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Abstract: Biological settling ponds are a practicable approach for treating super-intensive shrimp
aquaculture wastewater for almost all shrimp producers in the Vietnamese Mekong Delta (VMD).
The optimization of the hydraulic retention time (HRT) of biological settling ponds plays a crucial
role in establishing the stability of outflow wastewater quality and suitability of the settling pond area
(SPA). This study aims to suggest appropriate HRT and SPA for super-intensive shrimp wastewater
treatment systems based on the National Standard (QCVN 02-19:2014/BNNPTNT) and the best aqua-
culture practices (BAP) standards and guidelines. We investigated 20 typical super-intensive shrimp
farms in the VMD and collected effluent samples from siphoning process, daily water exchange, and
outflow of biological effluent-treatment settling ponds. The results showed that the average of each
super-intensive shrimp farm produced wastewater at approximately 218 m3 ha−1 day−1. The contam-
inant loads of TSS, COD, TKN, and TP were commensurate to 177, 113, 9.86, and 4.19 kg ha−1 day−1,
respectively. Based on the relationship between outflow COD, TSS concentrations, and HRT of
biological-surveyed settling ponds, a 13.4-day HRT and 1934-m2 SPA were suggested to optimize
the super-intensive shrimp wastewater treatment systems. Our recommendation for further work
is to continuously optimize the HRT and SPA rates of functional ponds (anaerobic, facultative, and
maturation) to ameliorate the engineering configuration of the recommended biological settling pond.

Keywords: biological settling ponds; hydraulic retention time; settling pond area; shrimp wastewater
treatment; super-intensive shrimp farming

1. Introduction

Globally, Vietnam is one of the top-shrimp producers and exporters [1]. Extensive
shrimp farms in Vietnam contain 675,000 ha of production ponds [2]. The annual yield
of the farms is roughly 290 Tton y−1 of P. monodon and 475 Tton y−1 of L. vannamei [3].
The Vietnamese Mekong Delta (VMD) accounts for approximately 89.3% of the total na-
tional shrimp produced, which is concentrated in the five coastal provinces of Kien Giang,
Ca Mau, Bac Lieu, Soc Trang, and Tra Vinh [4]. Vietnamese government policy has re-
cently encouraged hi-tech shrimp farms to enhance national revenue by up to 10 billion
USD by 2025 [5]. In the most common models, the super-intensive shrimp farm (SI-SF)
system, especially Pacific white shrimp (L. vannamei), has recently been adopted due to
their potential for high yield and commercial profits [6,7]. In the SI-SF, the stocking density
commonly fluctuates from 250 to 300 shrimp per m−3, and the yield regularly touches
10–15 ton ha−1, while conventional shrimp farming only obtains 0.8–1.5 ton ha−1 [1]. Al-
though the yield efficiency from SI-SF is in sight, the rapid expansion of SI-SF has recently
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put high pressure on the vicinity environment and natural ecosystems [6,8]. The operation
of SI-SF requires a large amount of daily water exchange during farming, and produces
considerable volumes of wastewater [9,10]. Wastewater from SI-SF typically comprises
daily siphoning (WS) and water exchange (WE) recognized as biodegradable compositions.
The physiochemical characteristics of the wastewater have generated considerable recent
interest. Super-intensive shrimp wastewater (SI-SW) mainly includes urine, fecal matter,
and uneaten shrimp feed [11]. Wastewater derived from SI-SF is characterized by a high
chemical oxygen demand (COD), biological oxygen demand (BOD), and high concentra-
tions of total suspended solids (TSS), dissolved particulate matter, volatile suspended solids
(VSS), nitrogen (N), and phosphorous (P) [12,13]. Untreated wastewater is directly dis-
charged into the surrounding water bodies, resulting in severe eutrophication and adverse
effects on the aquatic ecosystem [14]. Moreover, ineffectively controlled wastewater often
causes the spread of infectious diseases and thus a decline in aquacultural productivity [10].
Accordingly, wastewater treatments are obligatorily required before disposal [15].

