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Abstract: Scaling models is one of the challenges for water resource planning and management, with
the aim of bringing the developed models into practice by applying them to predict water quality and
quantity for catchments that lack sufficient data. For this study, we evaluated artificial neural network
(ANN) training algorithms to predict the water quality index in a source catchment. Then, multiple
linear regression (MLR) models were developed, using the predicted water quality index of the ANN
training algorithms and water quality variables, as dependent and independent variables, respectively.
The most appropriate MLR model has been selected on the basis of the Akaike information criterion,
sensitivity and uncertainty analyses. The performance of the MLR model was then evaluated by a
variable aggregation and disaggregation approach, for upscaling and downscaling proposes, using
the data from four very large- and three large-sized catchments and from eight medium-, three
small- and seven very small-sized catchments, where they are located in the southern basin of the
Caspian Sea. The performance of seven artificial neural network training algorithms, including
Quick Propagation, Conjugate Gradient Descent, Quasi-Newton, Limited Memory Quasi-Newton,
Levenberg–Marquardt, Online Back Propagation, and Batch Back Propagation, has been evaluated to
predict the water quality index. The results show that the highest mean absolute error was observed
in the WQI, as predicted by the ANN LM training algorithm; the lowest error values were for
the ANN LMQN and CGD training algorithms. Our findings also indicate that for upscaling, the
aggregated MLR model could provide reliable performance to predict the water quality index, since
the r2 coefficient of the models varies from 0.73 ± 0.2 for large catchments, to 0.85 ± 0.15 for very
large catchments, and for downscaling, the r2 coefficient of the disaggregated MLR model ranges
from 0.93 ± 0.05 for very large catchments, to 0.97 ± 0.02 for medium catchments. Therefore, scaled
models could be applied to catchments that lack sufficient data to perform a rapid assessment of the
water quality index in the study area.

Keywords: upscaling; downscaling; WQI; ANN training algorithm; model aggregation; model disag-
gregation

1. Introduction

In recent years, the issue of water quality has been raised as one of the main issues
in surface water resources [1]. Natural and human processes, such as runoff and nutrient
leaching from the soil [2], agricultural practice [3], landscape and land use patterns [4,5],
and urban development [6], are among the main factors that affect water quality in hy-
drological units. However, the classification of water quality is crucial for monitoring,
forecasting, managing [7] and protecting water resources [8–10]. The complexity of study-
ing hydrological processes has led to the need for scale-based approaches to assess the
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catchments and understand their processes and problems [11]. The quality of river water
has been studied at different scales, ranging from local [12–15], to regional [16,17] and
national [18], using various models. Most studies on the calibration of hydrological models
have been based on local parameters. However, the results can be generalized to areas
lacking data, provided that the parameters are calibrated on a larger scale [19].

According to Fritsch et al. 2020 [20], scaling is defined as translating information from
one scale, which serves as the source, to another scale, the target. Consequently, scaling
can be performed in two forms: upscaling and downscaling [21]. Upscaling refers to the
aggregation of data from a smaller to a larger scale [22]. It is associated with a decrease in
data requirements and a change in the performance of models of interest [23]. Therefore,
these models can be used as a tool for policy making on larger scales, such as regional and
national scales [24], and if downscaled, they can support local decision making in socio-
ecological management. Upscaling can be a straightforward process, but encountering
an unknown number of control variables that play their roles at different scales can be
considered a crucial issue for any downscaling practice. Accordingly, even though the
aggregation of variables and data is not considered a tedious task in the upscaling process,
downscaling is associated with the disaggregation of variables and data, which need to
be assembled with the source model. The scale at which the source model is developed
requires a different number of variables; the lower the scale, the higher the number of
control variables. The data-intensive property of a given model is consequently increased
as the scale of interest is changed downward, from the global scale to the local one.

Wilby and Wigley (1997) [25], as cited by Karger et al. (2017) [26], classified downscal-
ing methods into four groups: regression methods, pattern-based approaches, stochastic
variable generators, and dynamical downscaling methods. The last of these is of the
area-specific feature. Of these approaches, regression methods are the most commonly
used downscaling models due to their relative simplicity in implementation and low
computational requirements [27].

