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Abstract: Groundwater is a vital source of freshwater, supporting the livelihood of over two billion
people worldwide. The quantitative assessment of groundwater resources is critical for sustainable
management of this strained resource, particularly as climate warming, population growth, and
socioeconomic development further press the water resources. Rapid growth in the availability of
a plethora of in-situ and remotely sensed data alongside advancements in data-driven methods
and machine learning offer immense opportunities for an improved assessment of groundwater
resources at the local to global levels. This systematic review documents the advancements in this
field and evaluates the accuracy of various models, following the protocol developed by the Center
for Evidence-Based Conservation. A total of 197 original peer-reviewed articles from 2010–2020 and
from 28 countries that employ regression machine learning algorithms for groundwater monitoring
or prediction are analyzed and their results are aggregated through a meta-analysis. Our analysis
points to the capability of machine learning models to monitor/predict different characteristics of
groundwater resources effectively and efficiently. Modeling the groundwater level is the most popular
application of machine learning models, and the groundwater level in previous time steps is the most
employed input data. The feed-forward artificial neural network is the most employed and accurate
model, although the model performance does not exhibit a striking dependence on the model choice,
but rather the information content of the input variables. Around 10–12 years of data are required
to develop an acceptable machine learning model with a monthly temporal resolution. Finally,
advances in machine and deep learning algorithms and computational advancements to merge
them with physics-based models offer unprecedented opportunities to employ new information,
e.g., InSAR data, for increased spatiotemporal resolution and accuracy of groundwater monitoring
and prediction.

Keywords: groundwater hydrology; water resources; data science; regression machine learning;
hydrogeology; artificial neural networks

1. Introduction

Groundwater is the largest global reservoir of liquid freshwater, which is under
increasing stress due to overdraft [1]. Groundwater is “the water stored beneath earth’s
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surface in soil and porous rock aquifers” [2], and plays a principal role in sustaining
ecosystems and producing food in a vast area of arid and semi-arid land globally [3].
Groundwater accounts for around 33% of total worldwide water withdrawals [4], and
over two billion people rely on groundwater as their main water source [5]. Over-drafting
is causing groundwater levels to drop continuously and dramatically in many regions,
leading to a global groundwater crisis [2,6,7].

To address the challenges of sustainable groundwater management, it is crucial to
have a good understanding of the current status and to forecast future estates of this
indispensable resource. There are numerous mechanistic groundwater models, for example
using finite difference and finite element techniques to simulate the dynamic behavior of a
groundwater system [8–11], such as MODFLOW [12–14]. Numerous studies also applied
soft computing techniques for groundwater level or contamination prediction, including
GA [15–17], ANN [18–21], and ANFIS [22–26] Generally, physical and numerical models
have been the main tool in modeling and forecasting the groundwater level. However,
because these traditional methods rely on various inputs and the underlying mechanisms
are usually too complicated to grasp, data-driven approaches are used in several recent
studies [27,28].

In recent years, there has been a growing interest to employ ML and data-driven
approaches to groundwater modeling [29–38]. Due to the complex nature of ground-
water problems, resolving all governing processes is very difficult, and simulation and
prediction models are constrained with numerous simplifications and assumptions and
endure significant uncertainties [39]. The application of black-box models, such as ML,
that can resolve the nonlinear interdependencies of all influential input variables, without
the need for complete knowledge of underlying physical or mathematical processes, is
appealing [33,40]. Moreover, novel strategies such as linear stochastic approaches and
pre-processing techniques have recently been proved to be promising in groundwater level
forecasting [27].

