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Abstract: The sulfate-reducing bacteria-mediated reduction process is considered to be an important
mechanism affecting arsenic migration and transformation in anaerobic environments. To investigate
the effect of sulfate-reducing bacteria in a high-arsenic aquifer on arsenic migration and transfor-
mation, the typical sulfate-reducing bacteria Desulfovibrio vulgaris was selected for micro-cosmic
experiments to simulate a groundwater environment with or without sulfate amendment. The
reduction of Fe(III) and As(V) by Desulfovibrio vulgaris was identified, and Fe(III) and As(V) were
reduced in both sulfate-free and sulfate-containing systems. However, the addition of 1 mM sulfate
significantly enhanced Fe(III) and As(V) reduction. Compared with no sulfate addition, 1 mM sulfate
increased the reduction rates of Fe(III) and As(V) by 111.9% and 402.2%, respectively. The sulfate
process mediated by Desulfovibrio vulgaris also remarkably promoted arsenic release in sediments.
These results indicated that sulfate concentration should be considered when sulfate reduction is
used as a remediation method for arsenic pollution in groundwater.

Keywords: sulfate reduction; bio-reduction of As/Fe; high arsenic sediments; sulfate concentration

1. Introduction

Arsenic (As), a toxic metalloid, is widely present in the natural environment and has
strong toxicity and carcinogenicity [1]. Endemic arsenic poisoning caused by drinking high-
arsenic groundwater is a worldwide geological, environmental, and health problem [2,3].
Long-term drinking of high-arsenic groundwater can cause high-risk diseases such as skin
cancer and lung cancer [4,5]. Arsenic and arsenic compounds have mutation, teratogenic,
and even carcinogenic properties, and have been listed by the International Agency for
Research on Cancer (IARC) as a Class I carcinogen [6]. As the global problem of high
arsenic-groundwater becomes more prominent, people are paying more and more attention
to the geochemical behavior of arsenic in groundwater. The reduction and dissolution
of Fe (hydr) oxide and reduction of arsenate (As(V)) to a more mobile arsenite (As(III))
by microorganisms was considered to be the main reason for the arsenic release into
groundwater [7,8].

Sulfate-reducing bacteria (SRB) is a kind of ubiquitous functional bacteria in the
environment, which is a strictly anaerobic bacteria capable of sulfate reduction [9,10]. They
use oxidized forms of sulfur (such as S0, S2O3, and SO4

2−) as electron acceptors, and
sulfides are the final product [11]. Sulfate isfirst reduced to sulfite, and the generated
sulfite was then converted to sulfide under the action of sulfite reductase in dissimilatory
sulfate pathway [11]. The sulfur cycle is an important part of the geochemical cycle and
further affects arsenic cycle [12,13]. Some SRB strains, such as Desulfovibrio vulgaris (ATCC
strain 7757), can reduce As(V) to As(III) through biological sulfide at high pH [14,15].
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Luo et al. [16] confirmed that Desulfovibrio vulgaris DP4 mediated the reduction of adsorbed
on nano-TiO2 As(V) by in situ ATR-FITR experiments. However, As(V) reduction was not
observed in the abiotic experiment with sulfide as a reducing agent, even if the ratio of
sulfide to As(V) reached 524. Dissolved sulfide can serve as an electron donor for abiotic
As (V) reduction, but this process is highly dependent on pH [14,17,18]. The molar ratio
of sulfide to As(V) was only 2:1, and As(V) reduced to As(III) at pH 4~5. However, even
if the molar ratio of the initial sulfide to As(V) reached 100:1 at pH 7, As(V) reduction
was not observed [18]. Some SRB strains can directly use As(V) as the electron acceptor
for dissimilation arsenic reduction [19,20]. Macy et al. [20] isolated two sulfate-reducing
bacteria capable of reducing As(V). When lactic acid was used as an electron donor, the
isolated two desulfurization bacteria strains both reduced As(V) and sulfate simultaneously.