The application of regression models to upscaling practices was discussed by Zir-
lewagen and Von Wilpert (2010) [28], who noted that regression techniques are still rec-
ommended if accurate spatial predictions of environmental parameters are sought in
cause-and-effect relationships. Leitao et al. (2018) [29] applied multidimensional satellite
imagery as auxiliary data to upscale above-ground carbon. Applying the regression-based
method, their findings indicated that data extrapolation can be performed in a suitable way,
using linear regression models.

However, changing from one scale to another is not always easy and causes problems
due to nonlinear relationships, scale breaks, feedback, and heterogeneity in process pat-
terns [20,30]. Limitations in data access, the time-consuming nature of multiple algorithms,
and uncertainty in modeling require the use of local models that can be implemented on
multiple scales. Consequently, it is necessary to apply a suitable basic algorithm to simulate
catchment processes and patterns, especially in the field of water resource quality on the
local scale, to use the simulated models confidently on multiple scales. The main challenge
that underlies upscaling is the lack of a well-accepted upscaling procedure to transform
processes [31]. Furthermore, the lack of scalability of local models for larger-scale datasets
can be considered another crucial challenge [15,32].

It should be noted that most of the measured data related to nonpoint source pollution,
originating from observations and experiments on a laboratory and/or field scale, which
helps to understand the processes under which the nonpoint source pollution occurs
in the environment. However, simulating nonpoint source pollution on the catchment
scale, using laboratory data, is associated with additional model uncertainty, as it cannot
accurately reflect nonpoint source pollution patterns on a larger scale [22]. Relationships
between macronutrients are also highly scale dependent [33], and increasing the scale
of field observations can provide better input data to model catchment nutrients [34,35].
However, Mineau et al. (2015) [36] showed that upscaling field-scale processes are needed
to understand the impact of agricultural nonpoint source pollution on receiving lakes.
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Many studies have shown the applicability of artificial neural networks (ANN) in
the prediction of water quality [12,37,38], suspended sediment concentration [39], water
quality monitoring [40], and water quality index [41], as a tool for modeling complex
nonlinear systems. ANN training algorithms have been widely used by scientists to solve
engineering problems in water quality [42–44], hydrological and hydraulic modeling of
the catchment [45,46]. Applying ANN models (see, e.g., [47,48]) to predict water quality
indices [10,49] has also shown that they can be considered an appropriate model to predict
water quality indices.

It should be noted that applying ANN models on another scale requires determining
the linear relationships of the model, with little data to achieve the most optimal perfor-
mance. The group of models that are developed and presently used to predict water quality
are always highly data intensive in their training/calibrating stage, time consuming in
information processing, and they also require sufficient user knowledge to perform them.
Furthermore, considering the factors that affect water quality and their rapid temporal and
spatial changes, there is a crucial need for models that could support the formulation of
strategies and policies with minimal data and time requirements. To fill the gap, the present
study was conducted to assess how well the ANN training algorithms predict water quality
indices, if they are up- and downscaled, using MLR models.

2. Materials and Methods
2.1. Study Area

A medium-sized catchment (460.06 km2) located in the southern basin of the Caspian
Sea was chosen as source catchment to carry out this study. The land use/land cover mainly
includes 45.56% non-irrigated arable land, 24.65% high-density grasslands, 12.25% per-
manently irrigated land, 11.12% moderate-density grasslands, 4% low-density grasslands,
1.59% urban fabric areas, 1.5% rocky areas and 1% other land uses. The mean annual pre-
cipitation, evaporation, temperature, and flow are 280 mm yr−1, 1565 mm yr−1, 16 ◦C and
2.10 m3 s−1, respectively. Figure 1 shows the geographical location of the source catchment.
Furthermore, 25 catchments distributed throughout the southwest of the Caspian Sea basin
and of 8 to 2545 km2 areas were selected to evaluate the up- and downscaled MLR models
(Figure 2).