This study attempts to systematically review the state-of-the-art application of ML
methods in the modeling and prediction of groundwater resources. By conducting a rig-
orous meta-analysis on the congregated results, this study investigates the suitability of
ML models to predict the quality and quantity of groundwater resources. Although the
scope of this systematic review is not limited to any specific characteristic, its focus is on
groundwater level prediction, as it is by far the most popular application of data-driven
techniques in groundwater studies [21,41–43]. This study builds upon the previous review
articles on the application of ML and deep learning models in hydrology, water resources,
and groundwater [44–47], and bridges the gap for a comprehensive, consistent, and sys-
tematic meta-analysis of various ML models in studying groundwater. ML studies of
groundwater heavily vary in spatial and temporal scale, background meteorology, ML
model construction, sample division, and input variables. As a result, predicted ground-
water indices, their spatiotemporal resolution, and their forecast lead time vary widely.
Consequently, a robust comparison of the performance of ML models in monitoring and
forecasting groundwater characteristics can be challenging. A systematic meta-analysis
makes these inter-study comparisons possible by communicating through a pooled sum-
mary of combined individual study results [48]. The current study fills these research
gaps by following the CEBC protocol for conducting a systematic review [49]. According
to CEBC, “A Systematic Review is an evidence synthesis method that aims to answer a
specific question as precisely as possible in an unbiased way” [49]. We pose the question:
how accurately can ML methods model and predict groundwater resources’ quantitative
characteristics? By answering this question through a meta-analysis, we aim to cast light
on the performance of ML methods in groundwater resources studies.

2. Methodology

Formulating a well-focused and clearly-framed question is the first and one of the
most important steps in the systematic review process. Without a pre-defined question and
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inclusion-exclusion criteria, it can be challenging and time-consuming to identify appro-
priate resources and search for relevant literature. Following the procedure developed by
the CEBC, we used a specialized framework, called Population, Intervention, Comparator,
Outcome—PICO, to form the question systematically and facilitate the literature search [49].
Here, PICO was defined as:

• Population: time series of groundwater resources’ quantity or quality characteristics
• Intervention: regression ML algorithms
• Comparator: observation and measurement
• Outcome: predictive capabilities (through quantitative measures of performance like

the coefficient of determination)

Using the PICO framework, we designed a search string and used it to search title,
abstract, and keywords of literature through two online databases: “Scopus” and “Web
of Science”. We used the same search string for both databases simultaneously to avoid
any discrepancies. The literature sample was drawn from English, peer-reviewed journal
articles, and conference proceedings published between January 2010 and September 2020.
The process of searching was performed on 21 September 2020. Adopting a high-sensitivity
and low-specificity approach search strategy, the search string was designed to encompass
all regression ML methods that have been used in hydrology and hydrogeology, excluding
ML methods that are specific to classification. Many articles were initially identified but
removed later at the title and abstract screening stage (Figure 1). The search string is
presented in the Supplementary Materials.

Adding up the records from both databases, a total of 5762 articles were identified to
meet the search string criteria and were stored in a reference manager software (Mendeley).
Since we used two databases, there were a considerable number of duplicate articles, and
we used two methods to deal with this: an automatic duplicate removal process, which
was conducted through Mendeley, and to check the reliability of this process, in parallel,
we checked if the title of the records and their DOI was identical in Excel and removed
the duplications accordingly. We also used the Fuzzy Lookup procedure in Excel to find
similar titles (i.e., titles of the same article with different wordings).

After duplicate removal, 3677 records were retained in the next step: title screening.
Assessment of the titles was undertaken by two reviewers, simultaneously and indepen-
dently, qualifying articles to be retained or removed. If both reviewers agreed to either
keep or remove a specific record, the final decision was the agreement. However, in case
of a conflict in decisions, a third reviewer checked the record and made the final decision
to either keep or remove it. In the end, 878 records remained for the next round of review,
namely abstract screening. The records were divided randomly between 6 reviewers. Ev-
eryone reviewed the abstracts of assigned records to decide whether each record met the
inclusion criteria or not. Inclusion criteria for both title and abstract screening were the
same and based on the PICO framework. Specifically, the following criteria should have
been met to include the record:

1. The article should present original research on one or more case studies (i.e., aquifers)
that employ a regression ML algorithm to predict a specific and measurable aquifer
characteristic in different time steps.