In the VMD, SI-SF models generally discharge wastewater into settling ponds for
biological treatment before releasing it to the external environment [5]. The effectiveness
of SI-SW biotreatment processes by settling ponds mainly relies on the predominance of
natural phenomena, requiring a long detention time to eliminate pollutants effectively [16].
Although this approach is practical for shrimp farms in the VMD’s coastal provinces, it
requires a large land area to establish the additional settling ponds. According to [5], the
typical SPA currently ranges from 0.2 ha to 1.6 ha. The considerable variation of pond areas
results in the disparity of hydraulic retention times (HRT) and wastewater quality after
treatment. Thus, it is noted that HRT and SPA are two key factors affecting the pollutant
removal efficacy of SI-SW treatment systems in biological settling pond systems. However,
little attention has been paid to optimizing HRT and SPA. Recently, Vietnam’s Ministry
of Agriculture and Rural Development has enacted a National Standard Regulation on
brackish water shrimp culture conditions for veterinary hygiene, environmental protection,
and food safety (QCVN 02-19:2014/BNNPTNT) [17] that requires shrimp wastewater to be
treated suitably to a permissible level before it is released into the environment. Also, efflu-
ent management responsibility is also considered according to best aquaculture practices
(BAP) standards and guidelines [18] to sustain multinational shrimp culturing principles in
general. Thus, shrimp wastewater treatment complying with the permitted threshold of
QCVN 02-19:2014/BNNPTNT and BAP are of utmost interest. This study, therefore, aims
to establish the HRT and SPA values in accordance with QCVN 02-19:2014/BNNPTNT
and BAP for optimizing biological settling pond conditions to treat SI-SW in the VMD
effectively. Generally, 20 SI-SFs in the VMD were investigated, and wastewater samples
were collected at the biological settling ponds’ inlet and outlet points to target as a basis for
establishing HRT and SPA retention values accordingly.

2. Materials and Methods
2.1. Study Area and Data Collection

The study was carried out in the Bac Lieu and Ca Mau provinces, where SI-SF is
widespread [1]. The study area was located in Vietnam’s southmost coastal areas, which is
contiguous between the Gulf of Thailand (Ca Mau province) and the East Sea (Bac Lieu
and Ca Mau province), facilitating the development of shrimp stocking and intensive
aquacultural activities (Figure 1). The SI-SF practices are stocked by either the indoor or
outdoor systems. Typically, wastewater was discharged into settling ponds for biological
treatment processes before releasing them into the environment.

Data were collected from 20 SI-SFs (eight farms in Bac Lieu province and 12 farms
in Ca Mau province). The surface area of shrimp culture ponds and settling ponds was
provided by farmers based on in-person interviews. The wastewater flow (SW and WE)
generated per day was calculated based on the pumping time and flow of the individual
wastewater pump on the farm. Furthermore, input (SW and WE samples) and outflow
samples from each settling pond at every farm were collected to evaluate the wastewater
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treatment efficacy. Collected samples were determined temperature, pH, salinity, total
suspended solids (TSS), chemical oxygen demand (COD), ammonium (N-NH4

+), nitrite
(N-NO2

−), Total Kjeldahl Nitrogen (TKN), total phosphorus (TP), and hydrosulfite (H2S).
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2.2. Measurements

pH and temperature were measured directly at the sampling sites using pH meter
(TOA-DKK cooperation, IM32P, Tokyo, Japan). Similarly, DO was also measured at sam-
pling locations using DO meter (TOA-DKK, DO-31P, Tokyo, Japan). Salinity was measured
by a refractometer (ATAGO Co., Ltd., Master-S28M, Tokyo, Japan). TSS, COD, N-NH4

+,
N-NO2

−, TKN, TP, and H2S were analyzed consistent with the standard methods for the ex-
amination of water and wastewater (SMEWW) [19]. Total alkalinity was determined by the
titration method (SMEWW, 2320B). TSS was filtered through a weighed standard glass-fiber
filter and dried, with the residue retained on the filter in an oven to a constant weight at 103
to 105 ◦C (SMEWW 2540D). COD was determined by an open reflux, titrimetric method
(SMEWW 5220C), whereas the N-NH4

+ was detected by the phenate method (SMEWW
4500-NH3 F). N-NO2

− was analyzed by the colorimetric method (SMEWW 4500 NO2
− B),

and TKN was detected by the semi-micro-Kjeldahl method (SMEWW 4500-Norg C). TP
was analyzed by using the persulfate method for simultaneous determination of total
phosphorus (SMEWW 4500-P J).

