
����������
�������

Citation: Gao, H.; Zhou, J.; Dong, S.;

Kitazawa, D. Sustainability

Assessment of Marine Aquaculture

considering Nutrients Inflow from

the Land in Kyushu Area. Water 2022,

14, 943. https://doi.org/10.3390/

w14060943

Academic Editor: Alessandro

Bergamasco

Received: 31 January 2022

Accepted: 14 March 2022

Published: 17 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Sustainability Assessment of Marine Aquaculture considering
Nutrients Inflow from the Land in Kyushu Area
Hongxia Gao 1,* , Jinxin Zhou 2, Shuchuang Dong 2 and Daisuke Kitazawa 3

1 Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo,
5-1-5 Kashiwanoha, Kashiwa 277-8574, Chiba, Japan

2 Department of Mechanical and Biofunctional Systems, Institute of Industrial Science, The University of Tokyo,
5-1-5 Kashiwanoha, Kashiwa 277-8574, Chiba, Japan; jxzhou@iis.u-tokyo.ac.jp (J.Z.);
dongsc@iis.u-tokyo.ac.jp (S.D.)

3 Large-scale Experiment and Advanced-analysis Platform, Institute of Industrial Science, The University of
Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8574, Chiba, Japan; dkita@iis.u-tokyo.ac.jp

* Correspondence: hxgao@iis.u-tokyo.ac.jp; Tel.: +81-(0)70-3666-7685

Abstract: The nutrient load generated by excessive aquaculture farms leads to self-pollution around
water, which destroys aqua-environment, and further leads to a decline in aquaculture production.
The purpose of this study is to propose an index to assess the sustainability of inshore aquaculture in
Kyushu area, considering nutrient loads from land and farms. The number and size of fish cages
identified from Google satellite imagery are used to calculate annual fish production, which is then
converted into annual loads of total nitrogen and total phosphorus. The pollutant load factor method
is applied to calculate the land nutrient inflow. An index, including nutrient load from land and
farms, bay area, water depth and distance from farms to bay, is proposed. The results show that
for most of the cultured bays in Kyushu, the nutrient load from the farm is more than that from the
land inflow. The bay with higher index value has a higher possibility of red tide occurrence and
lower sustainability for aquaculture. Among which, location of fish farms, total nitrogen and total
phosphorus loading are key factors impacting water quality within the bays.

Keywords: marine aquaculture; sustainability assessment; nutrient inflow load; pollutant load
factor method

1. Introduction

Marine aquaculture has huge potential to meet the increasing food demand due to
the advantages of relatively few spatial conflicts [1]. With the development of marine
aquaculture, intensive aquaculture, the impact of residual bait and excrement from fishing
farms on the surrounding environment has been continuously reported [2–4]. Currently
the main marine aquaculture is carried out inshore [5], where the water exchange capacity
is weaker than open ocean. The pollution from fish farms not only decreases the water
quality around the farms, but also affects the bottom organisms. The deterioration of
the environment around the fish farm can reduce marine biodiversity and cause fish
deaths, decreasing fishery production. Therefore, a suitable cultural density within the
environmental carrying capacity should be understood.

Many research and political treatments have been carried out to estimate the carrying
capacity and keep the production within carrying capacity. Numerical simulation models
of hydrodynamics and ecosystems in coastal waters have been developed to create carrying
capacity estimations [6–9]. However, numerical simulation always focuses on specific farm
scale, making it difficult to estimate the culture capacity and doing comparative study
in bay-scale. A sealing index of a bay [10] was proposed to evaluate the closure of the
offshore bays of Japan, which had experienced frequent red tides since the 1960s. This
index evaluated the water exchange ability by non-dimensioning the surface area of the
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water, the width of the bay mouth, the average water depth of bay mouth and inner bay.
The location of the farms in the bay also affects the dispersion of emissions from the farm.
Embayment degree index [11] was proposed considering topography and farm location to
evaluate the capacity of seawater exchange and the pollutant diffusion of culture bays.