2. The article should use a time series of input data to train its algorithm.
3. The article should evaluate the accuracy of the prediction by comparing the ML

algorithm outputs with observation.
4. The article should report its goodness of prediction with quantitative measures of

performance (i.e., statistical indices).

After the abstract screening, 347 records were retained, of which 23 were either not
retrievable or not in English in their full-text form, which left us with 324 articles for the
full-text screening (Figure 1). Six individuals reviewed the retrieved full texts according
to inclusion–exclusion criteria as the third step of article screening. After the full-text
screening, 127 articles were removed based on the exclusion criteria (Figure 1). Eventually,
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a total of 197 articles remained to be included in the systematic review and to be investigated
in meta-analysis. Figure 1 depicts different steps of the systematic review and the number
of records in each step.

Finally, key characteristics of the final papers were extracted in the data extraction
stage. A second reviewer also checked a random subset of the included studies to ensure
that data had been extracted accurately. All team members involved in the extraction
process also appeared as second reviewers and were assigned to check the extracted data
by other team members to ensure data hygiene and minimize human error. Finally, the
extracted data went through data curation.

Figure 1. Flow diagram of the systematic review.
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3. Results and Discussion
3.1. Statistical Analysis

The number of research articles using ML to predict groundwater characteristics
is growing after 2014 (Figure 2), with a spike in 2017. Out of 197 articles included for
meta-analysis, 33 (16.75%) were published in 2017.

Figure 2. Number of research records included in the systematic review based on their date of
publication.

Included records were published in various journals, of which the Journal of Hydrol-
ogy (10.66%) published the largest set of papers, followed by Water Resources Management
(7.11%), and Environmental Earth Sciences (5.08%) (Figure S1 in the Supplementary Materials).

The systematic literature search showed that Iran (24%), India (18%), China (16%),
and the United States (10%) had the highest number of articles, respectively (Figure 3).
Iran as the leading country in the number of articles in this systematic review also deals
with a state of water bankruptcy partly due to anthropogenic depletion of its aquifers
(Noori et al., 2021). The list of countries with the highest number of articles also agrees
well with the list of countries with the highest dependency on groundwater resources.
According to [50], the top five nations with the largest estimated annual groundwater
extractions in 2010 are India (251.00 km3/year), China (111.95 km3/year), the United States
(111.70 km3/year), Pakistan (64.82 km3/year), and Iran (63.40 km3/year). It is worth
mentioning that Iran, India, China, and the United States use 87%, 89%, 54%, 71% of their
groundwater extraction for irrigation, respectively (Margat and Van der Gun, 2013). It
should be noted that groundwater depletion due to overdraft for mainly irrigation purposes
is reported as a worldwide problem. According to the findings of [51,52], Iran, India, China,
and United states are among the countries with the most reliance on groundwater resources
for food production and deal with the consequences of overdraft. Our findings reveal that
the hotspots of groundwater consumption and depletion are the popular case studies for
the application of ML in groundwater modeling and prediction. In total, the included
articles in this study were from 28 countries (Figure 3). Moreover, our findings show
that the countries with the highest number of articles are the countries suffering from
groundwater stress (Figure S7 in the Supplementary Materials).



Water 2022, 14, 949 6 of 22

Figure 3. Pie chart of the included research articles based on the country of origin.

Most of the papers (56%) had a case study with an area less than 1000 km2, followed by
study areas between 1000 km2 and 2000 km2 (22%), and the remaining 23% had a case study
with an area of more than 2000 km2 (Figure S2 in the Supplementary Materials). Only 6% of
the articles studied a confined aquifer, while 5% had a semi-confined aquifer and 89% had
worked on an unconfined aquifer or did not mention the type of aquifer in their manuscript.
Twenty-seven percent of the articles studied coastal aquifers and the remaining (73%)
had a non-coastal aquifer as their case study (Figure S3 in the Supplementary Materials).
Being prone to seawater intrusion, groundwater salinization is a common problem in
coastal aquifers, particularly where excessive groundwater pumping induces a decrease
in the piezometric head [53], and therefore, some of the reviewed studies had focused on
predicting groundwater salinity in coastal aquifers [29,54].