2.2. Data Description

Monthly water quality data (2004–2015) were collected from the Ardebil Regional
Authority for Water Resources Management. Nine water quality variables, including TDS,
EC, pH, SO4, HCO3, Cl, Ca, Mg, and Na, were used to predict the water quality index.
Table 1 shows the details of the statistics of the water quality variables for the source
catchment.

Table 1. Statistics of the water quality variables for the source study catchment.

Water Quality Variable Min Max Mean Std. Deviation

TDS (mg/L) 141 1785 863.19 297.91
EC (µs/cm) 202 2550 1225.28 423.93

pH 7.16 8.50 7.84 0.3
SO4 (mg/L) 14.41 614.78 197.25 115.47

HCO3 (mg/L) 79.33 475.95 260.8 63.75
Cl (mg/L) 14.18 354.5 142.11 60.19
Ca (mg/L) 16.03 160.32 64.53 28.09
Mg (mg/L) 4.86 68.04 23.71 13.16
Na (mg/L) 0.00 363.24 150.48 64.46
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Figure 1. Geographical location of the source catchment.
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Figure 2. Geographical location of the target catchments.

2.3. Methodology
2.3.1. Water Quality Index

The water quality index was introduced by Horton (1965) [50] and later developed by
Brown et al., 1970 [51]. It aims to understand water quality issues by integrating complex
data and establishing a criterion that describes water quality characteristics. Water quality
index expresses the overall water quality [52,53], at a certain time and location, based on
which appropriate management strategies can be developed with the aim of improving
water quality [8,10,54]. Equation (1) has been applied to calculate the water quality index.

WQI =
n

∑
i=1

[((
Ci

Si

)
100
)

Wi

]
(1)

where WQI is the water quality index, Ci is the concentration of variable i of water quality,
Si is the drinking water standard for variable i, and Wi represents the relative weight of
variable i [55–60] (Table 2). Consequently, the higher the value of the WQI, the lower the
water quality. It should be noted that a WQI less than 25 can be considered the best in
terms of water quality [61].
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Table 2. Relative weights and water quality standards of the water quality variables.

Water Quality Variables Variable Relative Weight (Wi) Drinking Water Standard (Si)

TDS 0.16 1000
EC 0.16 500
pH 0.16 8
SO4 0.04 250

HCO3 0.04 120
Cl 0.12 250
Ca 0.12 200
Mg 0.12 150
Na 0.08 200

2.3.2. Artificial Neural Network Model

ANN training algorithm models have been developed to examine the performance
of seven training algorithms by which the water quality index could be predicted. They
include quick propagation (QP), conjugate gradient descent (CGD), quasi-Newton (QN),
limited-memory quasi-Newton (LMQN), Levenberg–Marquardt (LM), online backpropaga-
tion (OBP), and batch backpropagation (BBP).

The input data include the nine water quality variables, that is, TDS, EC, pH, SO4,
HCO3, Cl, Ca, Mg, and Na, and WQI as the models of the output of the ANN training
algorithm. The ANN training algorithm models were developed using 70% of the data
set for the training step, and the rest of the data set (30%) was applied for the validation
and testing steps (e.g., see: [38,62,63]). The predictions of the ANN training algorithms
were then validated referring to the r2 coefficient and mean absolute error, comparing the
predicted and observed values as follows [64]:

MAE =
1
n

n

∑
i=1

(Oi − Pi) (2)

r2 =
∑n

i=1
(
Oi − O

)(
Pi − P

)√
∑n

i=1
(
Oi − O

)2
∑n

i=1
(
Pi − P

)2
(3)

Furthermore, to address the overfitting drawback of the ANN training algorithm models,
achieving optimal goodness of fit with a minimal number of nodes in the hidden layers and
iterations in the training step, as indicated by Kadam et al. (2019) [65], was considered in the
development of the ANN training algorithm models. The appropriate number of nodes in
the hidden layer was selected by the Akaike information criterion [66–68]. Consequently, the
structure of 9-3-1 as the number of input variables and the node and output variable was
chosen as the most appropriate architecture.

