VLratio

threshold values, demonstrated for the three case areas. Above: Location of selected sinks. Below:
Curves of volume losses. The associated table represents flow conditions for the three selected sinks
(P10837: Greve; P3313: Copenhagen City Center; P345: Amagerbro) and their redistributed volume
losses when no VLratio is used.
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4.4. The Reduction of Volume Losses

The curves in Figure 6 show the reduction processes of RMSE for three cases over the
decrease of VLratio from 50% to 0%. Particularly, when VLratio = 0% was used, all RMSE
were eliminated due to the 100% inclusion (compensation) of volume losses in subsequent
computations. Further, the maps depict detailed distributions and redistribution of volume
losses at VLratio = 50%, VLratio = 25% and VLratio = 5%. In agreement with the curves,
the diluted map colour of cells pointed to reductions of VLsource from the comparison of
VLratio = 50% and VLratio = 5%. Notably, a marginal VLsource < 500 m3 was identified for
Copenhagen City Center with VLratio = 5%. As a consequence of the reduced VLsource,
the reduced networks and reduced number of sink polygons illustrate considerable reduc-
tions in terms of VLspilled and VLremaining. Interestingly, as opposed to the RMSE of VLsource,
higher sensitive changes were observed for VLspilled and VLremaining, e.g., RMSE of 5–10 m3

in VLsource vs. the RMSE of 600–1400 m3 in VLspilled, Greve. This suggests that the RMSE for
VLsource may be too insensitive to indicate volume losses in 1D surface networks properly.
Furthermore, given that the three cases were hit by extreme rainfalls, VLspilled performed
relatively more responsive reductions in RMSE compared to VLremaining in response to the
decrease of VLratio.

Figure 6. RMSE curves of volume losses and maps, where the general reduction in volume losses
was demonstrated, and detailed spatial variations were presented from the perspective of spilled
volume losses, remaining volume losses and source volume losses.
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5. Discussion

The presented VRSS method can reduce sink numbers effectively whilst compensating
for the volume loss accuracy. In contrast with the geometry-based sink screening method,
its advantages, shortcomings and associated potentials are compared and discussed fol-
lowing from three aspects: (i) sink reductions (Section 5.1), (ii) volume loss reductions
(Section 5.2) and (iii) computational efficiency and accuracy in 1D urban surface flood
modelling (Section 5.3).

5.1. Sink Reductions

In general, according to the results from Section 4.1, the two sink screening methods
perform valid sink reductions with at least 80% maximum reduction rate in the total
number of sinks. However, due to the limitation of the DEM’s vertical accuracy for sink
maximum depths and the considerable dispersion for the distribution of sink volumes,
the individual performance of the two criteria for the geometry-based sink screening
method may illustrate either oversensitive screening responses or ceiling effects during the
general sink screening process. At this point, HRVratio is unitless and thus its incremental
value is not limited by the DEM’s accuracy, which is a considerable advantage in case
that a finer (more detailed) screening process is required. As for the geometry-based sink
screening method, a logic operator “AND” concatenating the two criteria is used, thus
enabling a combined reduction, where the final screening output is dominated by the
criterion performing more significant reductions. Yet, sensitive to the distinct topographies,
the combinations of the sink reductions based on the two criteria may differ from one
case to another. As shown in Figure 5b, Greve and Amagerbro illustrate a situation where
volume-derived results (distributions) were completely overruled by maximum-depth-
derived results, i.e., the range of a volume-derived reduction rate 60–86% smaller than the
one of maximum-depth-derived reduction rate 87–97%, which means, for this case, that the
volume criterion did not perform sink reductions, but exclusively limited volume losses.
In contrast, for Copenhagen City Center, an overlapping of 79–90% from the two ranges was
identified. Here, when the combined threshold values were selected for this overlapped
part, the mutual interference of the two criteria towards the final combined reduction is
ambiguous. Due to such uncertainties, we conclude that the geometry-based sink screening
method is case-dependent. Therefore, for the various landscapes applied, due attention
should be paid to the selection of the two threshold values, as well as their combinations.
In contrast, from the comparison of the three cases, HRVratio suggested stable outcomes
regarding sink screening processes and screening result distributions, which proves the
robustness and the general applicability of the proposed criterion (addressing issue (iii)).
This is ascribed to the use of the accumulated rainfall in HRVratio, which undermines the
dependency on topographies when using criteria exclusively based on the sinks’ geometries.
As opposed to the sink’s geometric properties (big/small), HRVratio measures a sink’s
catchment behaviour (runoff retention performance, poor/strong) relative to distributed
accumulated rainfalls. Here, by taking such a relative reference, HRVratio demonstrates an
adaptive reduction in relation to rainfall scales, and thus is considered a more reasonable
criterion than the geometry-based criteria in the context of 1D urban surface flood modelling
(addressing issue (i)). Consequently, the use of radar rainfall enables a spatially varying
sink reduction considering the spatial variation of rainfalls, and the curve deviations
(Figure 6) for the three cases illustrate a significant impact of rainfall heterogeneity on the
total number of sink reductions. Moreover, as noted in [69], as the sink is defined as the
start point for flow paths, the number of the flow paths is highly dependent on the number
of sinks. Thus, based on the spatially varying sink configurations in Figure 6, we infer that
networks can be generated, illustrating spatially varying topological complexity in relation
to the rainfall heterogeneity. In addition, due to the varying topographies in large-scale
areas, optimal geometry-based criteria may differ from one region to another, thereby being
challenged by covering such spatial complications with uniform threshold values. At this
point, the spatially varying sink reduction of HRVratio appears advantageous as opposed to
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the homogenous sink reduction, particularly in cases of large-scale study areas (addressing
issue (iv)).

