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Abstract: This paper presents a GPU (Graphics Processing Unit)-accelerated and LTS (Local-time-
Step)-based finite volume Shallow Water Model (SWM). The model performance is compared
against the other five model versions (Single CPU versions with/without LTS, Multi-CPU versions
with/without LTS, and a GPU version) by simulating three flow scenarios: an idealized dam-break
flow; an experimental dam-break flow; a field-scale scenario of tidal flows. Satisfactory agreements
between simulation results and the available measured data/reference solutions (water level, flow ve-
locity) indicate that all the six SWM versions can well simulate these challenging shallow water flows.
Inter-comparisons of the computational efficiency of the six SWM versions indicate the following.
First, GPU acceleration is much more efficient than multi-core CPU parallel computing. Specifically,
the speed increase in the GPU can be as high as a hundred, whereas those for multi-core CPU are
only 2–3. Second, implementing the LTS can bring considerable reduction: the additional maximum
speed-ups can be as high as 10 for the single-core CPU/multi-core CPU versions, and as high as five
for the GPU versions. Third, the GPU + LTS version is computationally the most efficient in most
cases; the multi-core CPU + LTS version may run as fast as a GPU version for scenarios over some
intermediate number of cells.

Keywords: shallow water model; tidal flows; local time step; GPU-acceleration; computational efficiency

1. Introduction

Shallow water models based on the Godunov-type finite volume method have been
widely used in modeling urban/city/river/coastal flood disasters, tides, and storm surges
in estuaries/nearshore regions, pollutants, sediment transport, etc. Examples include:
Cea et al. [1], Hu et al. [2], and Luan et al. [3] for tidal flows; Qin et al. [4] and Kim
et al. [5] for tsunamis; Kernkamp et al. [6] for tidal propagation on the continental shelf;
Hu et al. [7,8] for coastal swash flows. However, the computational efficiency of such
models is limited due to the Courant–Friedrichs–Lewy (CFL) condition on the time step, as
well as the commonly used Global-Minimum Time Step (GMiTS) approach. Constrained
by CFL condition, the time step of each computational cell for variable updating cannot
exceed a locally allowable maximum time step, which is smaller for a smaller cell size
or a stronger flow strength. When the flow strength or cell size is non-uniform over
the computational domain, the locally allowable maximum time step is non-uniform. By
GMiTS, the global minimum value of all these locally allowable maximum time steps is used
for all computational cells. A consequence is that, if most of the locally allowable maximum
time steps are appreciably larger than the GMiTS, considerable extra computational cost
would be necessary, which strongly limits the computational efficiency.
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There have been efforts to design more efficient time integration approaches to re-
place the time-demanding GMiTS approach. Examples include the implicit dual time-
stepping method [9]; the exponential time integration method [10]; the local time step (LTS)
method [2,11–16]. Among these schemes, the LTS method appears very promising because
it avoids the extra computational cost by using time steps that are comparable to the locally
allowable maximum time step of every cell. It has been demonstrated that the LTS method
can bring significant reduction in the computational cost for scenarios with locally refined
meshes or very non-uniform flow strengths [2,11–16]. Nevertheless, the computational
efficiency may still be insufficient when the total number of computational meshes is huge.
In this regard, parallel computing is an important option. Examples include single-host
Multi-core CPU using Open MP [14,15], a cluster of multi-core CPU hosts using MPI [17,18],
single-host GPU, or a cluster of GPUs [13,19–24]. There have been some attempts to com-
bine LTS and parallel computing. For example, Hu et al. [14,15] presented shallow water
models based on the LTS and the multi-core CPU using Open MP; however, the advantage
of parallel computing using Open MP is limited because the corresponding speeding up
(the ratio of the computational cost of a model that is not parallelized to a parallelized
model) is mostly 2–3. In contrast, the GPU acceleration is much more promising because
the speeding up can be as high as 100 or even more. Dazzi et al. [13] implemented an LTS
algorithm in a GPU-accelerated shallow water model. In addition to the speeding up by
the GPU, a further speeding up of 2.8 due to LTS was reported. The LTS in Dazzi et al. [13]
was based on the block-uniform Quadtree grids featuring locally the same time step. That
is, the time steps of a certain number of cells (within the block) are still set as the minimum
values of the locally allowable maximum time step within the block. If the locally allowable
time steps within the block are very non-uniform, extra computational cost still occurs.