To examine the performance of the ANN training algorithms in the prediction of WQI,
multiple linear regression analysis was performed using the stepwise approach between
the ANN training algorithms-based WQI as the dependent variable and a set of the water
quality variables (TDS, EC, pH, SO4, HCO3, Cl, Ca, Mg, and Na) as the independent
variables, using Equation (4) as follows:

yi = β0 + β1x1 + β2x2 + · · ·+ βn−1xn−1 + εi (4)

where yi is the water quality index predicted using the ANN algorithm, ith; x1... xn−1 are
the water quality variables; β1 . . . βn−1 are the coefficients of the water quality variables,
with p ≤ 0.05; β0 is a constant, with p < 0.05, and εi is the error for the attributes of the
water quality index i.

Multicollinearity of the MLR models was evaluated based on the variation inflation
factor, where the lack of significant inter-variable collinearity is indicated by a VIF < 10 [69,70].
To evaluate the goodness of fit of individual models, a scatter plot of observed versus
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predicted values is shown [71]. The most appropriate MLR model, selected based on the
Akaike information criterion, was up- and downscaled using the variable aggregation and
disaggregation approach. The performance of the aggregated and disaggregated MLR
models was then examined to predict the WQI, using the data collected from the 25 target
catchments (Figure 2). All statistical analyses were performed with IBM SPSS for Windows,
Release 16.0.

2.3.3. Sensitivity and Uncertainty Analyses

Sensitivity analysis is an integral part of the modeling process and generally involves
testing the input parameters of the model to help validate the model and clarify the
future direction of the research. Therefore, it can be considered an important step in
enhancing models in general and environmental models in particular [72]. For this study,
we performed the conditional sensitivity analysis using Monte Carlo simulation [73].
Furthermore, to determine how the most appropriate MLR model in this study could
be applied to predict WQI, the Monte Carlo simulation-based uncertainty analysis was
performed, as indicated by Amiri et al. (2019) [74], and the behavior of the model was
probabilistically analyzed.

3. Results

The architecture of the ANN training algorithm models was examined by changing the
number of nodes in the hidden layer and determined on the basis of the Akaike information
criterion and the r2 coefficient. Consequently, the most appropriate architecture (9-3-1) of
the ANN training algorithm models was chosen (Table 3). To avoid overfitting the ANN
training algorithm models, the maximum number of iterations and the mean absolute error
in all the training algorithms were set as 1000 and 0.49, respectively.

Table 3. Results of the determination of the optimal architecture of the ANN model.

Architecture Weights Fitness r2
Error

Akaike Information Criterion
Training Testing

[9-1-1] 12 292.69 0.98 1.43 1.99 −292.69
[9-2-1] 23 279.84 0.99 1.27 1.78 −279.84
[9-3-1] 34 332.52 0.99 0.49 1.10 −332.52
[9-4-1] 45 308.94 0.99 0.50 0.89 −308.94
[9-5-1] 56 209.30 0.99 1.35 2.16 −209.30
[9-6-1] 67 245.47 0.99 0.64 1.28 −245.48
[9-7-1] 78 234.34 0.99 0.56 0.86 −234.34
[9-8-1] 89 244.38 0.99 0.37 0.73 −244.39
[9-9-1] 100 210.99 0.99 0.43 1.08 −210.99

3.1. Results of Training Algorithms

The hyperparameters (hidden layer: 3; iteration: 1000; MSE: 0.49; momentum: 0.1,
and learning rate: 0.1) were followed in training the ANN algorithms. Consequently, the
training step of the ANN algorithms was maximally stopped at the 1000th iteration for QP,
OBP, and BBP, and 290th for CGD, the 215th for QN, the 916th for LMQN, and the 15th for
LM, after meeting the requirements, which were set for minimum errors and interactions
in the earlier step.

The results show that the highest mean absolute error was observed in the WQI that
was predicted by the ANN LM training algorithm; the lowest error values were for the
ANN LMQN and CGD training algorithms. Furthermore, we found that the ANN model
that was trained by the BBP algorithm had the lowest coefficient of determination (r2 = 0.95),
while the highest (r2 = 0.99) is for the ANN models that were trained by the CGD, QN, and
LMQN training algorithms (Table 4).
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Table 4. Coefficients of determination and mean absolute error of the ANN training algorithms.