In addition to topography and farm location in bays, nutrient load from farms and
land is also important factor affecting the environmental capacity to the nutrient before
reaching the open ocean to be diluted [12–14]. However, few studies compare the impacts
of water exchange, topography, nutrients load from farms and land on the environment in
bays. The objective of this study is to propose an index including bay topography, farm
location and inflow of nutrient loads from farms and land to assess environmental capacity
in bay-scale. The research objective of this study can be divided into three sub-objectives:
(1) Building aquaculture production estimation model since bay-scale production data is
unavailable currently from the governmental statistics, to calculate the nutrient load from
fish farm; (2) Establish land nutrient load calculation system; (3) Propose an appropriate
assessment index.

2. Materials and Methods
2.1. Study Area

The study area of this research located in Kyushu region of Japan, and the target area
are the bays where fish aquaculture carried out (Figure 1). Based on data availability, the
period of this study is 2018.
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Figure 1. Study area map showing the distribution of fish farms where yellowtail, tuna and sea-
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Figure 1. Study area map showing the distribution of fish farms where yellowtail, tuna and seabream
are cultured.

The Kyushu region is located at the southwestern tip of Japan and is the third largest
of Japan’s five main islands, between latitudes 30◦58′16” N and latitudes 34◦03′43” N and
longitudes 128◦12′54” E and 132◦43′41” E. Kyushu Island is surrounded by the sea on
all sides and is a warm region with large warm oceanic currents such as the Kuroshio
Current and the Tsushima Current. In addition, it has a complicated coastline with many
remote islands and peninsulas, and various coastal fisheries and aquaculture are carried
out. According to government statistics [15], the production of aquaculture in the Kyushu
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region in 2018 was 268,242 tons, accounting for about 30% of the national total. Among
them, the main fish species that are farmed are yellowtail, tuna and seabream (Figure 1),
the production are 93,994 tons, 10,266 tons and 13,125 tons, and a rate of 37%, 58% and
22% of the total production in Japan, respectively. A circle represents a fish farm which
has multiple cages culturing single or several fish species. The fish farm is licensed as
the demarcated fishery right. Sustainable Aquaculture Production Assurance Act was
established in 1999 to take measures to promote the improvement of the fish farm to be
performed by Fisheries Cooperative Association, whereas such measures have not been
taken for a bay that includes several fish farms.

Algal blooming, called as red tide, has been frequently reported in the Kyushu area.
A total of 69 red tide events were reported in 2018 [16]. The number of days of red tide
lasting in a year was 1236, and the average duration of each red tide was 18.2 days. Of the
69 red tides reported, nine caused damage to fisheries. Including the suffocation of farmed
fish, the damage to the fishery amounted to about JPY 30 million. In the present study, fish
production is calculated for all the fish farms, whereas the other analyses are carried out
for the main 12 bays which monitor the occurrence of red tides.

2.2. Annual Fish Production Estimation
2.2.1. Fish Production Calculation Model

This study aims to analyze in bay scale and the fish production of each bay is necessary.
However, the existing government statistics only have production amount of each prefec-
ture. Therefore, this study proposes a formula [17,18] for estimating the annual production
of farmed fish in the bay. The formula of annual fish production of each farm is derived
from a previous study [19], in which the production per year was calculated by dividing
the total farm output by the number of years between stocking and harvest. Considering
the continuity of fishery farming, the annual fish production is defined as the ratio of total
fish production to stock cycle, shown as

p = ∑m
s=1

(
Ps

Ts

)
(1)

where p (ton) is the annual production of a fish farm, Ts (year) is the period between
stocking and harvest of a specific fish species, the subscript s represents different species of
fish and Ps (ton) is the corresponding total output during Ts. Considering that some farms
stock more than one fish species, m denotes species number in a farm, annual production
of a farm is the sum of annual production of each species.