Here a new GPU-accelerated and LTS-based shallow water model is proposed. Instead
of setting time steps of a block (a block contains certain amounts of cells) as the locally
minimum value, a more straightforward LTS is used: time step of each computational cell
is set close to the locally allowable maximum time step as much as possible. A comparative
investigation of the computational efficiency with the other five shallow-water models
was conducted. The other five SWM versions are: single-core CPU, multi-core CPU, GPU,
single-core CPU + LTS, multi-core CPU + LTS. Three flow scenarios (one idealized dam-
break flow, one experimental dam-break flow, and tidal flows in the Yangtze estuary) were
numerically simulated on different computational meshes. Section 2 briefly describes the
mathematical formulation, including governing equations and empirical relations, the
finite volume method on unstructured triangular meshes, the LTS estimations, and the
numerical structures of the six SWM versions. Section 3 presents simulation results and
discussion. Section 4 gives the conclusions.

2. Materials and Methods
2.1. Governing Equations and Empirical Relations

The two-dimensional shallow water equations are written in vector form as follows:

∂U
∂t

+
∂F
∂x

+
∂G
∂y

= S (1)

U =

 h
hu
hv

, F =

 hu
hu2 + gh2/2

huv

, G =

 hv
huv

hv2 + gh2/2

, S =

 0
gh(Sbx − S f x)

gh(Sby − S f y)

 (2)

where U is the vector for the conserved physical variables; F, G are flux term vectors
containing advective terms and hydrostatic pressures; S is the source term vector containing
bed slope and friction terms; t is time; x, y are horizontal directions; h is water depth;
u, v are depth-averaged velocities in the x and y directions, respectively; g is 9.8 m/s2;
Sbx = −∂zb/∂x and Sby = −∂zb/∂y are the bed slopes, where zb is the bed elevation;
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S f x = n2u
√

u2 + v2/h4/3 and S f y = n2v
√

u2 + v2/h4/3 are the friction slopes, where n is
the Manning roughness.

2.2. Finite Volume Discretization on Unstructured Triangular Grids

Figure 1 shows a sketch of unstructured triangular meshes: (a) an internal triangular
cell (ID: i) and its three neighboring cells (ID: i1, i2, i3); (b) a face (ID: j) and its neighboring
(left and right) cells (ID: jL, jR). Cell ID varies from 1 to Nc; Face ID varies from 1 to N f .
Finite volume discretization of Equation (1) on the cell (i) gives.

U∗∗i = U∗i −
∆ti
Ai

3

∑
j=1

Enij∆Lij + ∆tiSi , i = 1, 2, 3, ∼, Nc (3)

where U∗i and U∗∗i are the conserved physical variables of the cell (i) at the time level t
(indicated by superscript ‘*’) and the time level t + ∆ti (indicated by superscript ‘**’); Ai is
the cell area; ∆ti is the time step (see the Section 2.3); Enij =

(
Fnx + Gny

)
ij is the numerical

flux across the jth-face of the cell (i), where j = 1, 2, 3; nij =
(
nx, ny

)
ij are the normal outward

direction of the jth-face of the cell (i); ∆Lij is the jth-face length of the cell (i); and Si is the cell-
averaged source term. The bed slope terms are evaluated using the slope flux method [25].
The bed friction terms are estimated using the splitting point-implicit method [26]. For
numerical fluxes at internal faces, the HLLC (Harten-Lax-van Leer-Contact) approximate
Riemann solver is adopted. Before calling the subroutine function of the HLLC solver,
the left and right Riemann variables are modified using the non-negative water depth
reconstruction method [14,15,27,28]. Details of the HLLC solver can be seen in [29]. For
numerical fluxes at external faces that coincide with the boundary of the computational
domain, they are estimated by the definition using boundary values (water depth, flow
velocity) of the physical parameters [30]. For a subcritical flow boundary, the boundary
values can be solved using the Riemann invariants along with the characteristics and the
specified inflow discharge/water level (in relation to Flow Scenario 3). For a wall boundary,
the free slip condition is applied.
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2.3. The Local Time Step Estimations