Step Statistic QP CGD QN LMQN LM OBP BBP

Training r2 0.978 0.99 0.99 0.993 0.967 0.974 0.959
MAE 1.23 0.41 0.62 0.39 2.48 1.66 2.04

Validation
r2 0.926 0.96 0.985 0.975 0.916 0.932 0.882

MAE 1.84 0.94 1.36 0.72 3.78 2.53 2.77

Testing r2 0.972 0.991 0.987 0.991 0.942 0.963 0.955
MAE 3.77 2.62 1.95 2.16 5.02 4.18 5.29

According to the results, a relatively acceptable performance can be expected when
applying the ANN training algorithms to the WQI predictions, based on the r2 coefficient
(0.85 to 0.99) between the predicted and observed WQIs that were obtained by the ANN
training algorithms. In the training step, the ANN model that was trained by the LMQN
algorithm performed the best, considering the lowest iteration (15th) and error value
amongst the other ANN training algorithms. However, the ANN model that was trained
by the BBP training algorithm indicated a relatively low performance, due to having the
highest iteration (1000th) and error value.

3.2. MLR Model

MLR models were developed using the ANN algorithm-based WQI predictions as the
dependent variable and the nine input variables as the independent variables, as indicated
in the Equations (5)–(11).

WQIqp = 0.076(TDS) + 0.035(Na) + 0.083(Ca) + 23.344 (5)

WQIcgd = 0.079(TDS) + 0.034(Na) + 0.084(Ca) + 0.733 (6)

WQIqn = 0.088(TDS) + 22.644 (7)

WQIlmqn = 0.089(TDS) + 22.478 (8)

WQIlm = 0.065(TDS) + 5.813(pH) + 0.027(HCO3) + 0.028(Cl) + 0.12(Ca) + 0.039(Na)− 27.26 (9)

WQIobp = 0.085(TDS) + 25.287 (10)

WQIbbp = 0.074(TDS) + 0.039(Na) + 0.084(Ca) + 24.159 (11)

The results (Table 5) show that 97–99% of the total variations in the WQI that were
predicted by the ANN training algorithms can be explained by the MLR models (Equations
(5)–(11)). The MLR models indicated that TDS, Ca, and Na are important independent
variables that contribute to the prediction of the WQI. The r2 coefficient of the MLR models
is significant at p < 0.05 and no collinearity was observed between the independent variables
of the MLR models. Figure 3 illustrates the one-by-one relationship between the predicted
and observed WQI.
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Table 5. Statistics of the ANN training algorithms-based MLR models.

Coefficients Collinearity Statistics

Model Variable B Std. Error Beta r2 t Sig. Tolerance VIF

WQIQP

Constant 23.344 0.970

0.985

24.072 0.00
TDS 0.076 0.002 0.870 37.472 0.00 0.255 3.925
Na 0.035 0.006 0.086 5.421 0.00 0.542 1.844
Ca 0.083 0.018 0.090 4.704 0.00 0.376 2.660

WQICGD

Constant 20.733 0.631
0.994

32.845 0.00
TDS 0.079 0.001 0.879 59.877 0.00 0.255 3.925
Na 0.034 0.004 0.082 8.139 0.00 0.542 1.844
Ca 0.084 0.011 0.088 7.294 0.00 0.376 2.660

WQIQN
Constant 22.644 1.140

0.978
19.859 0.00

TDS 0.088 0.001 0.989 70.684 0.00 1.000 1.000

WQILMQN
Constant 22.478 0.858

0.987
26.207 0.00

TDS 0.089 0.001 0.994 94.474 0.00 1.000 1.000

WQILM
Constant −27.26 11.054

0.976
−2.466 0.015

TDS 0.065 0.004 0.734 18.012 0.00 0.134 7.468
Na 0.039 0.008 0.096 4.714 0.00 0.532 1.879
Ca 0.12 0.024 0.128 5.082 0.00 0.351 2.847
pH 5.813 1.368 0.066 4.250 0.00 0.919 1.088

