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Abstract: In this work, an electrochemical filter using an electrospun carbon nanofiber membrane
(ECNFM) anode fabricated by electrospinning, stabilization and carbonization was developed for the
removal of antibiotic tetracycline (TC). ECNFM with 2.5 wt% terephthalic acid (PTA) carbonized at
1000 ◦C (ECNFM-2.5%-1000) exhibited higher tensile stress (0.75 MPa) and porosity (92.8%), more
graphitic structures and lower electron transfer resistance (23.52 Ω). Under the optimal condition of
applied voltage 2.0 V, pH 6.1, 0.1 mol L−1 Na2SO4, initial TC concentration 10 ppm and membrane
flux 425 LMH, the TC removal efficiency of the electrochemical filter of ECNFM-2.5%-1000 reached
99.8%, and no obvious performance loss was observed after 8 h of continuous operation. The pseudo-
first-order reaction rate constant in flow-through mode was 2.28 min−1, which was 10.53 times
higher than that in batch mode. Meanwhile, the energy demand for 90% TC removal was only
0.017 kWh m−3. TC could be converted to intermediates with lower developmental toxicity and
mutagenicity via the loss of functional groups (-CONH2, -CH3, -OH, -N(CH3)2) and ring opening
reaction, which was mainly achieved by direct anodic oxidation. This study highlights the potential
of ECNFM-based electrochemical filtration for efficient and economical drinking water purification.

Keywords: electrospun carbon nanofiber membrane; electrochemical filtration; tetracycline; drink-
ing water

1. Introduction

Antibiotics have been used extensively in medical, animal husbandry, aquaculture
for humans and animal infectious disease treatment [1,2]. Unfortunately, many antibiotics,
including fluoroquinolones, sulfonamides, macrolides and tetracycline, have been detected
in drinking water, with the concentration ranging from 0.69 to 472.42 ng L−1, threatening
human health and safety [3–7]. Therefore, it is of great significance to develop drinking
water purification for antibiotics removal.

Given the inefficiency of conventional drinking water treatment technologies towards
antibiotics [8–10], advanced treatment technologies, such as ozone oxidation [11], acti-
vated carbon adsorption [12], advanced oxidation technology [13] and membrane technol-
ogy [14], have been employed. Due to the favorable separation performance, dispensing
with chemicals and continuous operation, membrane technology has attracted considerable
attention [15]. Although membrane filtration (such as nanofiltration and reverse osmosis
technology) could exclude more than 99% of ciprofloxacin and levofloxacin in treated wa-
ter [16,17], the application was limited by low flux, high operating pressure and membrane
fouling [18].
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In the past few years, the electrochemical filtration technology, as an integration
of membrane technology with the electrochemical process, has gained popularity for
improving treatment performance and mitigating membrane fouling [19]. In an elec-
trochemical filtration process, together with wastewater passing through the membrane
electrode, pollutants are adsorbed or intercepted and then electrochemically degraded in
situ. Compared with the conventional electrochemical process, the intensive convection
in flow-through electrochemical filtration remarkably enhances the mass transport and
electron transfer of the target substance to the electrode surface, further promoting the
removal efficiency [20,21]. Zheng et al. [22] demonstrated that the mass transfer rate of the
TiO2@SnO2-Sb electrochemical filtration system in flow-through mode was 3.4 to 5.1 times
higher than that in batch mode, and the removal rate of p-chloroaniline was increased by
1.4 times. Preferable performance in the removal of antibiotics of electrochemical filtration
was also observed. At an operating voltage of 2.5 V and a flow rate of 1.5 mL min−1, a
carbon nanotubes (CNTs) electrochemical filter achieved a removal rate of more than 98%
for tetracycline (TC) [21]. Under the condition of a voltage of 2.03 V and membrane flux of
300 L m−2 h−1 (LMH), 95.7% of the sulfanilamide was eliminated by a titanium suboxide
(Ti4O7) electrochemical membrane [23]. Although electrochemical filtration has presented
its feasibility in removing antibiotics, it is necessary to further improve efficiency and
reduce energy consumption, which rely on the performance of the membrane electrode.

Currently, the typical membrane electrodes applied in electrochemical filtration in-
clude the CNTs membrane [24,25], Ti4O7 membrane [26,27] and porous titanium-based
membrane [28,29]. Despite the remarkable removal performance, their scale-up applica-
tions are hindered by complex preparation processes, high cost and limited flux [30–32]. A
polyacrylonitrile (PAN) -based carbon nanofiber membrane prepared by electrospinning,
stabilization and carbonization may offer a solution. An electrospun carbon nanofiber
membrane (ECNFM) possessing a simple preparation method, low cost, excellent con-
ductivity and high permeate flux is a promising electrochemical membrane [33–35]. Yu
et al. [33] prepared PAN-based graphene/tin dioxide carbon nanofibers with a removal
efficiency of 85% towards sulfamethoxazole. However, the existing studies focus mostly
on the removal performance while neglecting the enhancement of mechanical strength,
which is indispensable to supported membrane electrodes. The introduction of terephthalic
acid (PTA) into PAN is a feasible approach to enhance the flexibility of carbon nanofibers
because the holes generated by PTA sublimation can relieve the stresses on the fibers when
bent [36].