As shown in Figure 4, a high percentage of the reviewed articles are from arid and
semi-arid regions of the world, where surface water resources are generally scarce and
highly unreliable [55]. Moving from arid to humid regions, the reliability of surface
water resources increases and, as a result, the interest in studying groundwater resources
decreases (Figure 4).
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Figure 4. Reviewed articles’ proportion according to the average annual precipitation of their case
studies.

In total, 26 different ML methods were reported in the articles as tools to predict
various characteristics of groundwater resources. Among them, ANN, SVM, and ANFIS
were the most popular methods with 53%, 16%, and 10% of total records, while GEP, LR,
and GP were applied much less (Figure 5).

Figure 5. The proportion of the reports according to the ML method that they have employed.
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The employed ANN models had different architectures, but FFNN was the most
used (around 66% of records), followed by NARX with 11.3% of records (Figure S4 in
the Supplementary Materials). Gradient descent (64.3%), LMA (19.5%), and PSO (5%)
were the most used optimization algorithms for training ANN models (Figure S5 in the
Supplementary Materials). Most of the papers that used gradient descent mentioned
using back-propagation for calculating gradients for the weights of the network. Seventy-
nine records used wavelet transformation along with ML models, where 54.4%, 13.9%,
and 10.1% of them utilized ANN, ANFIS, SVM models, respectively (Figure S6 in the
Supplementary Materials). According to the studies that used wavelet transformation,
determining the appropriate decomposition level is an important step as it affects the ML
models’ performance [56,57]. Moosavi et al. (2013) suggest considering the periodicity and
seasonality of data series to determine the appropriate number of decomposition levels. In
summary, our meta-analysis shows that FFNN with gradient descent as an optimization
algorithm is the most employed ML model to predict characteristics of groundwater
resources. Based on its wide use and acceptable performance, it can be inferred that this
model structure is a suitable choice for the prediction of groundwater characteristics.

Sample division into training, validation, and test sets is one of the important fac-
tors in designing ML models. Although some researchers divided the data into only
training-testing subsets, using three subsets as training, validation, and testing is generally
preferable. In the latter scenario, the testing set is never used in the process of model build-
ing while the validation set helps with the fine-tuning of the model hyperparameters and
even choosing the best model structure. This procedure eliminates the risk of over-fitting
(i.e., where an ML model will “memorize” the features of the training input data instead of
actual “learning”) and ends up with more reliable results where the ML model shows its
generality to work well with new, unseen data.

Cross-validation is another model validation technique that uses a resampling pro-
cedure and is especially useful when the sample data are limited. In the cross-validation
process, instead of a fixed test set, input data are divided into some “folds” and in each
training step, one fold is held out as the test set and the model is trained with the remaining
data. After training the model, its performance is measured on the unseen test set (i.e., the
held-out fold). This process repeats k times, where k is the number of folds, and at the end,
the average of k measures of performance is reported as the final measure of model fitness.
According to our meta-analysis, 16.2% of the articles used cross-validation, while 12.4% of
records used both cross-validation and sample division strategies. A 96.2% of the articles
divided their dataset into subsets, while around 80% of these articles only had train-test
subsets and 20% had three subsets division. From a data science point of view, this can be a
weakness, especially if the models have been exposed to the validation data before the final
model evaluation.

As shown in Figure 6, most of the articles have used 70–80% of the data as the training
subset and the remaining as the test subset. Similarly, most of the articles having three
subsets have used 60–70% of the data as the train set and divided the remaining into
validation and test sets (Figure S8 in the Supplementary Materials).