Total production Ps of each species during Ts is calculated by

Ps = ∑n
1 (Ws × Rs) (2)

where Ws (ton) is the weight of seawater inside each fish cage, which is calculated by

Ws = ρ×Vs (3)

Vs (m−3) means the volume of fish cage and ρ (ton m−3) is the density of seawater. The
area of fish cage is measured from satellite images and mean depth of a cage is assumed 8 m
for yellowtail and seabream, and 10 m for tuna. Rs (%) is the stock rate of species, which
means weight ratio of stocked fish and seawater inside the cage when the fish are available
for harvest. n denotes cage number of a species in a farm. Table 1 shows the parameter
value of each species, the values of which are based on interviews with local farmers.
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Table 1. The stock rate and harvest period of Yellowtail, Tuna and Seabream.

Parameter Yellowtail Tuna Seabream

Rs 3.0% 0.3% 3.0%
Ts (year) 2.0 2.5 2.0

2.2.2. Fish Cage Detection

To get the number and size of fish cages used to calculate fish production, the location
of the fish farm and the type of fish species are figured out by Google Earth Pro software,
according to the Fish Farm Survey Database [20] and the MDA Situational Indication
Linkage [21]. Then the cage number, shape and size are identified based on the historical
satellite image of 2018 in Google Earth Pro software. Figure 2 shows one case of fish
cages detected. A part of cages is detected by the image analysis, and the others are
detected manually.
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Figure 2. An example of fish cage detected. The square cages are used for culturing yellowtail or sea
bream, and the circular cages are used for culturing tuna.

2.3. Calculation of Nutrient Load from Fish Farm

Waste from farms includes feed loss, fish excreta and metabolites. With the improve-
ment of feed quality and feeding technology, the feed wastage percentage is lower than
5% [22–24]. The Norwegian salmon farmers claim that feed loss in modern salmon produc-
tion, using camera assisted feeding control and acoustic registration of lost feed pellets, is
negligible and that there are no economic and environmental incentives to further reduce
feed loss [25]. The major wastes come from metabolites, following fish excreta. The nutri-
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ents of total nitrogen (TN) and total phosphorus (TP) are considered here. The calculation
flow of nutrient load from farms in this study is shown in Figure 3.
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The wet weight of fish (WWf; ton) is multiplied by the feed conversion ratio (FCRs) to
obtain the wet weight of feed (WWF; ton).

WWF = WW f × FCRs (4)

The dry weight of feed (DWF; ton) and the dry weight of fish (DWf; ton) are calculated
according to the water content in feed (WCF) and the water content in fish (WCf) by

DW = WW × (1−WC) (5)

The parameter values corresponding to each type of fish are different and are listed
in Table 2. The water content in feed is determined so that the compounded feed is used
for culturing yellowtail and seabream, and the raw fish is used for culturing tuna. The dry
weight of the feed minus the dry weight of the fish is the dry weight of waste (DWW; ton)

DWw = DWF − DW f (6)

Table 2. Parameter’s value of fish farm nutrient load calculation.

Parameter Yellowtail Tuna Seabream

FCR 2.5 10 2.5
WCf 10% 75% 10%
WCF 75% 75% 75%

The carbon content (CC) of the discharged waste was set at 40%. Calculate the dry
weight of carbon (DWC; tC) in the discharged waste by

DWC = DWw × CC (7)

The components ratio of nutrient released from fish farm changes depending on the
species and cultured location [9,26,27]. Basically, the feed is made of zooplankton and
smaller fish that eats planktons, partly of vegetable protein. Though the contents of nitrogen
and phosphorus in the feed have a variety, they are similar to the Redfield ratio on average.
Therefore, the dry weight of nitrogen and phosphorus (DWN; tN, DWP; tP) in the waste
discharged from the farms over a year is calculated according to the Redfield ratio in
this research.