More and more evidence has indicated that SRB plays an important role in the bio-
geochemical cycle of heavy metals in soil [21–23]. The sulfate reduction process generates
sulfide under anaerobic conditions, which has an important influence on the migration
and transformation of arsenic. Biological sulfide is an effective reducing agent for Fe(III)
oxide minerals, which drives arsenic release into groundwater. In addition, sulfide can
reduce arsenic migration by promoting the formation of iron sulfide or arsenic sulfide
precipitation [24–26]. A previous study has shown that microbial sulfate reduction process
in the anaerobic soils of flood zones achieved arsenic sequestration, which was due to
As2S3 analogue formation related to the Mackinaw mine [27]. The kinetic study of arsenic
in Jianghan Plain aquifers demonstrated that microbial-mediated sulfate reduction pro-
moted non-biological reduction of arsenic-containing iron oxides after the artificial input of
sulfate [28]. In addition, the presence of thioarsenic species has been found in the ground-
water of Bangladesh and Datong Basin, China, in recent years [29,30]. Excessively reduced
sulfide reacts with arsenic to form thioarsenic compounds, which enhance arsenic mobility
in groundwater [26]. The SRB-mediated reduction process is considered to be a critical
mechanism affecting arsenic activation, which is essentially related to the biogeochemical
cycle of S [21,31]. However, the explanatory factors that control As mobility are still poorly
understood in the SRB-mediated As/Fe/S coupled biogeochemical cycle.

This study aims to explore the effect of SRB action on arsenic migration and trans-
formation by simulating the anaerobic environment of groundwater and utilizing typical
SRB Desulfovibrio vulgaris. The main aims of this study are to: (i) explore the effect of
the bacteria-mediated sulfate reduction process on the biological reduction of Fe(III) and
As(V); (ii) determine the effect of the bacteria-mediated sulfate reduction process on arsenic
migration and transformation in sediments. The results will be helpful for improving
arsenic biogeochemical cycle theory in high-arsenic shallow groundwater systems and
provide theoretical guidance for bioremediation of arsenic-contaminated aquifer.

2. Materials and Methods
2.1. Biological Material

A culture of Desulfovibrio vulgaris (CGMCC No.:1.5190) was purchased from CGMCC
(China General Microbiological Culture Collection Center). Desulfovibrio vulgaris was grown
to the late exponential phase under anaerobic conditions in Postgate C medium at 37 ◦C.

2.2. Sample Collection and Characterization

The sediment samples used in the experiments were collected from a depth interval of
18.6–18.8 m from a 50 m deep borehole in Shanyin County (39◦21′ N, 112◦51′ E) in Datong
Basin, Shanxi Province. Core samples packed in polyethylene bags were sealed in a PVC
pipe immediately after retrieval, and then transported to the laboratory for freeze-drying.
The drying sediments were passed through a 0.149 mm sieve and stored at 4 ◦C in the dark
prior to further experiments.

Physico-chemical parameters of the sediment are summarized in Table 1. Four grams
of sample and 10 mL of deionized water were mixed to take pH measurements. The dry
sediment (0.5 g) was digested with 9 mL HNO3 and 3 mL HCl. The concentrations of dis-
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solved ions were determined by inductively coupled plasma optical emission spectrometry
(ICP-OES). All samples were diluted several times to adjust for the operating range and
then determined.

Table 1. Physico-chemical parameters of the sediments.