5.2. Volume Loss Reductions

The results of Section 4.3 suggest considerable volumetric diversions in terms of
VLremaining and VLspilled for the three cases. Therefore, we conclude that it is essential to
establish a control mechanism to confine the accumulation (i.e., VLspilled) and the concen-
tration (i.e., VLremaining) of volume losses (issue (ii)). With the use of VLratio, the RMSE of
VLremaining and VLspilled suggest significant reductions in the curves of Figure 6. Neverthe-
less, the RMSE of VLsource is insensitive as opposed to the RMSE of VLremaining and VLspilled.
Here, we consider that VLsource is a less adequate indicator of volume loss in the large-scale
cases. Overall, the redistributed volume losses inside the three sinks demonstrate a signif-
icant case-dependency that relies on the computed flows, and therefore, their responses
in relation to the variation of VLratio differ from one case to another. Therefore, to reduce
volume losses to a desired level, modellers are recommended to quantify the volume losses
(VLremaining/VLspilled) in the specific area of interest or to simply compensate for all the
volume losses using VLratio = 0%. In contrast, although the geometry-based sink screening
method controls the volume losses at a negligible level by using the volume criterion to
limit the amount of VLsource, two potential issues should be addressed with care. Firstly,
the significance of the VLsource should be validated using VLremaining and VLspilled in case
that the VLsource accumulates and is concentrated in some specific sinks up to a significant
level. Secondly, the use of a volume criterion that controls volume losses may interfere with
the number of sink reductions and in turn affect the final volume losses obtained, where
such a loop effect is considered inappropriate. As with the lack of independence for the two
screening processes, this may also bring up confusion regarding “to which extent which
criterion works in which aspect”. As a consequence, unless the two screening processes
perform independently in some specific cases, i.e., Greve and Amagerbro, it is difficult
for modellers to identify a balanced result between sink reductions and volume losses by
using only one screening process integrated from two criteria. At this point, the VRSS
method uses two successive steps corresponding to two separate criteria that identify sink
reductions and volume loss controls independently, which is considered a more accurate
procedure (addressing issue (iii)).

5.3. Computational Efficiency and Accuracy in 1D Urban Surface Flood Modelling

As reported in [60], the simplified 1D surface networks yield extensive time reductions
in subsequent 1D hydraulic computations. With the sink reductions triggered by HRVratio,
it is anticipated that the VRSS method simplifies the complexity of 1D surface networks,
thus reducing the computational costs significantly. Meanwhile, using adaptive boundaries
distinguishing sheet-flows from channel-flows based on distributed rainfalls, such enhance-
ments of the 1D surface network might be beneficial to the corresponding 1D hydraulic
representations. Further, the VRSS method uses VLratio to differentiate the significance
of the volume losses, and then determine either the compensation or the elimination of
such volumes. As suggested by the results of Section 4.3 and (ii), we conclude that the
volume losses in a 1D surface network can be reduced within a marginal level, and thus,
the accuracy of the corresponding 1D urban flood modelling can be ensured properly with
respect to surface flow peaks (i.e., flood depths and flood volumes), flow velocity, as well
as peak time.