HCo3 0.027 0.008 0.066 3.399 0.00 0.589 1.697
Cl 0.084 0.013 0.064 2.065 0.041 0.234 4.276

WQIOBP
Constant 25.287 1.194

0.974
21.173 0.00

TDS 0.085 0.001 0.987 65.272 0.00 1.000 1.000

WQIBBP
Constant 24.159 1.231

0.975
19.619 0.00

TDS 0.074 0.003 0.855 28.693 0.00 0.255 3.925
Na 0.039 0.008 0.099 4.857 0.00 0.542 1.844
Ca 0.084 0.022 0.093 3.771 0.00 0.376 2.660

Figure 3. Cont.
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Figure 3. Predicted versus observed WQI for the ANN training algorithms-based MLR models.

Moreover, an intermodel comparison was conducted using the Akaike information
criterion to screen the ANN training algorithm-based MLR models, to find the most
appropriate one for predicting WQI.

3.3. Sensitivity Analysis

The ANN CGD training algorithm-based MLR model was determined to be the main
model for predicting the water quality index in the source catchment (Table 6). The results
of the goodness of fit to determine the statistical distributions of the variables in the MLR
model, together with the a priori and posteriori statistics of the statistical distributions, are
shown in Table 7.

Table 6. Results of the Akaike information criterion for ANN training algorithm-based MLR models.

ANN Training Algorithm-Based MLR Model AICc Ranking

CGD 82.59 1
QP 125.32 2
LM 139.37 3
QN 142.04 4
BBP 148.99 5

LMQN 361.32 6
OBP 415.60 7
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Table 7. A priori and posteriori statistics of the statistical distribution of the ANN CGD training
algorithm-based MLR model.

ANN Training Algorithm Model Variable Mean Min Max S.D. Variance

WQIcgd

A priori statistics
TDS 863.19 141 1785 297.91 710.75
Ca 64.53 16.03 160.32 28.09 789.40
Na 150.48 0 363.24 64.46 4155.73

Posteriori statistics

Yobs. 99.15 34.4 175.97 26.66 710.75
TDS 862.46 339.47 5219.1 307.39 94,488.3
Ca 64.91 14.98 436.26 31.03 962.9
Na 134.18 14.52 3234.0 83.92 7043.06

Ysim.|Change in
target variable for SA

TDS 99.40 58.08 443.58 24.28 589.7
Ca 99.49 95.3 130.68 2.6 6.79
Na 98.9 94.84 204.3 2.85 8.14

The slope of the lines (Figure 4) indicates how sensitive the responses of the ANN
CGD training algorithm-based MLR model are, in relation to the change in a given variable,
while the other variables were fixed by their average values. The results of the sensitivity
analysis showed that the ANN CGD training algorithm-based MLR model is the most
sensitive to change in the Ca variable, while the least sensitive is the TDS variable.

Figure 4. Slope of the line for the variables of the ANN CGD training algorithm-based MLR model.

3.4. Uncertainty Analysis

Monte Carlo simulations were performed to analyze the uncertainty of the ANN CGD
training algorithm-based MLR model to the dependent and independent variables (Table 8).
The cumulative density function (CDF), F(x), which expresses the random probability of
variable X, evaluates a value less than or equal to the values of F (x) = Pr(X = x). In this
study, the cumulative density function was considered to determine the probability that the
output model functions are less than zero (Pr (Output) < 0), since only positive values can
be acceptable for the water quality index. The behavior of the model can be investigated on
the values of the cumulative density function. Consequently, the probability values of the
cumulative density function for the variables Pr (Output) < 0 for the independent variables
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were carried out in the modeling, related to water quality (Figure 5). According to Figure 5,
the probability that the ANN CGD training algorithm-based MLR model leads to negative
values (Pr (Output) < 0) is equal to 0%.

Table 8. Results of the statistical distribution for the ANN CGD training algorithm-based MLR model.