Original Sediment pH As
mg/kg

Ca
g/kg

Mg
g/kg

Mn
mg/kg

Al
g/kg

Fe
g/kg

8.47 18.4 2.71 0.818 48.1 1.64 1.81

2.3. Effects of Sulfate Reduction Process on Dissolved Fe(III) and As(V) Reduction

The reduction effect of Desulfovibrio vulgaris on dissolved Fe(III) and As(V) was deter-
mined. The artificial groundwater medium with the following constituents was used for the
incubation treatments (g L−1): KH2PO4, 0.10; NH4CI, 1.0; CaCl2·6H2O, 0.4; MgCl2·6H2O,
0.1; sodium lactate, 2; yeast extract, 0.2. To investigate the role of sulfate in the Fe(III)/As(V)
bio-reduction process under anaerobic conditions, an additional 1 mM sulfate was added
to the medium. This ingredient was chosen to represent natural groundwater in a sulfate-
reducing environment, and sulfate concentration selection depended on the sulfate content
in the sulfate soil wetland groundwater [32–34]. An additional 1 mM ferric citrate or 25 µM
arsenate were added to test Fe(III) and As(V) reduction by Desulfovibrio vulgaris. There
were three parallel treatment groups for each sulfate concentration. The pH of the medium
was adjusted to 7.2 with NaOH. Anaerobic bottles were used as a medium for microbial
metabolism. The adjusted pH solution was dispensed into 100 mL anaerobic bottles and
deoxygenated with pure N2 for 20 min. The bottles containing culture medium were sealed
with thick butyl rubber stoppers (fixed with an aluminum gland) and autoclaved at 121 ◦C
for 30 min. Desulfovibrio vulgaris cultured to the late logarithmic stage were washed three
times with sterile water in the glove box, and then inserted into anaerobic bottles with 2%
inoculum. The anaerobic bottles were placed in an incubator at 32 ◦C, mixed well every
24 h, and sampled with a syringe after inoculation. All experiments were performed in
triplicate. Error bars indicated standard deviation.

2.4. Effects of Sulfate Reduction Process on Migration and Release of Arsenic in Sediments

The composition of the artificial groundwater medium is the same as described in
Section 2.2. Sieved sediment samples (20 g) were autoclaved in anaerobic bottles at 121 ◦C
for 30 min, then synthetic groundwater (200 mL) was combined with 0 or 1 mM sulfate.
Desulfovibrio vulgaris cultured to the late logarithmic stage were washed three times with
sterile water in the glove box and then inserted into the anaerobic bottles with 2% inoculum.
All the mixtures were cultured in a shaking incubator at 32 ◦C (200 rpm) and sampled with
a syringe after mixing them regularly during the 15-day experiment. All experiments were
performed in triplicate and standard deviations were indicated with error bars.

2.5. Sample Analyses

Sub-samples were collected with a sterile syringe for analysis on a regular basis. A 2 mL
unfiltered sample was used for pH determination. The cell density (OD600nm) of bacteria
was analyzed by UV spectrophotometer (UV-1800PC, Shanghai Mapada Instrument Co.,
Ltd., Shanghai, China) at λ = 600 nm using 2 mL unfiltered samples. One milliliter of
unfiltered sample was mixed with 1 mL of 1 M HCl for 24 h, and then total Fe(II) was
quantitated in the filtrate. The sample filtered with a 0.22 µm sterile syringe filter was passed
through an ultraviolet spectrophotometer (UV-1800PC, Shanghai Mapada Instruments Co.,
Ltd., China) to analyze the concentration of dissolved Fe(II), sulfate, and sulfide. Fe(II)
concentration was analyzed at 562 nm according to the method used by the authors’
research group [35]. Sulfide concentration was determined at 665 nm by methylene blue
method [36]. Sulfate concentration was analyzed at 450 nm by Hash SulfaVer 4 sulfate
determination reagent powder pillow pack. Samples to be tested for arsenic were pretreated
according to Le et al. [37]. Concentrations of arsenic in different species were analyzed
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by hydride generationatomic fluorescence spectroscopy (HG-AFS; AFS-830, Beijing Jitian
Instrument Co., Ltd., Beijing, China).

Arsenic in sediment samples on the 5th, 10th, and 15th day of the experiment were
determined using sequential extraction methods [38]. Briefly, samples were freeze-dried
and extracted in the order of eight parts: (F1) ion-bound arsenic; (F2) strongly adsorbed
arsenic; (F3) co-precipitated arsenic of minerals sensitive to low pH; (F4) amorphous and
weakly crystalline Fe(hydr)oxide bound arsenic; (F5) crystalline iron oxide co-precipitated
arsenic; (F6) oxides and silicates co-precipitated arsenic; (F7) pyrite and amorphous As2S3
co-precipitated arsenic; (F8) orpiment and remaining recalcitrant arsenic minerals.