The input data length, temporal resolution, and the number of categories are other
important factors in ML modeling in general and particularly in hydrological studies. To
train a reliable data-driven model in groundwater studies, the model needs to be fed with
temporally inclusive input data to be able to predict variable geohydrological conditions
and to learn the seasonality. As depicted in Figure 7, while most of the articles had lower
than 8 input categories, a considerable portion had between 3 to 4 input categories. This
might have two main reasons; first, in many case studies, many potential variables are
poorly measured, and secondly, increasing the number of input variables would cause some
unfavorable phenomenon in modeling such as the curse of dimensionality. Additionally,
the use of fewer input variables to training ML models can imply the efficacy of these
models in predicting groundwater characteristics. This is especially important in ungauged
regions. The use of ML models in these regions can also be favorable from an economic
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point of view since these regions usually rely on agriculture, and an accurate estimation
of, for example, the groundwater level using limited input data can assist with more
cost-efficient irrigation scheduling.

Figure 6. The proportion of articles dividing the data into two training-testing subsets.

Figure 7. The proportion of articles according to their number of inputs.

As shown in Figure 8, the length of the input data time series was mostly up to around
12 years, and rarely more than 20 years, with very few studies having more than 40 years
of input data to train the ML models.
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Figure 8. Percentage of the reviewed articles according to the length of the input data time series.

The monthly temporal resolution was by far the most popular among the articles
(around 65% of the records), followed by the daily resolution with 19.6% (Figure S9 in
the Supplementary Materials). This could imply a higher availability of groundwater
data in the monthly temporal resolution more than other resolutions. Furthermore, the
monthly resolution might be more favorable for large-scale water managing stakeholders
and policymakers.

Although our research question was not limited to any specific characteristic, we
found that most of the research articles using ML algorithms in groundwater studies were
focused on the prediction of the groundwater level (82.5%). The possible explanation
for this large number might be related to denser measurements of the groundwater level
compared to other variables in practice. Moreover, the groundwater level is a continuous
variable that could be regionalized through various interpolation methods. In total, 17
groundwater characteristics were found in the reviewed articles to be predicted using ML,
with a discharge or baseflow (6.1%), groundwater recharge (2.7%), and freshwater-saltwater
interface level (2.5%) being the most popular ones after groundwater level (Table 1 and
Figure S10 in the Supplementary Materials). Our analysis shows that the most adopted
input variables for training ML models to predict the groundwater level were ground-
water levels at earlier time steps (26.7%), precipitation (25.1%), temperature (13.6%), and
evaporation or evapotranspiration (10.5%) (Figure S11 in the Supplementary Materials).
Humidity or moisture (2.2%), river discharge (1.9%), surface runoff (1.8%), pumping data
(1.7%), and river stage (1.6%) were other important input variables. Table S1 in the Supple-
mentary Materials presents the percentage of the most employed input variables for other
predicted characteristics.

Around 40% of the reports have used input variable selection techniques to determine
what variables should be included in the ML model based on their importance. Cross-
correlation analysis (36.2%), autocorrelation analysis (19.9%), and partial autocorrelation
function (17.1%) were the most adopted techniques (Figure S12 in the Supplementary
Materials). After training the ML model, 61.3% of the reviewed articles used their model to
forecast future states of groundwater resources. Figure 9 shows the relative frequency of
the forecast timespan.
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Table 1. Groundwater characteristics predicted by ML models in the reviewed articles.

Predicted Variable Percentage of Reports

Groundwater level 82.5%
Discharge 6.1%
Groundwater recharge 2.7%
Freshwater–saltwater interface level 2.5%
Salinity 1.3%
Groundwater level fluctuation 1.4%
Total dissolved solids 0.6%
Electrical conductivity 0.6%
Aquifer loss coefficient 0.5%
Fluoride 0.5%
Sodium adsorption ratio 0.4%
Nitrate nitrogen (NO3-N) 0.2%
Contamination level 0.2%
Sulfate (SO4) 0.2%
Hydraulic head change 0.1%
Dissolved oxygen 0.1%
Groundwater storage variation 0.1%

Figure 9. Percentage of reports according to their forecast periods.