This section presents details on how to estimate local time steps. The first step is to
compute the locally allowable maximum time step ∆tami for cell (i):

∆tami = Cr
Rmi√

u2
i + v2

i +
√

ghi

for cells with hi ≥ hthr (4a)
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∆tami = an arbitrarily large value [e.g., 100(s) here] for cells with hi < hthr (4b)

where Cr is the Courant number, which is set to 0.9; hi, ui, vi is the water depth and flow
velocities of the cell (i); Rmi = min(Ri1, Ri2, Ri3) is the minimum distance from the centroid
of cell (i) to its three faces; Ri1, Ri2, Ri3 are distances from the centroid of cell (i) to its three
faces (see Figure 1a); hthr is a threshold water depth, which is specified as 10−6 m. The
second step is to compute the global minimum value of time step ∆tmin:

∆tmin = min(∆tami)
i = 1,2,∼Nc

(5)

The third step is to compute the ‘potential grade exponent’ mi for all cells:

mi = int [
lg(∆tami/∆tmin)

lg(2)
] with i = 1, 2, 3, ∼, Nc (6)

The fourth step is to constrain the potential grade exponent of cells around dy-
namic/static front [14]. The potential grade exponents of the first- and second-layer cells
around a dynamic/static front are modified to the locally minimum value. The fifth step is
to compute the grade exponent m f j for faces

m f j = min(mjL, mjR) with j = 1, 2, 3, ∼, N f (7)

where the symbols mjL and mjR represent the potential grade exponents of the two neigh-
boring cells around the face (j), see Figure 1b. The sixth step is to compute the actual grade
exponent m∗i for cells

m∗i = min(mi, mi1, mi2, mi3) with i = 1, 2, 3, ∼, Nc (8)

where the symbols mi1, mi2, mi3 indicate the potential grade exponents of the three neighbor-
ing cells of the cell (i), see Figure 1a. Finally, one has to find the maximum value mmax of
the actual grade exponents

mmax = max(m∗i )
i=1,2,∼Nc

(9)

2.4. The Six SWM Versions and Their Numerical Structures

Table 1 gives a summary of the six SWM versions. Figure 2 presents their numerical
structures: (a) Versions 1–2 (single-core/multi-core CPU versions); (b) Version 3 (the GPU
version); (c) Versions 4–5 (The LTS versions on CPU: single-core/multi-core); (d) Version 6
(the GPU + LTS version). The numerical structures of the Versions 1 and 2 are the same,
and those of Versions 4 and 5 are the same. For Versions 1–3 that uses the GMiTS, the
time step ∆ti in Equation (3) is set equal to ∆tmin for all cells. This leads to a very simple
and straightforward numerical structure (Figure 2a,c): firstly, compute ∆tmin; secondly,
compute numerical flux for all faces; thirdly, estimate the bed slope and friction slope
source terms and update the flow variables for all cells. For Versions 4–6 that uses LTS
(Figure 2b,d): time levels of flow variables are at the same synchronized time every interval
of ∆T, where ∆T = 2mmax ∆tmin. Updating from a synchronized time (e.g., t) to the next
synchronized time (e.g., t + ∆T) is defined as a full cycle, which has 2mmax sub-cycles with
Sc = 1, 2, ∼, 2mmax . Each sub-cycle has two steps: flux estimation and variable updating.
In sub-cycles, whether or not the numerical flux of a specific face needs to be estimated
depends on the property of the ratio (Sc − 1)/2m f j . If this ratio is an integer, the numerical
flux of face-j at the Sc-th sub-cycle will be refreshed. Whether or not the flow variables of a
specific cell need to be updated depends on the inequality m∗i < l0(Sc). If this inequality is
satisfied, flow variables of cell-i at the Sc-th will be updated. The function l0(Sc) can be seen
in [14]. Versions 3 and 6 differ from other versions in that GPU acceleration is implemented
(Figure 2b vs. Figure 2a; Figure 2d vs. Figure 2c). In Figure 2a–d: blue box means CPU host
tasks, yellow box means GPU device tasks (Figure 2b,d), and grey box means data transfer
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between host and device (Figure 2b,d). The GPU parallel computing on the device is
initiated when the host invokes a kernel. For the present model, the total number of threads
for a kernel would be Nc or N f , depending on whether cell or edge variables are dealt with.
Numerical experiments indicate that when threadsPerBlock ranges from 32 to 512 (i.e.,
32, 64, 96, 128, 256, 512), comparable numerical efficiency can be obtained. In particular,
when threadsPerBlock is 256, the performance is best; therefore, threadsPerBlock is set to
256 in this paper. The parameter threadsPerBlock is calculated by Nc/threadsPerBlock or
N f /threadsPerBlock. Moreover, one has to decide which memory type is used for variable
storage. Here three types of GPU memory are involved: global memory, constant memory,
and texture memory. Variables and big vectors that vary with time are stored in global
memory on the device; some of these variables/vectors may be transferred regularly from
the device to the host. Variables that do not vary with time are stored in the constant
memory on the device. Big vectors that do not vary with time (mostly vectors about mesh
information) are stored in texture memory. The present models adopted double precision
because of the need to deal with complex topography, wet/dry fronts. The communication
between the host and the device is very slow; therefore, data transfer must be minimized,
otherwise, the overhead caused by data transfers exceeds the benefits of GPU acceleration.
From Figure 2b,d, the data transfer has been kept to a minimum. The following gives a
detailed explanation of the numerical structure of the GPU + LTS version.