The nutrient load is calculated from a cage for each species, and then summed to
estimate the total nutrient load in a fish farm which includes multiple cages and several
species. Finally, the total nutrient load is estimated for a bay which includes several
fish farms.
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2.4. Calculation of Nutrient Load from Land Inflow

Since the environmental carrying capacity of bays on aquaculture is affected by nutri-
ent concentration, nutrient loading from land is an important factor needed to be considered.
The commonly used method for estimating land inflow load is to calculate river inflow load
based on river flow and observational water quality data [28,29]. This method is suitable
for large rivers with abundant observational data available. For smaller rivers, flow and
water quality data are usually not easily obtained, so this method does not work. In the
Comprehensive Plan Survey of Sewerage Maintenance by Basin (CPSSMB) [30] conducted
by Ministry of Land, Infrastructure, Transport and Tourism of Japan, the emission load
amount of the entire target area is calculated and evaluated using the pollutant load factor
method. Research calculating river inflow from different sources using pollutant load
factor method also exist [31–35]. The pollutant load factor method is to multiply the set
discharged load unit by the corresponding cardinal number of each load source to obtain
the total load of each source. This method is not limited to large rivers and can calculate the
nutrient load discharge of rivers of various sizes. It is also possible to estimate historical
emissions and predict future changes.

This research uses the pollutant load factor method to estimate the nutrient load
from land inflow to the bays. Considering the scale and geographic characteristic of the
study area, it is assumed here that all discharged nutrient loads flow to the bay since the
watershed is not so large and the water with discharged nutrient flows promptly into the
sea. The calculation process is as follows (Figure 4).

Water 2022, 14, x FOR PEER REVIEW 6 of 16 
 

 

Table 2. Parameter’s value of fish farm nutrient load calculation. 

Parameter  Yellowtail  Tuna  Seabream  
FCR 2.5 10 2.5 
WCf 10% 75% 10% 
WCF 75% 75% 75% 

2.4. Calculation of Nutrient Load from Land Inflow 
Since the environmental carrying capacity of bays on aquaculture is affected by nu-

trient concentration, nutrient loading from land is an important factor needed to be con-
sidered. The commonly used method for estimating land inflow load is to calculate river 
inflow load based on river flow and observational water quality data [28,29]. This method 
is suitable for large rivers with abundant observational data available. For smaller rivers, 
flow and water quality data are usually not easily obtained, so this method does not work. 
In the Comprehensive Plan Survey of Sewerage Maintenance by Basin (CPSSMB) [30]con-
ducted by Ministry of Land, Infrastructure, Transport and Tourism of Japan, the emission 
load amount of the entire target area is calculated and evaluated using the pollutant load 
factor method. Research calculating river inflow from different sources using pollutant 
load factor method also exist [31–35]. The pollutant load factor method is to multiply the 
set discharged load unit by the corresponding cardinal number of each load source to 
obtain the total load of each source. This method is not limited to large rivers and can 
calculate the nutrient load discharge of rivers of various sizes. It is also possible to estimate 
historical emissions and predict future changes. 

This research uses the pollutant load factor method to estimate the nutrient load from 
land inflow to the bays. Considering the scale and geographic characteristic of the study 
area, it is assumed here that all discharged nutrient loads flow to the bay since the water-
shed is not so large and the water with discharged nutrient flows promptly into the sea. 
The calculation process is as follows (Figure 4). 

 
Figure 4. The calculation flow nutrient load from land inflow. 