The load rate (COD, TSS, TN, and TP) was calculated by the sum of the flow rate and
the pollutant concentration of SW and WE, as follows:

FR = (FRSW × PCSW + FRWE × PCWE)× 10−3 (1)

where FR = pollutant flow rate (kg ha−1 day−1); FRsw/FRwe = flow rates of siphon wastew-
ater and water exchange (m3 ha−1 day−1), respectively; PCsw/PCwe = pollutant concentra-
tions of siphon and water exchange (mg L−1), respectively.

The treatment efficacy of settling ponds was calculated using the formula, as follows:

Et =
∆Cin−out

Cin
× 100 (2)

where Et = wastewater treatment by settling ponds (%), ∆Cin−out = inflow-outflow pollutant
concentration (mg L−1), Cin = inflow pollutant concentration (mg L−1).
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The HRT of the settling ponds was calculated by dividing the total volume of settling
ponds by total wastewater flows.

HRT =
TVsp

FRw
(3)

where HRT = hydraulic retention time (day), TVsp = total volume of settling ponds (m3),
FRw = flow rate of wastewater (m3 day−1).

The area of settling ponds was suggested based on optimal HRT, as follows:

Asp =
FRw

h
× HRT (4)

where Asp = area of settling ponds (m2), FRw = flow rate of wastewater (m3 day−1),
HRT = hydraulic retention time (day), h = water depth of settling ponds (h = 1.5 m, sug-
gested by [5].

2.3. Statistical Analysis

Non-linear regression analyses were used to understand the relationship between
outflow pollutant concentrations; specifically, COD and HRT, and TSS and HRT at a
confidence interval of 95%. For the optimization of HRT and SPA values, the correlations
were referred to the QCVN 02-19:2014/BNNPTNT and BAP standards and guidelines
for effluent water quality criteria after treatment. Our recommendations are not stated
for recirculating aquacultural systems. Statistical data analysis was performed by R stats
Version 4.2.0 (R Project for Statistical Computing, RRID:SCR_001905). The results are
displayed in tabular form with mean ± standard deviation (SD, n = 20) and graphs.

3. Results
3.1. Inflow and Outflow Wastewater Characteristics

Table 1 illustrates that SW was characterized by high concentrations of TSS, COD, N-
NH4

+, TKN, TP, and H2S, while DO, N-NO2
−, NH3 concentrations were low (Table 1). It is

evident that TSS concentrations exceeded the permissible level of the QCVN
02-19:2014/BNNPTNT and BAP by 34.23-fold and 68.46-fold, respectively, while COD
concentration surpassed the national standard by 12.4 times (COD are not mentioned by
BAP). However, it can be observed that the pollutant concentration substantially varied
among sampled farms. For example, the standard deviation of TSS was 2820 mg L−1,
whereas, for COD, the standard deviation was 1104 mg L−1.

Table 1. Characteristics of super-intensive shrimp farming wastewater.