(a) The model is initiated on the host by reading data (e.g., mesh information; basic
parameters; boundary conditions such as time series of water level or discharge, if
any); setting initial conditions; computing basic parameters (e.g., face length, normal
direction, cell area). Afterwards, necessary data are transferred from the host (CPU)
to the device (GPU). This data transfer occurs once per numerical case, of which the
overhead is negligible as compared to the whole computational cost.

(b) The LTS estimation involves twice implementation of the reduction algorithm (RA1,
RA2) and five kernels: Kernel ‘Cell_Time_Step (CTS)’ computes the locally allowable
maximum time step; the reduction algorithm (RA1) finds the globally minimum time
step; Kernel ‘Cell_Potential_Exponent (CPE)’ computes the potential grade expo-
nent. Kernel ‘Cell-Modified_Exponent (CME)’ modifies the potential grade exponents
around dynamic/static fronts. Kernel ‘Face_Final_Exponent (FFE)’ computes the
grade exponent of each face. Kernel ‘Cell_Final_Exponent (CFE)’ computes the actual
grade exponent of cells. The reduction algorithm (RA2) finds mmax.

(c) The parameter mmax and ∆tmin is transferred from the device to the host, such that
a full cycle of Sc = 1, 2, ∼, 2mmax can be defined in the host. For each sub-cycle, the
parameter Sc is firstly transferred from the host to the device (on constant memory);
afterwards, two kernels [Face_Flux (FF), Cell_Variable (CV)] are invoked: ‘Face_Flux
(FF)’ computes numerical fluxes of faces; Cell_Variable (CV)’ updates the conserved
variables of cells at a time interval of 2m∗i ∆tmin by firstly estimating the bed slope and
frictions, and secondly implement Equation (3). At the end of each sub-cycle, Sc is
increased by unity until it exceeds 2mmax , and subsequently, the computation goes to
the LTS estimation again.
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Table 1. Summary of the six SWM versions.

SWM Version LTS Parallel Language

V1 single-core CPU
No

NA

V2 (multi-core CPU) Open MP

V3 GPU CUDA Fortran

V4 single-core CPU + LTS
YES

NA

V5 multi-core CPU + LTS Open MP

V6 GPU + LTS CUDA Fortran

3. Results and Discussion

In this section, simulations of three flow scenarios are presented: an idealized scenario
of dam-break flows; an experimental scenario of partial dam-break flow; a field-scale sce-
nario of tidal flows. These three scenarios cover a wide range of flow conditions: from ide-
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alized flow, experimental flow to field flow, from small-scale flow to large-scale flow, from
challenging dam-break flow to general river-tidal flow interactions. Each scenario is simu-
lated by the six SWM versions on several sets of meshes. The non-uniformity of the meshes
is quantified by statistics of the equivalent face length, which is computed for each cell as
the square root of the cell area. The resultant statistics include the following parameters: the
mean equivalent face length L50, the gradient coefficient Gc = 0.5(L84.1/L50 + L50/L15.9),
and the geometric standard deviation σ =