In addition to the sink reductions, an alternative solution to simplifying the networks
(i.e., surface networks or sewer networks) are skeletonisation technologies, i.e., data scrub-
bing, branch pruning, trimming, and merging methods [76–78]. However, as noted in [79],
such a simplification approach might be inadequate when dealing with a 1D surface net-
work, and thus modellers are recommended to deploy the simplifications strategies onto
the two networks (i.e., surface networks or sewer networks) separately, thus obtaining the
most efficient element (i.e., sinks or manholes) reductions. Therefore, we believe that the
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VRSS method is a feasible alternative to simplifying the 1D surface network. To extend its
application to 1D–1D networks, we recommend using it as a post-processing step for the
surface network simplification after enabling skeletonisation technologies for the sewer net-
work simplification. In contrast to the geometry-based sink screening method, an additional
variable of the total rainfall is required by the VRSS method. This may limit its application
scope in case that the total rainfall is unknown, i.e., real-time flood forecasting. Here, we
think a potential solution would be applying the numeric weather prediction to estimate the
total rainfall ahead, but, for this case, the introduced input uncertainty of the total rainfall
should be addressed with care. Furthermore, as for long-time continuous flood modelling,
a threshold value that defines the dry and wet periods in historic rainfall data is required,
in order to retrieve the total rainfall for each single event. However, long-term time-series
rainfall data (e.g., 20-year continuous rainfall) could involve thousands of events, and it
may sound like an excessive workloads to generate a case-dependent network for every
rainfall event. In this case, modellers may consider selecting more representative rainfalls
by conducting rainfall statistics so that a balanced trade-off between the computational
efficiency, workloads and enhanced accuracy is achieved.

6. Conclusions

This paper presents a VRSS method which yields effective sink reductions, whilst
compensating for volume losses in the 1D surface network hydraulic computations. This
method is validated and compared to the existing geometry-based sink screening method
based on three case areas of distinct topographies. Two iterative procedures were pro-
grammed to conduct sensitivity analyses of the criteria proposed concerning screening
effects in terms of sink reductions and the reduction of volume losses. Further, a volume
loss spreading solver was developed to quantify the impact of volume losses in the 1D
surface networks. Six accumulated rainfalls were used to analyse the screening response of
HRVratio, and radar rainfalls of the three cases were applied to investigate the significance of
the rainfall heterogeneity in the sink screening. The main findings are outlined as follows:

• Considering accumulated rainfalls as the relative reference, HRVratio performs an
adaptive reduction in the total number of sinks, which indicates efficient reductions
for extreme rainfalls. Based on the comparison of the three distinct cases, the sink
screening performance of HRVratio is stable, thus proving the general applicability
and robustness of this proposed criterion. Furthermore, the inclusion of a radar
rainfall for the computation of HRVratio triggers spatially varying sink reductions.
Based on the curve deviation deviations for the three cases, the significance of the
rainfall heterogeneity affects the final sink screening result significantly. We therefore
recommend the implementation of this method, especially for large-scale studies, in
case that the significance of heterogeneity may intensify with the upscaled study area;

• In contrast, the geometry-based sink screening method is less adequate in sink reduc-
tions from four aspects: (i) the sink screening process based on the maximum depth is
coarse, which reflects an oversensitive response in the total number of sink reductions
(i.e., over 60% reduction rates and above 20 percentage points for stepwise changes
of reduction rates); (ii) the screening process based on the volume indicates a ceiling
effect, which results in incomplete screening results (i.e., covers 85% of sinks only);
(iii) the combined reductions triggered by the concatenation of the two criteria are
sensitive to distinct topographies, which may hinder its general applicability when
dealing with various landscapes; iv) in the context of urban inundation simulations,
sinks’ catchment behaviours (runoff retention performance, strong/poor) are a more
suitable criterion than the sinks’ geometries (big/small);

• The volume loss spreading solver reveals a great degree of accumulation and con-
centration in volume losses over the converging network. The reduction process
based on VLratio illustrates efficient reductions in volume losses with respect to the
RMSE, as well as the specific sinks. However, the redistributed volume losses depend
significantly on the computed flows for the individual case; thus, the corresponding
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controlling process based on VLratio may vary from one case to another. Here, we
recommend that the modeller consider the computed flows of focused sinks, as well
as the tolerance level in relation to the specific modelling objective to determine an
optimal VLratio. In contrast with the geometry-based sink screening method, the VRSS
method shows a significant advantage by conducting sink reductions and the volume
loss reduction separately from the two independent criteria.
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Appendix A

Figure A1. (a) Iteration procedures for the total number of sink reductions when using different
screening criteria: (i) maximum depth, (ii) volume and (iii) HRVratio. (b) Iteration procedures of the
volume loss reductions when using VLratio. (c) The volume loss spreading solver’s workflow, where
light grey boxes represent inputs and outputs of procedures; dark grey boxes stand for the major
steps and bold fonts represent variables. Equations (A1)–(A6) are provided in Appendix C.
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Appendix B