Parameters Siphon Wastewater
Inflow

Water Exchange
Inflow

Settling Pond
Outflow Standard

Temperature (◦C) 32.55 ± 1.70 32.21 ± 1.23 33.69 ± 1.24 NA
pH 7.46 ± 0.27 7.53 ± 0.24 7.92 ± 0.48 5.5–9.0 †; 6.0–9.5 ‡

Salinity (‰) 34.65 ± 5.60 34.30 ± 5.26 36.00 ± 4.41 NA
Alkanility (mgCaCO3 L−1) 293.00 ± 105.88 257.50 ± 69.00 206.00 ± 41.2 NA

DO (mg L−1) 0.47 ± 0.26 5.27 ± 1.55 6.72 ± 4.15 5 ‡

TSS (mg L−1) 3422.9 ± 2820.3 238.61 ± 152.48 95.42 ± 71.98 100 †; 50 ‡

COD (mg L−1) 1853.7 ± 1103.8 198.31 ± 62.46 125.27 ± 51.17 150 †

N-NH4
+ (mg L−1) 101.21 ± 54.85 8.83 ± 4.97 3.91 ± 4.51 NA

N-NO2
− (mg L−1) 0.24 ± 0.19 0.19 ± 0.34 0.11 ± 0.29 NA

NH3 (mg L−1) 0.46 ± 0.46 0.29 ± 0.24 0.23 ± 0.26 NA
TKN (mg L−1) 161.32 ± 163.93 19.48 ± 6.80 8.03 ± 6.98 NA
TP (mg L−1) 91.68 ± 133.50 4.68 ± 1.91 1.35 ± 0.78 NA

H2S (mg L−1) 19.21 ± 8.80 1.93 ± 0.63 1.81 ± 1.02 NA

Data are presented by mean ± standard deviation (SD), n = 20; † QCVN 02-19:2014/BNNPTNT; ‡ BAP standards
and guidelines; “NA”, not applicable.
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Similarly, WE contained high TSS, COD, TKN, and TP concentrations (Table 1). Com-
pared to the QCVN 02-19:2014/BNNPTNT, TSS and COD exceeded the permissible levels
by 2.36 and 1.23 times, respectively, while TSS exceeded it by 4.78-fold compared to the BAP.
It was apparent that a high DO level was detected in the WE due to continuous aeration
in the shrimp ponds. Moreover, the data indicate that the concentrations of TSS, COD,
N-NH4

+, N-NO2
−, NH3, TKN, TP, and H2S in WE were consistently lower than that of SW,

which accounted for 6.97%, 10.70%, 8.73%, 80.45%, 62.60%, 12.07%, 5.10%, and 10.06% of
contaminant concentrations in the SW, respectively.

From the biological treatment in the settling ponds, average outflow pollutant con-
centrations unexceeded the national standard (QCVN 02-19:2014/BNNPTNT), but the TSS
value transcended the BAP by 1.91-fold. It seems probable that environmental factors were
slightly changed after treatment in the settling ponds. Specifically, pH, DO, and salinity
concentrations showed slight increases of 0.39–0.46, 1.45–6.25 mg L−1, and 1.35–1.70‰, re-
spectively, while the alkalinity value decreased by 50.50–87.00 mgCaCO3 L−1 (Table 1).
Furthermore, pH consistently ranged within the permissible levels of the QCVN 02-
19:2014/BNNPTNT and BAP. DO was consistently suitable with the BAP.

3.2. Flow Rates of Wastewater and vs. Removal

Table 2 depicts that the flow rate of wastewater (SW and WE) was relatively high,
at 218 m3 ha−1 day−1. The flow rate of SW was considerably lower than that of WE.
Unambiguously, the SW flow rate flushed out 36.14 ± 22.89 m3 ha−1 day−1, while WE
released 181.85 ± 88.13 m3 ha−1 day−1 (data not shown). In inflow wastewater, TSS and
COD exhibited top-loading rates in comparison with TKN and TP. It is noteworthy that
TSS was removed more effectively than COD through the biological treatment processes.
Also, TKN was considered as the radical nutrient contamination compared to that of TP. In
parallel, the TKN removal rate by the settling ponds was relatively lower than that of TP. It
was apparent that the difference in TSS, COD, TKN, and TP loading rates between inflow
and outflow concentrations was 155.01, 86.03, 8.11, and 3.88 m3 ha−1 day−1, respectively.
In general, the removal efficacy of TSS, COD, TKN, and TP by the natural settling pond
system was relatively high, measured at 87.5%, 75.6%, 82.2%, and 92.6%, respectively, with
an average HRT of 12.5 days.