Statistics Variable Statistical
Distribution

Komologrov Simirnov Statistical
ParametersStatistics p-Value

TDS Wake by 0.07468 0.5 α = 2616 β = 8.1652 γ = 207.76
δ = 0.1286 ξ = 339.35

a prior Ca Erlang 0.07961 0.5 α =1.4052 β =2.1451 a = 22.445 b = 160.32

Na Wake by 0.05868 0.5 α = 524.58 β = 5.2938 γ = 36.524
δ = 0.1505 ξ = 24.138

posterior Yobs. Wake by 0.07673 0.5 α = 265.69 β = 8.1782 γ = 19.192
δ = 0.10217 ξ = 48.831

YSim. Wake by 0.0048 0.5 α = 201.36 β = 7.7886 γ = 16.748
δ = 0.11488 ξ = 57.049

Figure 5. The cumulative density function for the WQI that was simulated by the ANN CGD training
algorithm-based MLR model.

3.5. Scaling the ANN CGD Training Algorithm-Based MLR Model

To up- and downscale the ANN CGD training algorithm-based MLR model, we
applied Equations (12) (r2 = 0.797) and (13) (r2 = 0.995), respectively, which are based on the
variable aggregation and disaggregation approach. The results of the up- and downscaling
of the ANN CGD training algorithm-based MLR model are summarized in Table 9. It
shows that the aggregated MLR model (Equation (12)) could provide reliable performance
in predicting the water quality index, since the r2 coefficients of the WQI predictions range
from 0.73 ± 0.2 for large catchments, to 0.85 ± 0.15 for very large catchments. However, for
the disaggregated MLR model (Equation (13)), the r2 coefficients of the WQI predictions
vary from 0.93 ± 0.05 for very large catchments, to 0.97 ± 0.02 for medium catchments.

WQIcgd = 0.616(Ca) + 0.196(Na) + 29.925 (12)

WQIcgd = 0.086(TDS) + 0.032(Na) + 0.076(Ca)− 0.018(SO4) + 18.979 (13)
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Table 9. Results of the scaling of the ANN CGD training algorithm-based MLR model.

Catchment Area
(km2)

Mean
Discharge
(m3 s−1)

Upscaling Downscaling

No. Type r2 MAE r2 MAE

1

Very Large

1281.1 5.76 0.912 7.89 0.93 2.37
2 1801.17 4.42 0.63 9.63 0.871 5.00
3 2545.87 2.26 0.916 8.80 0.961 4.73
4 1511 1.68 0.958 8.26 0.995 2.16

mean ± sd. 1784.78 ± 550.2 3.53 ± 1.9 0.85 ± 0.15 8.45 ± 0.75 0.93 ± 0.05 3.56 ± 1.5

5
Large

977.84 4.63 0.961 10.18 0.973 2.60
6 581.65 1.78 0.672 11.86 0.972 2.35
7 539.44 0.05 0.553 32.74 0.949 7.44

mean ± sd. 699.64 ± 241.8 2.15 ± 2.31 0.73 ± 0.2 18.26 ± 12.57 0.96 ± 0.01 4.13 ± 2.87

8

Medium

181.63 0.09 0.875 7.10 0.994 1.61
9 131.6 0.67 0.578 3.33 0.921 3.27

10 554.4 2.36 0.864 7.17 0.98 1.90
11 348.41 2.00 0.78 6.51 0.957 2.04
12 152.1 1.50 0.902 2.93 0.968 1.13
13 380.04 0.23 0.949 8.87 0.998 1.50
14 425.98 0.36 0.929 18.41 0.993 3.34
15 156 0.42 0.495 13.98 0.968 2.71

mean ± sd. 291.27 ± 157.53 0.95 ± 0.87 0.79 ± 0.16 8.53 ± 5.26 0.97 ± 0.02 2.18 ± 0.82

16
Small

77.36 0.37 0.741 11.03 0.94 2.48
17 77.5 0.32 0.778 13.54 0.982 2.79
18 55.69 1.22 0.952 11.61 0.997 2.36

mean ± sd. 70.18 ± 12.55 0.63 ± 0.5 0.82 ± 0.11 12.06 ± 1.31 0.97 ± 0.03 2.54 ± 0.22