√
L84.1/L15.9, where L50, L84.1, and L15.9 are 50%,

84.1%, and 15.9% shorter face lengths, respectively. The computational efficiency of the
six SWM versions is evaluated by the parameter of speeding-up ratio, which is defined
as the ratio of the computational cost of V1-V6 to that of V1 on different meshes. The
lesser the computational cost, the higher the speeding-up ratio is, and thus the higher
the computational efficiency. By definition, the speeding-up ratio for V1 is unity (see
Tables 2–4). Moreover, the LTS benefits in terms of the computational efficiency are com-
puted separately for different parallel computing conditions: the ratio of the computational
cost of V4 to that of V1 (Both V1 and V4 are based on the single-core CPU computing);
the ratio of the computational cost of V5 to that of V2 (both V2 and V5 are based on the
multi-core CPU computing); the ratio of the computational cost of V6 to that of V3 (both
V3 and V6 are based on GPU acceleration). Comparisons of numerical solutions from
different SWE on the same mesh indicate the following understandings. First, parallel
computing (both multi-core CPU and GPU) does not affect the quantitative accuracies.
Second, numerical discrepancies from the implementation of the LTS are negligible; there-
fore, inter-comparisons of numerical solutions between different model versions are not
presented. The programming language is Intel Fortran for CPU (Intel Skylake Gold 6132)
CUDA Fortran for GPU (Tesla k80).

Table 2. Statistics for simulations of the idealized dam-break flows (V1-V6 refers to the six SWM versions).

No. Nc/L50(m)/σ/Gc Computational
Cost (s) of V1

Speeding-Up Ratios Compared to Single-Core
CPU Version LTS Benefits

V1 V2 V3 V4 V5 V6 V4 vs. V1 V5 vs. V2 V6 vs. V3

1 1010/0.14/0.7/1.1 0.079 1 1.4 2.6 2.6 2.0 2.3 2.6 1.4 0.9

2 4762/0.066/0.7/1.0 0.585 1 2.4 12.4 2.1 3.8 9.3 2.1 1.6 0.7

3 18,824/0.033/0.7/1.0 6.772 1 2.9 37.4 2.8 6.6 37.2 2.8 2.3 1.0

4 73,508/0.016/0.7/1.0 44.56 1 2.8 77.4 2.2 5.2 82.1 2.2 1.9 1.1

Table 3. Statistics for simulations of the scenario of dam-break flow propagating through blocks.

No. Nc/L50(m)/σ/Gc Computational
Cost (s) of V1

Speeding-Up Ratios Compared to Single-Core
CPU Version LTS Benefits

V1 V2 V3 V4 V5 V6 V4 vs. V1 V5 vs. V2 V6 vs. V3

1 5000/0.1/1.5/1.5 2.9 1 1.2 3.7 2.4 3.7 7.3 2.4 3.0 2.0

2 10,510/0.1/1.6/1.7 6.3 1 1.4 6.3 2.1 3.2 7.9 2.1 2.3 1.3

3 20,523/0.07/1.8/2.0 26.3 1 1.9 13.8 3.8 2.3 10.1 3.8 3.4 1.4

4 28,694/0.07/1.7/1.9 72.1 1 2.1 17.6 4.5 8.8 28.8 4.5 4.1 1.6

5 43,302/0.05/1.6/1.8 105.8 1 2.2 25.2 4.5 9.2 39.2 4.5 4.1 1.6

6 68,892/0.04/1.3/1.3 196.0 1 2.1 31.3 3.4 8.0 53.0 3.4 3.8 1.7

7 153,218/0.03/1.4/1.5 694.1 1 2.0 39.4 3.3 7.9 79.8 3.3 4.0 2.0

8 263,115/0.02/1.8/2.1 1628.1 1 1.8 44.2 4.0 8.4 101.8 4.0 4.6 2.3

9 609,916/0.01/1.4/1.5 5954.3 1 1.9 51 3.6 9.1 132.9 3.6 4.9 2.6
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Table 4. Statistics for simulations of the field-scale scenario of tidal flows in Yangtze Estuary.