Table 2. Flow rates of wastewater, HRT and loading rate of TSS, COD, TKN, and TP, and removal
efficacy of biological settling ponds.

Items Wastewater
(m3 ha−1 day−1)

Inflow †

(kg ha−1 day−1)
Outflow

(kg ha−1 day−1)
Settling Ponds

(day)
Removal

Efficacy (%) ¡

Flow rate ‡ 217.98 ± 104.03 NA NA NA NA
HRT NA NA NA 12.5 ± 9.56 NA
TSS NA 177.15 ± 173.44 22.14 ± 25.19 NA 87.50

COD NA 113.49 ± 92.37 27.47 ± 19.04 NA 75.80
TKN NA 9.86 ± 8.54 1.80 ± 2.00 NA 81.74
TP NA 4.19 ± 5.30 0.31 ± 0.29 NA 92.6

† the flow rate of SW and WE inflow; Flow rates of wastewater between inflow and outflow were assumed
equivalently; Data are presented by mean ± standard deviation (SD), n = 20; ‡ was detected by Equation (1); ¡ was
calculated by Equation (2).

3.3. Relationship between HRT and Main Outflow Pollutants

Figure 2 shows the outflow concentration of COD and TSS and its correlation with the
HRT. It can be observed that both COD and TSS concentration noticeably varied between
shrimp farms, from 69.80 to 219.13 mg L−1 and 13.75 to 259.00 mg L−1, respectively. In
general, biological settling ponds were effective for eliminating both COD and TSS with
prolonged HRT. This is explained well by the positive exponential correlation of COD and
HRT (r2 = 0.83) (Figure 2a) and TSS and HRT (r2 = 0.87) (Figure 2b). Pertaining to the
regression and permissive level of the QCVN 02-19:2014/BNNPTNT, COD and TSS outflow
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concentrations are required below 150 and 100 mg L−1, respectively. As such, the optimal
HRT based on QCVN 02-19:2014/BNNPTNT to efficiently treat COD was calculated at
4.47 days, while to treat TSS, the estimation is 6.23 days. However, the TSS limitation in
relation to BAP requires below 50 mg L−1; referring to Figure 2b, HRT is calculated by
13.40 days. HRT optimization was, therefore, recommended to be a minimum of 13.40 days
to admit both QCVN 02-19:2014/BNNPTNT and BAP standards and guidelines. According
to Formula (4), we estimated that the minimum SPA in order to eliminate pollutants
practically from the wastewater of SI-SFs was 1947 m2 (inflow rate, 217.98 m3 ha−1 day−1;
water depth, 1.50 m).
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show the allowable limit of pollutant concentration in shrimp wastewater before releasing it to the
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4. Discussion
4.1. Pollutant Composition

Previous studies have shown that shrimp wastewater typically contains more degradable
organic matter and dissolved inorganic nutrients [11,20,21]. COD content typically varies from
508–2430 mg L−1 [11,13,22], while TSS commonly ranges between 70–1031 mg L−1 [13,23,24].
Consistent with the report, Roy et al. [25] showed that organic carbon in shrimp wastewater
kept a high level, 793 mg L−1. BOD5 typically fluctuates from 8–84 mg L−1 [24]. For the
nutrient composition, TN and TP concentrations in shrimp wastewaters characteristically
fluctuate in the range of 0.08 to 20.9 mg L−1 and 0.1 to 1.7 mg L−1 [10,24,26,27], respectively.
N and P in shrimp effluent mainly exist in dissolved inorganic forms (N-NH4

+, N-NO3
− +

N-NO2
− and P-PO4

3−) [28,29]. N-NH4
+, N-NO3

−+N-NO2
− and P-PO4

3− concentrations
in shrimp wastewater have been shown to vary between 1.6 and 3.8 mg L−1, 0.3 and
3.3 mg L−1 and 0.2 and 0.72 mg L−1 [10,27,30,31], respectively. However, these findings
only examined on the characteristic of shrimp wastewater from intensive and semi-intensive
shrimp culture systems. In this study, we therefore provide the characteristics of wastewater
in either SW or WE from SI-SF systems.