The original generated load units of the four types of sources used here are the set 
value in CPSSMB [30]. The discharged unit of domestic wastewater is the generated unit 
of occurrence multiplied by the discharge rate, and the discharge rate differs depending 
on the method of sewage treatment [36]. This research is based on the 2015 population 
census [37] and the 2018 sewerage population penetration rate [38] to calculate the total 
nutrient load discharged from residential wastewater. The discharged load units of ani-
mal stock-breeding wastewater are the generated unit of occurrence multiplied by the 
discharge rate, and the discharge rate varies depending on the species of animals [36]. The 
cardinal number is the numbers of animal from the governmental statistical data [39]. The 
discharged load unit of industrial and non-point source used here is also the set value in 
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The original generated load units of the four types of sources used here are the set
value in CPSSMB [30]. The discharged unit of domestic wastewater is the generated unit of
occurrence multiplied by the discharge rate, and the discharge rate differs depending on the
method of sewage treatment [36]. This research is based on the 2015 population census [37]
and the 2018 sewerage population penetration rate [38] to calculate the total nutrient load
discharged from residential wastewater. The discharged load units of animal stock-breeding
wastewater are the generated unit of occurrence multiplied by the discharge rate, and the
discharge rate varies depending on the species of animals [36]. The cardinal number is
the numbers of animal from the governmental statistical data [39]. The discharged load
unit of industrial and non-point source used here is also the set value in CPSSMB [30]. The
cardinal number of industrial wastewater is the value of manufactured goods shipment
from the governmental statistical data [40]. In the non-point source load, four types of land
use areas of rice fields, agricultural land, forests, urban areas are considered, and the data
come from the land use mesh data of the Ministry of Land, Infrastructure, Transport and
Tourism of the Japanese government [41].
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The watershed boundary of each bay is obtained through GIS (ArcGIS, ESRI) soft-
ware, based on the watershed boundary data and elevation mesh data of the Ministry of
Land, Infrastructure, Transport and Tourism [42,43]. Calculate the area proportion of the
watershed area in each prefecture by GIS software. The sum of the discharge load for each
prefecture multiplied by the watershed area ratio is the discharge load for each bay from
the corresponding watershed.

2.5. Assessment Index

This study proposes three different assessment index (Equations (1)–(3)) [17,18], to
analyze the impact of different factors on the water environment, considering the topogra-
phy of the bay, the location of the farm in the bay and the nutrient load from both the farm
and land.

I1 =
Q

A ∗ H
(8)

I2 =
Q ∗ D
A ∗ H

(9)

I3−1 =
NL,tN ∗ NF,TN

A ∗ H
∗ D I3−2 =

NL,tP ∗ NF,TP

A ∗ H
∗ D (10)

As shown in Figure 5, Q (ton), A (km2), H (m) is the total fish production, the area and
the mean water depth of the bays, respectively. D (m) is the mean distance from fish farms
to bay mouth, which is defined as the line between the tips of peninsulas. NL,TN (TN) and
NL,TP (TP) is total nitrogen and total phosphorus from land inflow. NF,TN (TN) and NF,TP
(TP) is the total nitrogen and total phosphorus from fish farms in each bay.
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Figure 5. Illustration of parameters in the index. This is a case of bay with 3 fish farms within. D is
the mean value of the distance from farm 1, farm 2 and farm 3 to the bay mouth. NF is the total load
from farm 1, farm 2 and farm 3.

3. Results and Discussion
3.1. Fish Production Calculation
3.1.1. Fish Cages

To calculate the nutrient load from farms within each bay, the annual production of
farmed fish within the bay was calculated, identified from Google satellite image. Tables 3–5
are the statistics of the shape, size and number of yellowtail, tuna and seabream cages in
Kyushu. Yellowtail has the largest cage number and cultured area in Kyushu, with a total
of 7052 and 2935.7 ha. Most of them are square cages with a side length of about 8–15 m,
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the circular cage is larger in size, with a diameter of about 15–50 m. Tuna fish cage and
cultured area in Kyushu is the least compared to the other two fish, with a total of 874 and
204.8 ha. The cage size required for Tuna is larger, with a minimum length of 15 m and a
maximum of 85 m. Seabream has 983 cages in Kyushu, most of which are square cages
with a side length of about 6–12 m. Similar to the yellowtail case, the size of the circular
cage is larger, with a diameter of about 12–30 m.

Table 3. Fish cage and cultured area statistics of Yellowtail in Kyushu.

Shape
Size (m)

Number Cultures Area (ha)
Length Diameter Depth

Square 8–15 8 6676
2935.7Rectangular

Circular 15–50 8 376

Table 4. Fish cage and cultured area statistics of Tuna in Kyushu.

Shape
Size (m)

Number Cultures Area (ha)
Length Diameter Depth

Square
1263.2Rectangular 15–85 10 304

Circular 15–50 10 570

Table 5. Fish cage and cultured area statistics of Seabream in Kyushu.