3. Results and Discussion
3.1. Effects of Sulfate Reduction Process on Dissolved Fe(III) Reduction

Figure 1 shows the variation of pH value during the Fe(III) reduction experiment. The
initial pH was 7.2, and non-biological control groups were basically not changed. The
pH of each treatment group decreased after being connected to Desulfovibrio vulgaris. The
strain utilized carbon source sodium lactate in medium to produce small organic acids and
H+ [39]. Compared with the group without sulfate addition, pH value of the group with
1 mM sulfate was higher due to the alkaline by-product of sulfate reduction [40,41]. The
pH of the group treated with 0 and 1 mM sulfate was 6.58 and 6.92, respectively.
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Figure 2a shows the change of sulfate concentration during the experiment. Sulfate
in the 1 mM sulfate treatment group was consumed to the detection limit within 2 days.
The reduction of sulfate to sulfide is an eight-electron step process carried out through a
variety of intermediates. Sulfate-reducing bacteria usually do not change the intermediate
oxidation state and only produce the final product sulfide [39]. Therefore, 1 mM sulfate
should have 1 mM sulfide production. However, the detected concentration of sulfide
was low, reaching a peak of 105.87 µM on day 2 and decreasing slightly to 99.95 µM at the
end (Figure 2b). The result was attributed to the reaction of sulfide with Fe(III) and Fe(II).
Sulfide acted as a strong reducing agent of Fe(III) when sulfate was reduced by bacteria;
the resulting free sulfide could rapidly reduce Fe(III) (Equation (1)) [42]. In addition, excess
sulfide would combine with Fe(II) to form ferrous sulfide (FeS) (Equation (2)) [27,43,44].
The consumption of sulfide made the final detected sulfide concentration in solution much
lower than the theoretical value of 1 mM. Figure 2c,d show the changes of dissolved Fe(II)
and total Fe(II). The concentration of dissolved Fe(II) and total Fe(II) remained basically
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the same in the treatment without sulfate addition. Fe(II) concentration increased to
0.42 mM on the second day and remained stable during the remaining time. The results
indicated that Desulfovibrio vulgaris had a certain Fe(III) reduction ability, and the reduction
rate of Fe(III) was 42%. The production rate of total Fe(II) increased significantly in the
sulfate-supplemented treatment group and reached 0.89 mM on day 1, remaining stable
thereafter. The increase in Fe(III) reduction rate was due to the abiotic reduction of Fe(III)
by sulfide [45].Previous study has shown that Fe(II) concentrations first increased and then
decreased in the presence of both microbial-mediated sulfate and Fe(III) reductions [46].
The decrease dissolved Fe(II) concentration was observed within 1–2 days, which was
attributed to the reaction of sulfide with Fe(II) to form FeS (Equation (2)) [47]. In addition,
the medium without sulfate was brown-green, while the medium with 1 mM sulfate was
black at the end of the experiment (FeS; Equation (2)).

H2S + 2Fe3+ → 2Fe2+ + S0 + 2H+ (1)

Fe2+ + S2− → FeS ↓ (2)
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3.2. Effects of Sulfate Reduction Process on Dissolved As(V) Reduction

Figure 3 shows the change of OD600nm of Desulfovibrio vulgaris. during the As(V)
reduction experiment. The growth of bacteria in the two treatment groups was different. In
the treatment without adding sulfate, the OD600nm gradually increased within 0.5 d, then
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slowly increased until it reached the maximum value of 0.047 on day 1. There were slight
fluctuations in the subsequent incubation time. In the treatment group added with sulfate,
the bacteria showed logarithmic growth on day 1, until the OD600nm reached the maximum
value of 0.097, which remained stable during the subsequent experimental period. The
addition of 1 mM sulfate increased the growth of bacteria by 106.4%. Sulfate-reducing
bacteria provide energy for cell synthesis and growth by coupling organic matter oxidation
and sulfate reduction [11,39].
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Figure 4 shows the changes in pH during the experiment. In the treatment group
without sulfate, pH value continued to decrease on the first day until it reached 6.84, and
then remained basically unchanged. In the treatment group with 1 mM sulfate, the pH
value decreased to 7.03 within 0.5 d, then rose to 7.14 on day 1. There was basically no
change in the later period of incubation. The pH of the two treatment groups dropped to a
certain extent after the strain was connected, which was due to the carbon source sodium
lactate being oxidized to release H+. However, in the treatment group with sulfate addition,
the sulfate reduction rate was lower within 0~0.5 d (Figure 5a), mainly due to the oxidation
of sodium lactate to produce acid, which lowered the pH value. The sulfate reduction rate
was faster within 0.5~1 d (Figure 5a), and the by-products produced in the sulfate reduction
process were alkaline, causing a certain increase in pH [40,41]. Sulfate was all reduced after
1 d, and pH value no longer changed.