19

Very Small

42.54 0.12 0.81 14.53 0.975 3.82
20 12.23 0.09 0.599 15.18 0.86 3.73
21 25.62 0.33 0.809 13.90 0.842 4.33
22 8.42 0.08 0.985 15.21 0.997 3.61
23 43.02 0.22 0.892 10.96 0.988 2.30
24 31.32 0.09 0.604 12.98 0.99 2.01
25 38.67 0.49 0.502 13.99 0.964 3.19

mean ± sd. 28.83 ± 14.11 0.2 ± 0.15 0.74 ± 0.17 13.82 ± 1.48 0.94 ± 0.06 3.28 ± 0.84

4. Discussion

The present study has shown that the use of ANN models to determine WQI is a
very effective tool to predict the characteristics of river water quality (see, e.g., [75–77]).
Our findings indicated that the ANN training algorithms can be reliable in predicting and
simulating the WQI. Gupta et al. (2019) [76] suggested that ANN models could capture
89% of total variations in WQI, while Othman et al. (2020) [41] revealed that the ANN
model could explain 97.78% of the total variations in water quality indices, demonstrating
the relatively high performance of ANN training algorithms to predict and simulate water
quality [12,65,78]. The applicability of the ANN CGD training algorithm to predict water
quality was also confirmed by the findings of Abbaszadeh (2016) [79]. Bafithite (2018) [80]
compared the ANN LM and CGD training algorithms to simulate river flow, showing that
the ANN CGD training algorithm is more appropriate than any of the other algorithms. The
conjugate gradient descent training algorithm of ANN is one of the most frequently used
algorithms, due to its simplicity, numerical efficiency, and very low memory requirements
for the efficient training tasks of neural networks [81].

Many studies (see, e.g., [82–84]) show that the application of ANN models can provide
reliable results when predicting water quality indices. The regression model that was
developed using the output of the ANN CGD training algorithm as the dependent variable
and a set of water quality variables as the independent variables can show the required
efficacy in predicting WQI, in the absence of sufficient data and without trapping users
in complex calculations, such as artificial intelligence, which is in line with the findings
of Haverkamp et al. (2002) [23]. In other words, we found that the regression model is
appropriate for use in scaling, as indicated by Zhang et al. (2020) [27] and Zirlewagen and
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Von Wilpert (2010) [28]. Although several studies [20,22,32] have indicated that regression
models may not produce reliable upscaling performance, our findings revealed that reliable
performance can be achieved, which is consistent with Henze et al. (2020) [85]. The
evaluation of aggregated and disaggregated MLR models to predict water quality indices
in target catchments showed that they could significantly explain the water quality indices.
Therefore, it can be considered an alternative and cost-effective tool for predicting and
scaling river water quality, in terms of time constraints and limited field data.

5. Conclusions

Our findings revealed that the up- and downscaling of the ANN-based MLR model,
on the basis of the variable aggregation and disaggregation, can be considered as one of the
most effective approaches, by which water quality index can be predicted in the catchments
that lack sufficient data, since the performance of the up- and downscaled model varied
between 0.93 and 0.97, depending on to which types of catchments those models were
applied. The upscaled models can provide us with a tool for assessing the impacts of the
strategies and policies at the national level, in general, and at basin level, in particular.
They can stop strategies and policies that are detrimental to water resource sustainability
from being translated into plans, programs, and, more importantly, projects that inherently
degrade the environment. The downscaled models can support local decision making
in socio-ecological management. Although we found that the upscaled and downscaled
models are appropriate to predict the WQI in the southern basin of the Caspian Sea, it is
suggested that the proposed methodology be extended to other basins of the country.

It is obvious that the modeling of water quality characteristics varies, depending on
geographical conditions and at different scales, which makes it possible to use hybrid
approaches and models to optimize the model and reduce errors. Considering that river
water quality is affected by the rainfall-runoff process, and the process is driven by factors,
including but not limited to evaporation, vegetation, soil, and geology, examining the
contribution of the driving forces in river water quality, using different intelligence models,
such as model tree, gene expression programming, support vector machine, multivari-
ate adaptive regression spline, adaptive neurofuzzy inference system, and evolutionary
polynomial regression, can increase our understanding of this issue.
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