It was found that the iteration ranges and increment values are sensitive to results
obtained from the iteration procedures. In order to obtain representative results, iteration
ranges (i.e., maximum depth [0, 1] m, volume [0, 10] m3 and HRVratio [0, 70]) were de-
termined based on boxplots (boxplots are illustrated by Figure A2, Appendix B), which
illustrate the distributions of these sink values. In addition, the principle of “as small as
permitted” was applied in selections of increment values. Thus, an increment value of 0.05
m for the maximum depth was used corresponding to the DEM’s vertical accuracy, and an
increment value of 0.128 m3 for volume was used corresponding to the volume accuracy
computed as the vertical accuracy multiplied by the resolution squared (i.e., 0.05 × 1.62
= 0.128 m3). Considering that the HRVratio is unitless, and thus not limited by the DEM’s
accuracy, an increment value of 0.5% was used for HRVratio to merely ensure a discernible
resolution of the generated curves.

In accordance with the reason stated above, the iteration range of VLratio was deter-
mined as [0, 50]% based on the distribution of VLratio in boxplots (see Figure A2b), and the
increment value of 0.5 was selected to ensure a discernible resolution for the curves.

Figure A2. (a) Boxplots of maximum depth, volume and HVRratio, where iteration ranges were
determined for three case areas. (b) Boxplots of VLratio and VLAggr (VLsource) when HVRratio of 15%
was used, where iteration ranges of VLratio were determined for three case areas. Note: A = maximum
depth; B = volume; HR = HVRRadar

ratio ; H3 = HVR30mm
ratio ; H5 = HVR50mm

ratio ; H7 = HVR70mm
ratio ; H9 =

HVR90mm
ratio ; H11 = HVR110mm

ratio ; H13 = HVR130mm
ratio .

Appendix C

Here, we model such overestimated volumes (VL) as the oils in the computed vol-
umes (V), which means that its propagation follows two principles: First, overestimated
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volumes (VL) are inherent in the computed flood volumes (V) and thus their volumes are
not beyond the capacity available from the computed flood volumes (V); Second, overesti-
mated volumes (VL) float above the actual flood volumes, thus spilling ahead. Therefore,
by governing the mass conservation of volume losses, the redistribution of the volume
losses follows a spilling-and-remaining routine based on two flow conditions (i.e., spil-over
and non-spillover).

Figure A3. (a) The generation of source volume losses due to removed sinks (A) and the redistribution
of volume losses (B). (b) Network geometry features, where Points A–I illustrate sinks, and blue
points represent the sinks that contain VLremaining. Edges S1–S8 stand for stream links and red edges
represent the stream links that contain VLspilled. (c) Attribute table containing the computational
information corresponding to the geometry features, where blue zones represent link-based fast-
inundation spreading computations, and red zones represent volume losses spreading computations.

For Flow condition I:
if Vreceived + Vruno f f > Csink, then Vspilled = Vruno f f + Vreceived − Csink,
and if VLreceived + VLsource ≤ Vspilled, then all volume losses pass through:

VLspilled = VLreceived + VLsource (A1)

VLremaining = 0 (A2)

Else, if VLreceived + VLsource > Vspilled, then volume losses partly pass through:

VLspilled = Vspilled (A3)

VLremaining = VLsource + VLreceived − Vspilled (A4)

For Flow condition II:
Else, if Vreceived + Vruno f f ≤ Csink, then Vspilled = 0 and no volume losses pass through:
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Vspilled = 0 (A5)

VLremaining = VLsource + VLreceived (A6)

In addition, two variables, Vreceived and VLspilled, are updated for each iteration and
are calculated as follows:

VLreceived =
n

∑
i=1

Vi
spilled (A7)

VLspilled =
n

∑
i=1

VLi
spilled (A8)

where Vruno f f stands for runoff volumes generated from each subcatchment and is calcu-
lated as Equation (3); Vspilled represents the spilled volumes; Csink is the sink’s capacity;
Vreceived is the received volume converged from the Vspilled of upstream sink i and n is
the total number of upstream sinks; VLsource represents source volume losses within each
subcatchment and is calculated as Equation (5); VLspilled is the spilled volume losses;
VLremaining is the remaining volume losses; VLreceived is the received volume losses summed
from the VLspilled of upstream sink i and n is the total number of upstream sinks. The rele-
vant computation example is provided in Appendix D.

Appendix D

A computation example for the volume loss spreading computation in Figure A3:
Stream order I: S1, S2, S4, S5.

For S1, Vruno f f = 20 m3, Vreceived = 0 m3 and Csink = 5 m3.