Figure 10 presents the percentage of statistical indicators used to measure the accuracy
of the ML model of the groundwater level. RMSE (27.4%), NSE (17.8%), the correlation
coefficient (14.3%), coefficient of determination (13.7%), and MAE (9.4%) were the most
popular measures of performance. RMSE is also the most adopted measure of performance
for other predicted characteristics. RMSE indicates the absolute fit of the model to the data
and is a suitable measure of performance with the same units as the predicted variable.
On the other hand, the coefficient of determination (R2) is a relative measure and does not
indicate the absolute precision of the model.
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Figure 10. The proportion of employed quantitative measures of performance.

3.2. Meta-Analysis

As mentioned earlier, more than 82% of reviewed articles had used ML models to
predict the groundwater level and only around 18% of articles were focused on other
groundwater characteristics. As a result, our meta-analysis is mostly focused on ground-
water level forecasting. We also presented the outcome of the meta-analysis for other
characteristics, where possible. Here, we used violin plots that show the probability density
of the data at different values using a rotated kernel density plot, which provides insights
into the distribution of data and facilitates data analysis and exploration [58,59]. In all
violin plots, the red dot shows the mean, while the box demonstrates the first, second and
third quartiles, where the middle bar is the median. Figure 11 shows the results of the
meta-analysis on the predictive capability of ML models for groundwater level prediction
through various measures of performance.

The statistics of these violin plots are presented in Table S2 in the Supplementary
Materials. As shown in Figure 11, meta-analysis confirms the ability of ML models to
predict groundwater levels with high accuracy. Table S2 shows the number of reports
for each violin plot. For instance, 546 records with an RMSE performance were used to
construct the violin plot of RMSE in Figure 11 (mean RMSE of 0.52 m). It should be noted
that different papers had various case studies with distinct groundwater levels, therefore,
comparing RMSEs might lead to misleading results in some cases. In other words, the
variation of the groundwater level in a shallow aquifer is inherently different from that
of a deep aquifer. As shown in Figure 11, the results of R2 presented from 270 records
are promising.

Figure 12 illustrates the results for other characteristics that had enough records (more
than 15) to conduct a meta-analysis (Table S3 in the Supplementary Materials). These
violin plots show an acceptable accuracy of ML models to predict a variety of groundwater
characteristics. Contrary to the groundwater level prediction (Figure 11), these results
are from fewer records (Table S3 in the Supplementary Materials), therefore, general
conclusions should be drawn with caution. What is obvious, however, is the potential of
data-driven models to estimate miscellaneous groundwater characteristics accurately with
a lower number of input data and easier model structures compared to physical models.

Along with a one-dimensional meta-analysis on the capability of the ML models to
predict groundwater characteristics, we categorized the reviewed papers’ reports based on
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different criteria to cast light on the different aspects of data-driven modeling in groundwa-
ter studies. Figure 13 represents the results for different ML methods and ANN architectures
with a threshold of 15 records in each category (also see Table S4 in the Supplementary
Materials). Most employed ML methods (e.g., ANFIS, ANN, SVM) have a comparable
and even similar performance according to reported statistical measures. However, ANN
slightly outperforms other models in most cases. Generally, it can be inferred that the most
influencing factor in the performance of ML models in groundwater studies is the quality
and quantity of the input data and not the model. Comparing different ANN architectures,
we see that NARX outperforms FFNN, but due to the much lower number of records for
NARX, this finding is not conclusive, and more investigation is required.

Figure 11. Quantitative measures of performance for ML models predicting groundwater levels.
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Figure 12. Results of meta-analysis for various groundwater characteristics.
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Figure 13. Results of meta-analysis for ML models and ANN architectures to predict groundwater level.