The results of this study found that the several contaminant characteristics of WE from
SI-SFs were ranged in the above-discussion findings. However, the shrimp SW contained a
higher pollutant concentration, which substantially outstripped the typically detected value
ranges and permissible levels of QCVN 02-19:2014/BNNPTNT. Particularly, average COD,
TSS, TKN, and TP were higher, approximately 1.41, 1.78, 7.72, and 53.93 times, respectively,
than that of the maximum concentration found from the above-mentioned previous studies;
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while this level is 12.36- (COD) and 34.23- (TSS) fold greater compared to QCVN 02-
19:2014/BNNPTNT, respectively (note: TKN and TP are not explicitly regulated), and
68.46-fold (TSS) compared to the BAP. Among dissolved inorganic nutrient forms, N-NH4

+

was typically determined to be dominant in the shrimp waste effluent [32–34]. Our study
found that N-NH4

+ had a high concentration in shrimp effluent. The primary source leading
to high levels of pollutant concentration could be attributed to uneaten feed, carcasses,
dead phytoplankton, and feces under very high stocking densities, as the feed consumption
efficiency of shrimp only accounted for approximately 27% of intake sources [32,35]. It
has been found that shrimp growth individually incorporated 21–24% of the N budget,
while 10–13% of P remains in shrimp bodies. For conventional intensive/semi-intensive
shrimp systems, organic matter and nutrients are deposited in sediment; 46% of N and 54%
of P are deposited in the sediment as an output process [36]. However, up-to-date SI-SF
systems eliminate deposited sediments several times per day through a bottom-siphon
system to reduce toxic substance formation for shrimp ponds. Thus, the above-discussed
findings partly explain the high pollutant concentrations found in SI-SF systems. Higher
contaminations place extra pressure on local wastewater management and require effective
on-site shrimp wastewater treatment development.

4.2. Contaminant Loads

Previous reports showed high levels of pollutant loads from intensive shrimp farm-
ing systems. For example, Anh et al. [24] estimated that contaminants of COD, TSS,
TN, and TP in intensive shrimp farming systems in Vietnam (Can Gio area) were 4077,
6201, 159, and 20 kg ha−1 per crop−1, respectively. Likewise, TSS, TN, and TP loads
discharged in several intensive shrimp farms in Thailand were 6650–9658, 178–223, and
15.7–24.9 kg ha−1 crop−1 [37], respectively. However, only a few studies have investigated
the contaminant loads from SI-SFs. Here, the data of this study revealed that an average of
217.98 m3 ha−1 day−1 of wastewater based on 20 typical investigated farms could produce
177.15, 113.49, 9.86, and 4.19 kg ha−1 day−1 of COD, TSS, TN, and TP loads, respectively.
It is assumed that the maximum shrimp-culturing crop in this system is 120 days. COD,
TSS, TN, and TP loads were 13.62, 21.26, 1.18, and 0.50 ton ha−1 crop−1, respectively.
It is indicated that the higher statistics of 3.34 (COD), 2.20–3.42 (TSS), 5.31–7.44 (TN),
and 20.19–32.03 (TP) times greater, respectively, compared to findings of typical intensive
shrimp farming systems. These data also provide an important outlook and robust plat-
form for the calculation and recommendation of engineering parameters to design shrimp
wastewater treatments safely and effectively.