(i) For flood volume computations (blue zones):
Vspilled = Vruno f f + Vreceived − Csink = 20 + 0 − 5 = 15 m3;

(ii) For volume loss computations (red zones):
VLsource = 1 m3 and VLreceived = 0 m3;
Here, VLreceived + VLsource ≤ Vspilled;
VLspilled = VLreceived + VLsource = 1 m3;
VLremaining = 0 m3.

For S2, Vruno f f = 30 m3, and Vreceived = 0 m3, Csink = 30 m3.

(i) For flood volume computations (blue zones):
Vreceived + Vruno f f = 30 m3 ≤ Csink = 30 m3;
Vspilled = 0 m3;

(ii) For volume loss computations (red zones):
VLsource = 5 m3 and VLreceived = 0 m3;
Here, Vspilled = 0 m3;
VLspilled = 0 m3;
VLremaining = VLsource + VLreceived = 5 m3.

For S4, Vruno f f = 100 m3, Vreceived = 0 m3 and Csink = 90 m3.

(i) For flood volume computations (blue zones):
Vspilled = Vruno f f + Vreceived − Csink = 100 + 0 − 90 = 10 m3;

(ii) For volume loss computations (red zones):
VLsource = 30 m3 and VLreceived = 0 m3;
Here, VLreceived + VLsource > Vspilled;



Water 2022, 14, 963 22 of 25

VLspilled = Vspilled = 10 m3;
VLremaining = VLsource + VLreceived − Vspilled = 20 m3.

For S5, Vruno f f = 120 m3, Vreceived = 0 m3 and Csink = 100 m3.

(i) For flood volume computations (blue zones):
Vspilled = Vruno f f + Vreceived − Csink = 120 + 0 − 100 = 20 m3;

(ii) For volume loss computations (red zones):
VLsource = 27 m3 and VLreceived = 0 m3;
Here, VLreceived + VLsource > Vspilled;
VLspilled = Vspilled = 20 m3;
VLremaining = VLsource + VLreceived − Vspilled = 7 m3.

Stream order II: S3, S7.
For S3, Vruno f f = 50 m3, and Vreceived = VS1

spilled + VS2
spilled = 15 + 0 = 15 m3, Csink = 40 m3.

(i) For flood volume computations (blue zones):
Vspilled = Vruno f f + Vreceived − Csink = 50 + 15 − 40 = 25 m3;

(ii) For volume loss computations (red zones):
VLsource = 15 m3 and VLreceived = VLS1

spilled + VLS2
spilled = 1 + 0 = 1 m3;

Here, VLreceived + VLsource ≤ Vspilled;
VLspilled = VLreceived + VLsource = 16 m3;
VLremaining = 0 m3.

For S7, Vruno f f = 400 m3, and Vreceived = VS5
spilled = 20 m3, Csink = 2000 m3.

(i) For flood volume computations (blue zones):
Vreceived + Vruno f f = 420 m3 ≤ Csink = 2000 m3;

(ii) For volume loss computations (red zones):
VLsource = 500 m3 and VLreceived = VLS5

spilled = 20 m3;

Here, Vspilled = 0 m3;
VLspilled = 0 m3;
VLremaining = VLsource + VLreceived = 500 + 20 = 520 m3.

Stream order III: S6.
For S6, Vruno f f = 400 m3, and Vreceived = VS3

spilled + VS4
spilled = 25 + 10 = 35 m3, Csink =

200 m3.

(i) For flood volume computations (blue zones):
Vspilled = Vruno f f + Vreceived − Csink = 400 + 35 − 200 = 235 m3;

(ii) For volume loss computations (red zones):
VLsource = 75 m3 and VLreceived = VLS3

spilled + VLS4
spilled = 16 + 10 = 26 m3;

Here, VLreceived + VLsource ≤ Vspilled;
VLspilled = VLreceived + VLsource = 26 + 75 = 101 m3;
VLremaining = 0 m3.

Stream order IV: S8.
For S8, Vruno f f = 500 m3, and Vreceived = VS6

spilled + VS7
spilled = 235 + 0 = 235 m3, Csink =

150 m3.

(i) For flood volume computations (blue zones):
Vspilled = Vruno f f + Vreceived − Csink = 500 + 23 − 150 = 585 m3;

(ii) For volume loss computations (red zones):
VLsource = 20 m3 and VLreceived = VLS6

spilled + VLS7
spilled = 101 + 0 = 101 m3;

Here, VLreceived + VLsource ≤ Vspilled;
VLspilled = VLreceived + VLsource = 101 + 20 = 121 m3;
VLremaining = 0 m3.
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