After inoculation with Desulfovibrio vulgaris, sulfate concentration began to decrease
with the accumulation of sulfide (Figure 5). Sulfate concentration had been lower than the
detection limit after 1 d, and sulfide concentration had increased to 0.98 mM simultaneously.
Sulfide concentration decreased slightly to 0.93 mM at the end of the incubation period. It
revealed that Desulfovibrio vulgaris induced sulfate reduction and sulfide production, and
70 µM sulfide participated in other reactions related to arsenic.

The concentration of As(III), As(V), and total dissolved arsenic [As(T)] in the culture
medium was detected (Figure 6). Rochette et al. [20] found that the reduction of As(V) by
sulfide was a process strongly related to pH. As(V) reduction was not observed, even when
the molar ratio of the initial sulfide to As(V) was 100:1 at pH 7. Due to the neutral pH sulfate
reduction system, As(III) may combine with sulfide to form arsenic sulfide, or further form
soluble thioarsenite [48–50]. Therefore, As(V) concentration change was used to measure
the biological reduction of As(V). As(V) reduction was not observed in non-biological
controls. This indicated that the reduction of As(V) was mediated by Desulfovibrio vulgaris.
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In the treatment group without adding sulfate, As(V) concentration continued to
decrease slowly, and the final concentration was 21.40 µM. The reduction rate of As(V) was
14.4%. Correspondingly, As(III) concentration slowly increased during the experiment until
it reached a final concentration of 3.48 µM. As(T) concentration remained constant during
the experiment. The results revealed that Desulfovibrio vulgaris has a certain As(V) reduction
ability. The addition of 1 mM sulfate significantly promoted the reduction of As(V). In the
1 mM sulfate treatment group, As(V) was continuously reduced during the experiment.
As(V) concentration dropped to 6.92 µM on day 7, and the As(V) reduction rate reached
72.3%. The addition of sulfate to promote the reduction of As(V) can be explained from two
aspects. On the one hand, the addition of 1 mM sulfate significantly promoted the growth
of bacteria (Figure 3), which enhanced the reduction of As(V) by the strain. On the other
hand, the production of biogenic sulfide promoted the bio-reduction of As(V) [15,51,52].
The concentration of As(III) continued to rise, eventually reaching 7.98 µM. The increase in
As(III) concentration was not synchronized with the decrease in As(V) concentration. As(III)
can easily combine with free sulfide to form insoluble arsenic-sulfur compounds, such as
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orpiment (As2S3) (Equation (3)) [17,27]. The decrease in As(T) concentration from 25 µM
to 20.03 µM also proved that 19.9% of arsenic was precipitated during the experiment.
At the end of the experiment, the difference between the As(T) concentration and the
sum of the concentrations of As(III) and As(V) was 5.13 µM, indicating the presence of
other soluble arsenic species in the solution in addition to As(III) and As(V). In the sulfate
reduction system, this is usually the thioarsenic species [53]. The formation of soluble
thioarsenic species was due to the further reaction of excess sulfide with arsenic sulfide
precipitation (Equation (4)) [48–50]. These results demonstrated that approximately 25.6%
of arsenic existed in the form of thioarsenic at the end of the experiment. Previous study has
shown that under the condition of strong sulfate reduction, thioarsenic accounts for a large
proportion of total arsenic through thermodynamic simulations. This may be due to the
formation of high concentrations of sulfide that promote the formation of thioarsenate [24].

H3AsIIIO3 +
3
2

H2S→ 1
2

As2S3 + 3H2O (3)

As2S3 + HS− + OH− → 2As(OH)S2−
2 + H2O (4)

Water 2022, 14, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 6. The changes of As(III) (a), As(V) (b), and As(T) (c) concentrations during As(V) reduction 
experiment. Error bars indicate standard deviation of triplicates. 