Figure 14 contrasts the results for the type of the aquifer, whether the aquifer is coastal
or not, whether cross-validation is used or not, and various schemes for sample division
(Table S5 in the Supplementary Materials). As we can see in Figure 14, results from different
aquifer types are comparable and no obvious trend can be found. Although the number of
records is different for coastal and non-coastal aquifers, from Figure 14 we can infer that
the model results for the coastal aquifers are slightly superior. Moreover, Figure 14 shows
that in the case of sample division without cross-validation, models are working slightly
better. This might be because in cross-validation the considered dataset is divided into
different training and test sets multiple times, and the total performance of a model would
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be the average of all individual performances; however, in classical validation, there is only
one training and one test set. Therefore, even one subset with a low performance would
decrease the total performance in the cross-validation technique. There is no meaningful
trend in the results for different sample division proportions.

Figure 14. Meta-analysis results according to various subcategories in the reviewed reports.

Figure 15 shows the outcome of meta-analysis for input data’s temporal resolution, the
input variable selection technique, and forecast for the future (Table S6 in the Supplementary
Materials). The daily time series is marginally better than the monthly time series in terms
of model accuracy. Studies that used input variable selection techniques had superior
results to those without these techniques. It can be inferred that input variable selection is
a useful step in setting up ML models to predict groundwater characteristics. According to
Figure 15, there is no meaningful trend in the results comparing papers that do forecast
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for the future and papers that do not. Figures S13 and S14 in the Supplementary Materials
depict the results of our meta-analysis for other categories and combinations.

Figure 15. Meta-analysis results for three subcategories in the reviewed reports for groundwater
level prediction.

4. Opportunities

Advances in ML and AI algorithms (e.g., boosting algorithms and deep learning)
alongside exponential growth in the availability of computational resources (e.g., Google
and Amazon cloud) provide unprecedented opportunities for breakthroughs in groundwa-
ter monitoring and forecasting (e.g., reliable forecast with longer lead times). Arguably, the
most lucrative opportunity for future work lies in the flexibility of new algorithms to fuse
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data with widely different spatio-temporal resolutions from various remote sensors, ground
observations, and numerical and physics-based models. The new algorithms also allow
for the inclusion of physics into the traditionally black-box methods (e.g., physics-based
AI) and quantify uncertainties (e.g., uncertainty-aware AI). Physics-based AI may resolve
a longstanding issue that AI methods could not reliably predict/forecast states/outputs
that are outside the bounds of observed/training data. Reliable AI/ML methods for the
prediction of groundwater states should include a combination of initial states (e.g., ground-
water level at the current time, snowpack, surface water availability, temperature, wind,
cultivated area), sub-seasonal to seasonal forecasts from numerical models (e.g., from Na-
tional Oceanic and Atmospheric Administration’s Global Forecast System), and large-scale
climate signals (e.g., El Niño-Southern Oscillation). The skill of these variables to predict
future groundwater states vary across regions and temporal lags, but our understanding
of all these predictors is improving rapidly. Remote sensing, tele-stations, and citizen sci-
ence are providing an unprecedented quantity and quality of surface observations. There,
however, exists an opportunity for a significant scientific contribution through developing
homogenized, quality-controlled, global products of an in situ observation of groundwater
states. Numerical weather prediction models are transforming by the hour and their pre-
dictive skills are rapidly enhancing, but there remain great opportunities in this field to
resolve microphysics and improve weather forecasts. Finally, new climate signals are being
explored, and important advances in convolutional, geospatial, and memory-enabling ML
models are being leveraged to explore the entire sea surface temperature (SST) domain
to devise new teleconnections, which were not captured by traditional climate signals
that mainly depended on differences in SST in specific zones. Anthropogenic factors (e.g.,
groundwater pumping and artificial recharge) can also be integrated into ML/AI models of
groundwater. Finally, while still in its infancy, advances in Interferometric Synthetic Aper-
ture Radar technology and data to estimate surface elevation changes, when merged with
physics-based models of elastic and non-elastic ground deformation, can infer groundwater
levels at unprecedented spatial (a few dozen meters) and temporal (a few weeks) scales.