Shape
Size (m)

Number Cultures Area (ha)
Length Diameter Depth

Square 6–12 8 866
204.8Rectangular

Circular 12–30 8 117

3.1.2. Fish Production Calculation

The production of Kyushu’s yellowtail, tuna and seabream in 2018 were 87,559.27 tons,
9688.57 tons and 12,108.01 tons, respectively, accounting for 63.34%, 54.92% and 19.93% of
Japan’s national output, respectively. Figure 6 shows the fish production distribution of
12 main cultured bay areas in Kyushu.

The calculated production of this study was compared with government statistics
production (Table 6). Compared with the Marine Aquaculture Production Statistics of
2018, the estimated yellowtail production of Kyushu area is 6.84% lower than the statistical
production, the calculated tuna production is 5.62% lower than the statistical production
and seabream is 7.75% lower than the statistical data.

One of the main reasons for the deviation of production data in Table 6 is that the
statistics of the Ministry of Agriculture, Forestry and Fisheries are not completely equal to
the actual aquaculture data. In the statistical process, due to the protection of commercial
secrets, some fishery information is not disclosed. Second, in the calculation of production
in this study, the number of fish cages is calculated based on satellite images. In fact, during
the breeding process, some fish farmers will sink the cages below the water surface to avoid
the impact of typhoons and red tides. In this case, the number of cages captured by satellite
images is less than the numbers actually farmed, so the calculated production is also lower
than the actual amount.
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Table 6. Fish production calculated in this research and the government statistics in 2018.

Species Yellowtail Tuna Seabream

Calculated data (ton) 87,559.27 9688.57 12,108.01
Governmental Statistics (ton) 93,994.00 10,266 13,125.00

Deviation −6.84% −5.62% −7.75%

3.2. Nutrient Load Analysis
3.2.1. Nutrient Load from Fish Farm and Land Inflow

According to the data available and production scale, nutrient load from fish farms
and land inflow of 12 main cultured bay areas is calculated as shown in Table 7. Bay areas
of Yatsushiro and Kagoshima ranked the top two in terms of annual emissions from both
fish farm and land inflow.

Table 7. Nutrient load amount from fish farms and land inflow.

ID Bay
Areas

TN Load from
Farm (ton/y)

TP Load from
Farm (ton/y)

TN Load from
Land (ton/y)

TP Load from
Land (ton/y)

1 Tsukumi 122 18.3 92 6.4
2 Saiki 690 103.5 702 48.5
3 Yonozu 272 40.7 32 2.2
4 Kusunoki 1417 212.5 41 2.8
5 Inokushi 829 124.3 60 4.2
6 Sumie 1760 263.9 27 2.2
7 Shibushi 819 122.8 2656 221.4
8 Kagoshima 3139 470.8 2655 220.2
9 Yatsushiro 5792 868.9 4444 300.0
10 Imanri 778 116.7 316 23.1
11 Tsushima 109 16.3 217 14.8
12 Goto 14 2.1 58 4.0
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3.2.2. Comparation between the Nutrient Load from Fish Farm and Land Inflow

Of the 12 counted bays in the Kyushu area, eight of them have a greater amount of
TN released from farms than from land (Figure 7) and all of them have a greater amount
of TP released from fish farms than land inflow (Figure 7). The Comprehensive Plan
Survey of Sewerage Maintenance by Basin has been conducted from 1970, regulating the
discharge of terrestrial nutrients to improve the water environment of the bay. Currently
the nutrient load from land inflow has been greatly reduced. It is assumed in this study that
all discharged nutrient loads flow to the bay and the water with discharged nutrient flows
promptly into the sea. The amount of nutrient load from land inflow maybe less actually.
On the contrary, the nutrient load release from inshore aquaculture has become a factor that
cannot be ignored. Water quality observation stations, which are currently mainly set near
the estuary, should also be considered near the fish farm. It should be noted that the supply
of nutrients from atmosphere, sea bottom, and the outer sea was ignored in the present
study. In particular, the nutrients release from the sea bottom may have ineligible effects on
the nutrients balance in the bay when the water around the sea bottom is hypoxic.
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Figure 7. The comparations between the TN from fish farm and land inflow (a), and the comparations
between the TP from fish farm and land inflow (b). The numeric labels on the X-axis represent the ID
of the bay areas as shown in Table 7.