No. Nc/L50(m)/σ/Gc Computational
Cost (min) of V1

Speeding-Up Ratios Compared to Single-Core
CPU Version LTS Benefits

V1 V2 V3 V4 V5 V6 V4 vs. V1 V5 vs. V2 V6 vs. V3

1 21,629/10.3/1.7/1.7 20.3 1 3.2 7.0 8.1 33.8 25.4 8.1 10.5 3.6

2 44,606/9.6/1.9/1.9 28.5 1 2.4 10.2 5.6 20.4 35.6 5.6 8.4 3.5

3 61,315/9.6/1.9/2.0 35.7 1 2.9 17.9 6.0 14.3 44.6 6.0 5.0 2.5

4 82,717/9.6/1.8/1.8 59.3 1 2.9 22.0 4.1 12.6 65.9 4.1 4.4 3.0

5 190,308/2.5/1.7/1.8 104.8 1 2.8 18.7 4.1 11.9 61.6 4.1 4.3 3.3

6 269,945/2.4/1.4/1.4 442.9 1 3.1 24.2 6.4 18.1 79.1 6.4 5.9 3.3

7 422,853/1.8/1.2/1.2 662.7 1 3.0 24.6 5.5 18.3 98.9 5.5 6.1 4.0

8 518,175/1.6/1.2/1.2 1024.8 1 2.5 27.0 6.0 19.9 150.7 6.0 8.1 5.6

9 1,756,679/1.3/1.4/1.4 5954.8 1 2.6 108.1 3.5 12.4 350.3 3.5 4.7 3.2

3.1. Simulation of the Idealized Dam-Break Flows

The first flow scenario is the classical idealized dam-break flow over a frictionless and
initially dry bed, for which the analytical solution of the flow depth is as follows

h(x, t) =


hl x ≤ xA(t)
4

9g

(√
ghl − x−x0

2t

)2
xA(t) ≤ x ≤ xB(t)

0 xB(t) ≤ x

(10)

where hl is the initial water depth behind the dam locating at x0 = 0; xA(t) = x0 − t
√

ghl ,
xB(t) = x0 + 2t

√
ghl . Here a water depth of hl = 0.6 m is used. The six SWM versions are

applied to simulate the collapse and propagation of this dam-break flow. The computational
domain is set sufficiently large (10 m long and 1 m wide) such that the flood bore does
not arrive at the boundary within the simulation time. Four sets of meshes are used (see
Table 2), and the relative discrepancies between the numerical and analytical solutions are
7.31 × 10−2 m, 5.24 × 10−2 m, 3.46 × 10−2 m, and 2.30× 10−2 m for the four set of meshes,
respectively. Such magnitudes of quantitative discrepancies are negligible. Figure 3 presents
visual comparisons of the computed and analytical solutions for water depth profiles at
four transients. From Figure 3, when the water is released, a forward-propagating water
bore, and a backward-propagating rarefaction wave are formed.
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Table 2 gives the mesh information (total number of cells, the mean equivalent length,
the geometric standard deviation, and the gradient coefficient), computational cost of V1,
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the speeding-up ratios of V1-V6, and the LTS benefits. Figure 4 presents the variation of the
speeding-up ratios for V1-V6 against the total number of cells. From Table 2 and Figure 4,
the computational efficiency of the six SWM can be roughly ranked as follows: single-core
CPU (V1) < multiple-core CPU (V2) ≈ single-core CPU + LTS (V4) < multiple-core CPU +
LTS (V5) < GPU (V3) < or ≈ GPU + LTS (V6). First, the single-core CPU version of SWM is
computationally most demanding, whereas the GPU version and the GPU + LTS version
are computationally most efficient. Second, V2 and V4 achieve comparable computational
efficiency: the speeding-up ratios for V2 are about 1.4–2.8, whereas those for V4 are about
2.1–2.8. The overall extent of improvement for V2 is basically consistent with previous
understanding. In contrast, the speeding-up ratios of V4 (i.e., the LTS benefit) appear to
be less than the reported improvement in the literature [14]. This is because the four sets
of meshes here are characterized by very uniform cell sizes: the gradient coefficient and
the geometric standard deviation are nearly unity, see Table 2. Consequently, the LTS
benefits in other parallel computing frameworks are also not significant. For example,
the improvement of V5 to V2 is about 1.5–1.6; the improvement of V6 to V3 is about
0.7–1.1 (Implementation of LTS results in additional computational cost). Third, the GPU
acceleration leads to a significant reduction in the computational cost, of which the effects
become increasingly obvious as the total number of cells increases. For simulations on 73
thousand cells, a speeding-up ratio of about 82 is achieved, which is an order of magnitude
larger than that on CPU.
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3.2. Simulation of the Experimental Partial Dam-Break Flow Propagating through Buildings