3.3. Effects of Sulfate Reduction Process on Migration and Release of Arsenic in Sediments 
In the biological treatment group, the pH value of both groups first increased and 

then decreased (Figure 7). The initial increase in pH was due to the higher pH of the soil 
sample, which increased in a short period of time after mixing with the culture medium. 
In the treatment group without sulfate, pH value increased within 0~3 d, reached a peak 
of 7.87 on day 3, and then slowly decreased to 7.61. In the treatment group with 1 mM 
sulfate added, the pH value rose to 7.93 within 2 days, and then slowly decreased to 7.63. 
The reduction rate of 1 mM sulfate was the fastest in 1~2 d (Figure 8a), and the by-products 
in the reduction process were alkaline, so pH reached the maximum on day 2. The con-
centration of 1 mM sulfate was lower than the detection limit on day 4, indicating that 
sulfate in the medium was basically consumed. Sulfide reached a maximum of 82.37 μM 
on the second day, and then dropped to a very low concentration. The results suggested 
that sulfide produced by sulfate reduction participated in reactions in the sediment sys-
tem. 

Figure 6. The changes of As(III) (a), As(V) (b), and As(T) (c) concentrations during As(V) reduction
experiment. Error bars indicate standard deviation of triplicates.



Water 2022, 14, 942 9 of 15

3.3. Effects of Sulfate Reduction Process on Migration and Release of Arsenic in Sediments

In the biological treatment group, the pH value of both groups first increased and
then decreased (Figure 7). The initial increase in pH was due to the higher pH of the soil
sample, which increased in a short period of time after mixing with the culture medium.
In the treatment group without sulfate, pH value increased within 0~3 d, reached a peak
of 7.87 on day 3, and then slowly decreased to 7.61. In the treatment group with 1 mM
sulfate added, the pH value rose to 7.93 within 2 days, and then slowly decreased to
7.63. The reduction rate of 1 mM sulfate was the fastest in 1~2 d (Figure 8a), and the by-
products in the reduction process were alkaline, so pH reached the maximum on day 2. The
concentration of 1 mM sulfate was lower than the detection limit on day 4, indicating that
sulfate in the medium was basically consumed. Sulfide reached a maximum of 82.37 µM
on the second day, and then dropped to a very low concentration. The results suggested
that sulfide produced by sulfate reduction participated in reactions in the sediment system.
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The changes of dissolved As(III), As(V), and As(T) during the sediment experiment
were measured (Figure 9a–c). In the abiotic controls, the concentrations of As(III), As(V),
and As(T) were maintained at a low level, and the release of Fe(II) was not detected. The
result shows that in the absence of bacterial action, the sediment is stable. After bacteria
inoculation in the group without sulfate, As(V) and As(T) were released into the water phase
in the first two days, and reached the peak values of 0.50 µM and 0.63 µM, respectively
on day 2, which were basically constant during the subsequent cultivation period. As(III)
concentration remained at a low level throughout the experiment. Corresponding to the
liquid phase experiment, Desulfovibrio vulgaris had a weaker ability to reduce As(V) without
adding sulfate. Sulfate significantly promoted arsenic release in the sediments. In the group
added with 1 mM sulfate, As(V) and As(T) were released rapidly in the first 4 days, and
reached the maximum value of 1.05 and 2.20 µM on day 4. The concentration of As(III)
also reached 0.97 µM. Sulfate reduction was completed within 4 days simultaneously
(Figure 8), which revealed that sulfate reduction was beneficial to the release of arsenic into
the water phase.
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Arsenic released into groundwater was mainly due to the microbially mediated reduc-
tion of As(V) to As(III) and reductive dissolution of arsenic-loaded Fe (hydr) oxides [7,54].
According to the reduction experiment of dissolved Fe(III) and As(V) by Desulfovibrio
vulgaris, the sulfate reduction process significantly promoted Fe(III) and As(V) reduction
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(Figures 2 and 6). Therefore, the sulfate reduction process mediated by the strain can
significantly promote arsenic release in the sediments. Specifically, in the early stage of the
experiment, the observed reduction of As(V) was relatively weak. It suggested that As(III)
desorption by Fe(hydr)oxides was not the main process of arsenic mobilization. The release
of arsenic may be mainly due to the abiotic reduction of arsenic-containing Fe(hydr) oxides
in sediments (Equation (5)). At the same time, the concentration of dissolved S2− and Fe2+