3.2.3. Discharged Nutrient Load Ratio by Source from Land Inflow

For nutrient load from land inflow, the proportions of TN and TP amount from
different sources were analyzed (Figure 8). Among the four discharge sources, TN and
TP discharged from residential wastewater and non-point source accounted for the main
part. This study used the proportion of the area of the watershed in each prefecture to
calculate the nutrient load of the watershed, that means, assuming that the population,
animal stocking, industry and non-point sources are evenly distributed in each prefecture.
However, in fact, the geographical distribution of these sources is not even. Therefore, the
refinement of the discharge load calculation cell can improve the accuracy of the calculation.
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3.3. Assessment Index
3.3.1. Correlation Analysis

To test the performance of the assessment index and analyze the impact of different
parameters on environmental problems, the correlation analysis between index I1, I2, I3 and
the water quality problem is performed. Based on the availability of data, the frequency of
red tide occurrence reported in Kyushu area in 2018 is used as a representative of water
quality problems. The correlation analysis results are shown in Figure 9.
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Index I1 contains the annual production, area and water depth of the bay. Index
I2 added the distance from the farm to the bay mouth (D) compared to Index I1. The
comparison of (a) and (b) in Figure 9 shows that the distance between the farm and the
mouth of the bay maybe an important factor affecting water quality. The location of the
farm should be considered in aquaculture planning. Whereas the residence times and
water exchange rates also depend on the current velocity. The physical parameters such
as mean current velocity and the rate of exchange water may should be an alternative to
the distance from the farm to the bay mouth in the future work. Anyway, the exchange of
water seems to be an important factor for sustainability.

Index I3 replaces fish production in index I2 with TN (I3-1) and TP (I3-2) loads from
farms and land inflow. The value of parameters included in I3 are listed in Table 8, except
the TN and TP loading from fish farms and land inflow listed in Table 7.

Table 8. Index value of I3 and parameters information.

ID Bays Name Area (km2) H (m) D
(km) I3-1 I3-2

Red Tide
Frequency

1 Tsukumi 69.7 20.9 4127 31,749 331 0
2 Saiki 176.5 19.4 10,387 1,469,135 15,225 8
3 Yonozu 26.4 21.0 5932 92,989 959 2
5 Inokushi 20.4 9.2 1947 515,711 5415 8
6 Sumie 24.1 9.4 1882 394,701 4824 2
8 Kagoshima 1302.1 50.7 43,740 5,521,820 68,695 3
9 Yatsushiro 1200.0 20.4 18,332 19,276,589 195,195 13
10 Imanri 166.9 17.5 1300 109,432 1200 2
11 Tsushima 84.2 16.7 8963 150,168 1536 2
12 Goto 27.8 18.1 8457 13,341 138 1

I3 has positive relation with red tide occurrence frequency with coefficient of determi-
nation R2 of about 0.6. It shows that bay with higher value of I3 has higher possibility of
red tide occurrence and lower sustainability for aquaculture. On the one hand, the total
nutrient load from the farm is a better indicator of the impact of aquaculture on water
quality than the fish production. As the amount of waste released per unit weight of fish
production is different for different species of fish. In addition, the nutrient load from land
inflow should also be considered when assessing the environmental capacity of the bay.

Depending on Figure 9, the correlation coefficient of I3-1 and I3-2 with the red tide
frequency strongly affected by the point of Yatsushiro bay. However, Yatsushiro bay is very
important in Kyushu area with the largest amount of fish production and seriously red tide
problem, which cannot be ignored. Since only 10 bays are analyzed in this research, the
dataset currently is not big enough, the correlation coefficient is easier to be affected by any
point. In the future, the study area will be enlarged to whole cultured bays in Japan. More
datasets will be included to analyze the performance of the assessment index.