Here, the experimental dam-break flow propagation through buildings [31] is pre-
sented. Figure 5 presents a sketch for the experimental flume. The flume is 36 m long
and 3.6 m wide, the transverse bed topography is trapezoidal (as the cross-section A-A
indicates). Two impervious blocks (1.3 m wide and 0.8 m long for each block) and one wide
gate (1 m in width) are arranged at 7.3 m from the left end of the flume. A group of 5 ×
5 rigid cubes is placed downstream of the dam; the sides of the cubes are either parallel
to or perpendicular to the direction of the main flow; the horizontal dimensions of each
cube is 0.3 m × 0.3 m; the distance between two neighboring cubes is 0.1 m (denotes as
w1 = 0.1 m). The water depth on the left side is 0.4 m, and that on the right side is 0.011
m. The Manning roughness coefficient is 0.01. Lifting the gate rapidly generates partial
dam-break flow.
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Figure 6 presents the comparison of the computed and measured water depth and flow
velocity profiles along the B-B cross-section at several transients. Although the maximum
relative discrepancies between the simulated and measured data are about 0.01–0.0385 m
for water level and 0.3–0.4 m/s for water velocity, the magnitudes of the simulated water
level and velocity are comparable to the measured data. The rigid cubes act to hamper the
dam-break flow, leading to a high-water level and low flow velocity at the earlier instants.
Afterwards, the hampered water gradually goes through the rigid cube zone, and the water
level in the region tends to be uniform as time increases.

To compare the computational efficiency of different models on different meshes,
nine sets of meshes are used, with the total number of cells ranging from 5000 to 609,916.
Table 3 summarizes the statistics (total number of cells, the mean equivalent face length,
the geometric standard deviation; the gradient coefficient) of the nine sets of meshes, the
computational cost of the V1, the speeding-up ratios of the six SWM versions, as well as
the LTS benefits. Figure 7 illustrates the speeding-up ratio against the number of cells
for the six SWM versions. From Table 3 and Figure 7, the computational efficiency of
the six SWM can be ranked as follows: single-core CPU (V1) < multiple-core CPU (V2)
< single-core CPU + LTS (V4) < multiple-core CPU + LTS (V5) < GPU (V3) < GPU + LTS
(V6). This ordering is slightly different from the first scenario (Section 3.1) in that, here,
the computational efficiency of V4 (speeding-up ratios: 2.1–4.5) is appreciably higher than
that of V2 (speeding-up ratios: 1.2–2.2). It is because the cell size distributions for this
scenario are very non-uniform. Specifically, from Table 3, the geometric standard deviation
and the gradient coefficients are about 1.3–1.8 and 1.3–2.1, respectively. Accordingly, the
LTS benefits in other parallel computing frameworks are also considerable: the ratio of the
computational cost of V5 to that of V2 is about 2.3–4.5 (V2 and V5 are based on the multi-
core CPU computing); the ratio of the computational cost of V6 to that of V3 is about 1.3–2.6
(V3 and V6 are based on GPU acceleration). The improvement of the GPU acceleration
is similar to that of the first scenario: the effects become increasingly obvious as the total
number of cells increases. For simulations on about 610 thousand cells, a speeding-up ratio
of about 51 is achieved.
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3.3. Simulation of Tidal Flows in Yangtze Estuary and Hangzhou Bay