4.3. HRT and SPA Optimization

Optimizing HRT and SPA are crucial elements to recommend proper engineering
adjustments for improved shrimp wastewater treatments. Biological shrimp wastewater
treatment systems by natural settling ponds were seen to be commonly applied and the
system choice for farms in the study due to their simplicity and low-cost investments.
The system allows for the removal of efficient pollutants through natural purification
processes [38]. However, the HRT of the settling ponds shows considerable variation
due to the availability of land and the investment capacity of shrimp producers. In fact,
there are several standards for designing wastewater treatment by the settling ponds in
general [16,39–41]. However, engineering recommendations differ in expected perfor-
mance depending on the type of wastewater sources and their characteristics. Here, our
study contributes to optimizing HRT for SI-SW treatment systems by settling ponds tar-
geting a minimizing compulsory area to comply with both the national standard (QCVN
02-19:2014/BNNPTNT) and the BAP. We calculated the relationship of the HRT of current
settling pond systems and the outflow concentration of contaminants (COD and TSS) from
20 typical shrimp farms in the VMD. Our data showed that the necessary time to eliminate
COD effectively is 1.46 days shorter than TSS (6.23 days; Figure 2b) when referring to
QCVN 02-19:2014/BNNPTNT. Longer HRT had to be proposed in relation to safeguarding
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the BAP. A minimum of 13.4 days is the optimal HRT for efficiency, removing 71.8% of TSS
(from 177 mg L−1 TSS inflow to 50 mg L−1 TSS outflow). This recommended HRT is the
safe threshold for removing COD successfully. Based on the calculated HRT, a land area of
1947 m3 is required for on-site wastewater treatment systems. The area requirements are
modest and satisfactory for most shrimp producers.

For designing a typical biological wastewater treatment system, Ho et al. [38], re-
viewing 150 relevant articles, revealed that the archetypal model is divided into three
sub-functional settling ponds: (i) the anaerobic pond, (ii) the facultative pond, and (iii) the
maturation pond. It is notable that HRT is dissimilar between designated ponds depending
on specific references and requirements; for example, the anaerobic pond is from two
to three days [42,43]; the facultative pond ranges from three to six days [16,38]; and the
maturation pond varies from three to five days [44,45]. In addition, the HRT of settling
ponds in warm weather zones could be shorter than in cold locations [38,40]. Generally,
the anaerobic pond has a shorter HRT than the facultative and maturation ponds, while
facultative ponds require slightly longer than that of the maturation ponds. However, it is
noticeable that a longer or shorter HRT depends on the targeted environmental parameters,
the available land requirements, economic viability, and plentiful factors such as different
climate zones [42]. On the basis of the results in this paper, we suggest a 13.4-day HRT for a
series of settling ponds with a total required land area of 1947 m2, setting for an inflow rate
of 217.98 m3 ha−1 day−1 and a water depth of 1.50 m. It is recommended that establishing
a series of three consecutive settling ponds and optimizing HRT and SPA for each series is
indispensable to ensure biological treatment function and efficacy.

5. Conclusions

This study assessed the chemical characteristic of the inflow/outflow SI-SW treat-
ment system from 20 typical SI-SFs in the VMD. Recommendations for a feasible HRT
as well as land area requirements for a biological shrimp wastewater treatment in ac-
cordance with the national standard (QCVN 02-19:2014/BNNPTNT) and the BAP were
provided. Super-intensive shrimp wastewaters contain higher contaminant concentrations
as compared to intensive shrimp farms reported in previous studies. Compared to QCVN
02-19:2014/BNNPTNT, TSS and COD contaminants in WE surpassed permissible levels by
factors of approximately 2.36 and 1.23, while SW exceeded them by 34.23 and 12.36 times.
Referring to the BAP, TSS surpassed the acceptable levels by 68.46 and 4.78 times for SW
and WE, respectively. An estimated number of inflow and contamination loads revealed
that the SI-SF system could produce 218 m3 ha−1 day−1 of wastewater, and 177, 113, 9.86,
and 4.19 kg ha−1 day−1 of TSS, COD, TKN, and TP, respectively. Suggested HRT and APS
optimization for SI-SWTS are 13.4 days and 1947 m2, respectively, recommending the full
function of settling ponds, including anaerobic, facultative, and maturation ponds. This
recommendation provides robust guidance for improving management and adjusting the
design and operation of the current biological settling pond configuration. We recommend
optimizing HRT and SPA for each functional settling pond to facilitate SI-SW treatment
systems’ design and engineering efficiency.
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