was at a relatively low level, which corresponded to results of the liquid phase experiment,
indicating that sulfide combined with ferrous iron while reducing iron (hydr) oxide. In
a previous study, it was found that strong sulfate reduction resulted in high arsenic and
low iron levels at the end of the incubation [24]. On the third day of incubation, As(III)
concentration in the group treated with 1 mM sulfate was increased. This was due to the
reduction of As(V) to As(III) by SRB reduction, resulting in arsenic release. With 1 mM
sulfate addition, As(T) concentration decreased slightly after reaching the peak, which was
attributed to the resorption of arsenic by FeS. Studies have shown that FeS was the first
authigenic mineral formed during the sulfidation of arsenic-containing Fe(hydr) oxides [55].
FeS can adsorb arsenic released into the aqueous solution again, thereby affecting the con-
centration of arsenic in groundwater and the redistribution of arsenic in sediments [56,57].
Fe2+ concentration began to rise after 4 days, indicating that the iron sulfide precipitation
reached equilibrium.

HS− + 2Fe(OH)3(s) + 5H+ ↔ 2Fe2+ + S0(s) + 6H2O (5)

Under anaerobic conditions, the relative content of different forms of arsenic in the
sediments mediated by Desulfovibrio vulgaris is shown in Figure 10. Eight-step extraction
of arsenic was performed on the samples on the 5th, 10th, and 15th days. The relative
content of F6 in the two treatment groups increased, mainly due to the large change in the
water-soluble arsenic content. Because the water-soluble arsenic content in the sediments is
relatively small under actual conditions, this situation is not discussed. In the experimental
group without sulfate, the strong adsorption of arsenic (F2) and co-precipitated arsenic
of minerals sensitive to low pH (F3) decreased from 11.50% and 11.47% to 2.54% and
9.86%, respectively. This suggested that arsenic release was mainly from these two parts,
and remaining components had no obvious changes. In the experimental group added
with 1 mM sulfate, the proportions of strongly-adsorbed arsenic (F2) and amorphous and
weakly crystalline Fe(hydr)oxide bound arsenic (F4) decreased from 11.5% and 9.93% to
5.25% and 8.72%, respectively. It revealed that the sulfate reduction process mediated by
Desulfovibrio vulgaris promoted arsenic release from F2 and F4 components, and made F2
and F4 components transform to other components. Compared with crystalline iron oxides,
bacteria are more likely to reduce iron oxide minerals with poor crystals [58]. In addition,
F3 increased from 10.4% to 12.5%, indicating that arsenic in the F3 component increased
under sulfate reduction action. The arsenic includes arsenic combined with carbonates
and irregular sulfide and oxides [38]. Ferrous sulfide was irregular sulfide, indicating
that formed ferrous sulfide may have an adsorption effect on arsenic. This was consistent
with the change of As and Fe concentrations (Figure 8). In addition, arsenic in the F5
component increased from 12.7% to 15.4%. This illustrated that arsenic in the remaining
components may be converted to arsenic bound to crystalline iron oxide under sulfate
reduction, resulting in arsenic readsorption. Arsenic in the F8 fraction increased from
0.173% to 0.199%, which suggested that there were also a small amount of refractory arsenic
minerals such as orpiment. This indicates that the sulfate reduction process significantly
affects arsenic species transformation in sediments.
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4. Conclusions

This study aimed to explore the effect of sulfate reduction mediated by Desulfovibrio
vulgaris on the reduction and release of As/Fe in a groundwater environment. Microcosm
experiments demonstrated that 1 mM sulfate significantly enhanced Desulfovibrio vulgaris
growth and bio-sulfide formation, and thus stimulated the reduction of dissolved As (V)
and Fe (III). Because the main pathways of arsenic migration from sediment to groundwater
were the reduction and dissolution of arsenic-bearing iron oxides and the reduction of
arsenate to more easily migrated arsenite, sulfate reduction significantly promoted arsenic
mobilization in the sediments from these two aspects. The formed ferrous sulfide had a
certain adsorption effect on arsenic, which slightly reduced the arsenic concentration in the
aqueous phase. However, the release of arsenic at the 1 mM sulfate level was much greater
than adsorption. The migration and transformation of arsenic are strongly affected by
sulfate reduction. When using biological sulfate reduction as a groundwater remediation
strategy, sulfate concentration should be considered.
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