Tidal flows in the Yangtze estuary and Hangzhou bay are presented in this section.
Figure 8 presents a set of numerical mesh for the computational domain as well as the
embedded bed topography. The computational domain covers the whole East China
Sea, Yellow Sea, and Bohai Sea. The computational domain has three open boundaries,
including the boundary of the Yangtze River at the Sanjiangying, the boundary of the
Qiantang River at the Qiantang River Bridge, and the seaward boundary, which is located
on the inner side of the continental shelf. At the Sanjiangying, the measured flow rate
is given. At the upstream boundary of the Qiantang River, a constant flow discharge of
800 m3/s is specified. The open sea boundary was driven by nine tidal constituents (i.e.,
M2, S2, N2, K2, K1, O1, P1, Q1, and M4), which are obtained from TPXO. The Manning
roughness is set equal to 0.01 + 0.012/h. Although strong sediment transport occurs in
the Yangtze estuary and the Hangzhou bay, only clear-water flow over a fixed bed was
simulated in this paper.
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Figure 9 compares the computed and measured water level and velocities at several
stations of the Yangtze estuary and Hangzhou bay. From Figure 9, there are some deviations
between the simulated tidal velocity and measured data, especially at Shidongkou, NCH6,
and CS9S. The reason for this discrepancy may be that the locations of these stations
are easily disturbed by the incident flow and reflected flow from the coasts and channel.
Overall, the above validation generally shows the present model’s good capability in the
reproduction of tidal hydrodynamics. To compare the computational efficiency of different
models on different meshes, nine sets of meshes are considered for this flow scenario, with
the total number of cells ranging from about 21.6 thousand to as much as about 1.76 million.
Table 4 presents the statistics of the mesh information as well as the computational cost,
the speeding-up ratios of the six versions of SWMs. Figure 10 gives the speeding-up ratios
under different mesh sizes. From Figure 10 and Table 4, the computational efficiency of
the six SWM can be roughly ranked as follows: single-core CPU (V1) < multiple-core CPU
(V2) < single-core CPU + LTS (V4) < multiple-core CPU + LTS (V5) < (for large amount
of cells) or > (for relatively small amount of meshes) GPU (V3) < GPU + LTS (V6). This
ordering is again slightly different from the above scenarios. Specifically, the relative
computational efficiency of V5 and V3 strongly depends on the number of cells (Table 4;
Figure 10). For simulations with 21.6 and 44.6 thousand cells, V5 (multiple-core CPU + LTS)
runs faster than V3 (GPU), in contrast to those simulations with more cells. This indicates
the strong capability of LTS. If the cell sizes and flow strengths are very non-uniform, the
advantage of the LTS benefits may overturn that of GPU acceleration. The improvement of
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the GPU acceleration is similar to that of the first and second scenarios: the effects become
increasingly obvious as the total number of cells increases. For simulations on about 1.75
million cells, a speeding-up ratio exceeding 100 is achieved.
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4. Conclusions

In this paper, a novel shallow water model is presented based on the LTS method and
GPU parallel computing. The model was compared against five additional versions of
shallow water models. For the same set of numerical meshes, negligible differences are
ensured for numerical solutions from different versions of SWMs. Comparisons between
numerical solutions and the available measured data/analytical solution indicate the
quantitative accuracy of the model: hydrodynamics of tidal flows in the Yangtze estuary as
well as the challenging dam-break flows are satisfactorily resolved by the present models.
Inter-comparisons of the computational efficiency of the six SWM versions indicate the
following. First, GPU acceleration is much more efficient than multi-core CPU parallel
computing. Specifically, the speed ups of GPU can be as high as a hundred, whereas
those for multi-core CPU are only 2–3. Second, implementing the LTS can further bring
considerable reduction: the additional maximum speed-ups can be as high as 10 for the
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single-core CPU/multi-core CPU versions and as high as five for the GPU versions. Third,
the GPU + LTS version is computationally most efficient in most cases; the multi-core
CPU + LTS version may run as fast as a GPU version for scenarios over some intermediate
number of cells. It is worth pointing out that the results are affected by the specific usage of
computer hardware. Extension of the present model to sediment transport problems can
facilitate physical process-based decadal morphodynamic modeling.
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