The red tide frequency was selected as an indicator of eutrophicated pollution in
the bay. However, the duration of the red tide occurrence was not taken into account in
the present study. Additionally, red tides are observed visually so this indicator is not
quantitative. The other indicators such as the concentration of nutrients in the sea should
be considered for the sustainability analysis in the future.

3.3.2. Sustainability Analysis

Through the previous verification, the value of the sustainable assessment index
I3 has a significant positive correlation with the occurrence frequency of red tides. The
higher the index value, the higher the possibility of red tide occur. Red tides lead to
reduction of dissolved oxygen in water bodies, which can cause fish suffocation and reduce
production. Therefore, areas with higher evaluation index values are less sustainable for
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marine aquaculture. Figure 10 shows the distribution of evaluation index values for the
12 major aquaculture bays in the Kyushu region.
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The annual aquaculture production in Yatsushiro is the largest at 35,861 tons, and
the annual emissions of TN and TP from the farm are about 5972 tons and 868.9 tons,
respectively. Yatsushiro has the largest watershed area of about 3000 km2, and the annual
inflow of TN and TP from land is about 4444 tons and 300 tons, respectively. The highest
index value of Yatsushiro indicates that the unit water body receives the highest proportion
of nutrient load. Moreover, according to the Japanese government’s evaluation of the
closure of the bays, the closure degree of Yatsushiro is very high at 32.49, and the sea area
with closure degree greater than 1 is considered to need to implement sewage discharge
regulations by the government.

Kagoshima has the second-highest index value, with a closure degree of 6.26. The
annual cultured fish production in Kagoshima is 19,612 tons, and the annual emissions of
TN and TP from the farm are about 3139 tons and 470.8 tons, respectively. The watershed
area is about 2000 km2, and the annual inflow of TN and TP from land is about 2655 tons
and 220 tons, respectively. Moreover, the average distance from the farms to the mouth of
the bay of Kagoshima is the largest, about 43 km.

Saiki and Shibushi rank third and fourth in index values, respectively, where TN and
TP emissions from land are smaller than emissions from farms. The possible reason is that
these two bays have first-class rivers flowing into them, and the bay areas are not large,
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170 km2 and 330 km2, respectively, so the unit water body receives more nutrient load from
land inflow.

Based on the analysis, Yatsushiro bay shows the most serious environmental problem,
where both the nutrient loading and assessment index show the highest value, and red
tide problems are frequently reported. Although the fish farming can be continued, the
degradation of the surrounding environment does not ensure the sustainable development
of aquaculture. Due to the dataset currently obtained, it is difficult to present a threshold
value for the index. In the future, more parameters (current velocity, closure degree, etc.)
will be considered, and the study area will be enlarged to all cultured bays in Japan. During
the improvement of the index and larger amount of the datasets, we are aiming to provide
a threshold value of the assessment index.

4. Conclusions

To evaluate the sustainability of inshore marine aquaculture, this study proposes an
assessment index to analyze the factors that may have an impact on the environmental
capacity of the aquaculture area. The results show that the location of the fish farm may
be a key factor impacting of the water environment from aquaculture, in addition to the
large amount of nutrient load discharged into the water body from fish farms and land
inflow. The location of the fish farms had an effect on the residence time of nutrients
within the bay. In addition to farm location, current velocity also affected residence time
and water exchange rate within a bay. In the future, more sophisticated models with
hydrodynamics parameters will be added to improve the assessment index. In addition,
among the 12 major aquaculture bays in the Kyushu region, eight of them had more nutrient
loads from farms than land inflow. Therefore, in the planning of marine aquaculture,
the amount of aquaculture, the location of the farm, the inflow of nutrient load on the
land, and the geographical characteristics of the bay should be considered to measure the
sustainability of the aquaculture in the sea area.

Since only 10 bays are analyzed in this research, the dataset is currently not big enough,
the correlation coefficient is easier to be affected by any point. Additionally, it is difficult to
provide a threshold value for the index due to current dataset scale. In the future, the study
area will be enlarged to whole cultured bays in Japan. More datasets will be included to
analyze the performance of the assessment index.
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