5. Summary and Conclusions

In this paper, we posed the question of how accurately can ML methods model and
predict groundwater resources’ characteristics? Questions of this nature require systematic
review methodologies with explicit inclusion and exclusion criteria that are developed to
identify and analyze the relevant literature. Here, by conducting a systematic literature
search on the application of regression ML in groundwater resources studies, we found that:

• Groundwater level modeling and forecasting is the most popular use of ML in the
literature.

• Groundwater level at the previous time step and precipitation were the most employed
input variables to feed groundwater models.

• Countries with more dependence on groundwater as a freshwater source produced
the majority of studies on the application of ML in groundwater modeling.

• Feed-forward ANN with gradient descent as the optimization algorithm is the most
employed and effective ML model to predict quantitative characteristics of ground-
water. This might be due to the simplicity of this architecture and according to the
availability of models and codes.

• A considerable portion of reports used only 3 to 4 input variables to train the ML
models. The acceptable accuracy reported from these models can imply the capability
of data-driven models to simulate the complicated nature of groundwater resources
efficiently and effectively, even in the case of few input parameters.

• The monthly scale is the most employed temporal resolution in time series and,
generally, finer temporal resolutions result in higher accuracy.

• Around 10–12 years of data are required to develop an acceptable ML model with
monthly temporal resolution.
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• Input variable selection is a highly used technique to choose the most appropriate input
variables to train the models, and studies that used these techniques outperformed
those that did not.

• A high portion of studies use their data-driven model to forecast the future states of
groundwater resources.

• RMSE is the most employed measure of performance between different studies and
for various characteristics.

• While different ML methods have a similar accuracy in predicting groundwater char-
acteristics, ANN is slightly superior to other methods.

• When using traditional sample division without cross-validation, models generally
result in higher quantitative measures of performance. However, results of cross-
validation are generally expected to be a more accurate estimate of the true perfor-
mance of the model since cross-validation reduces the risk of overfitting and increases
the model generality.

With the groundwater modeling literature expanding rapidly and interest in using
ML tools in this area gaining higher momentum, meta-analyses, like our study, can help us
grasp what we know, don’t know, and need to know. Systematic reviews and meta-analyses
such as the present study can augment recent comprehensive reviews on the application
of ML in groundwater studies (e.g., 28). Future systematic reviews and meta-analysis
studies can focus on the application of ML models in other areas of water resources, such
as streamflow modeling and forecasting, extreme hydro-meteorological events induced
by climate change, and fine-tuning the estimation of evapotranspiration and soil moisture
along with remote sensing datasets [60–62]. Moreover, since hydrological models always
deal with inherent uncertainties and ambiguity of model structure, parameters, and input
variables, systematic reviews can shed light on the state-of-the-art of uncertainty, reliability,
and sensitivity analysis of hydrological models [63–65]. Although aggregating results from
different studies, as done here, have some obvious shortcomings, doing so can shed light on
the subject by generating comprehensive and multidimensional findings. The aggregation
of results is a two-sided sword though, and since each original research article is specific in
its methodology, representation, and interpretation of the results, researchers should be
cautious in interpreting the results.
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Abbreviations

AIC Akaike information criterion
ANFIS adaptive network-based fuzzy inference system
ANN artificial neural network
CEBC Center for Evidence-Based Conservation
FFNN feed-forward neural networks
GEP gene expression programming
GP genetic programming
GA genetic algorithm
LMA Levenberg–Marquardt
LR linear regression
MAE mean absolute error
MAPE mean absolute percentage error
MSE mean squared error
ML machine learning
MLR multiple linear regression
NARX nonlinear autoregressive network with exogenous inputs
NRMSE normalized root mean square error
NSE Nash–Sutcliffe efficiency
RF random forest
RMAE relative mean absolute error
RMSE root mean square error
PSO particle swarm optimization
SST sea surface temperature
SVM support vector machine
SWAT soil and water assessment tool
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