In this work, ECNFM using PAN and PTA as precursors was fabricated by electro-
spinning, stabilization and carbonization, and employed in electrochemical filtration for
efficient and economical removal of antibiotic TC. The morphology, structure, mechanical
and electrochemical properties of ECNFM were characterized. The effects of the parameters
on TC degradation and the long-term operation performance were investigated. Addition-
ally, the efficiency as well as energy demand of TC removal in flow-through and batch mode
were compared. The electrochemical oxidation mechanism was explored, and the possible
degradation pathways of TC were also proposed according to the high-performance liquid
chromatography-tandem mass spectrometry (HPLC-MS-MS). Finally, a safety evaluation
of ECNFM-based electrochemical filtration was conducted via the TEST program.

2. Materials and Methods
2.1. Materials and Reagents

Materials and reagents used in this work are provided in Supplementary Materials
(SM) Text S1.

2.2. Preparation of ECNFM

The electrospinning method of nanofibers was based on the previous work [37]. Firstly,
4.8 g PAN and 1.6 g PTA were dissolved in 60 mL N, N-Dimethylformamide (DMF) and
magnetically stirred for 4 h at 70 ◦C to prepare the spinning solution. The solution was
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then transferred to a movable tank and the electrospinning process was conducted with
Nanospider™ NS Lab 2G unit (Elmarco, Liberec, Czech Republic). The conditions of
electrospinning are as follows: voltage 60 kV, distance of electrodes 200 mm, moving speed
of tank 100 mm s−1, temperature 25 ± 1 ◦C and humidity 30 ± 10%. After electrospinning,
the obtained nanofibers were stabilized in air from room temperature to 270 ◦C at the
rate of 1 ◦C min−1, and then kept for 1 h. Subsequently, the stabilized nanofibers were
carbonized at 1000 ◦C with the heating rate of 2 ◦C min−1 in N2 for 2 h to acquire ECNFM.
Ultimately, the obtained ECNFM were washed with absolute ethyl alcohol (EtOH) and
deionized water (DI water) and dried for further experiments. ECNFM with different
PTA weight ratios (0, 1, 2.5, 4%) and carbonization temperatures (800, 900, 1000, 1100 ◦C)
were denoted as ECNFM-R-T, where R and T represent PTA ratios in the electrospinning
solutions and carbonization temperature, respectively.

2.3. Characterization

The surface morphology and structure of ECNFM were observed via scanning elec-
tron microscope (SEM, Zeiss Merlin, Oberkochen, Germany). The infrared absorption
spectra were obtained by Fourier transform infrared (FTIR, Bruker Vertex 70, Billeria, MA,
USA). The surface chemical composition was detected by X-ray photoelectron spectroscopy
(XPS, Thermo Fisher Scientific K-Alpha, Waltham, MA, USA). The graphitization degree
of ECNFM was analyzed by Raman spectroscopy (Raman, HORIBA Jobin Yvon, Paris,
France). The mechanical strength was measured using a universal testing machine (Instron
5967, Canton, MA, USA). Porosity and pore size were determined using mercury intrusion
porosimetry (MIP, Micromeritics 9500, Atlanta, GA, USA). Electrical resistance was evalu-
ated via electrochemical impedance spectroscopy (EIS, CHI 760E, Chenhua Inc., Shanghai,
China).

2.4. Electrochemical Filtration Experiment

The electrochemical filtration experiment of TC removal with ECNFM was illustrated
in Figure 1. ECNFM with diameter of 5 cm (0.03 ± 0.005 g) and stainless steel mesh
served as anode and cathode, respectively, which were connected to a DC power supply
with titanium sheets. The anode and cathode were separated by insulating silica gel
ring with thickness of 6 mm. The effective filtration area and volume of ECNFM-based
electrochemical filter were about 7.07 cm2 and 14.8 cm3, respectively. The feed solution
with TC as the target pollutants and Na2SO4 as the supporting electrolyte was pumped
into this system constantly by a peristaltic pump. The feed solution sequentially passed
through anode and cathode, and the permeate solution was collected at outlet end. All the
experiments were performed in triplicate with mean and standard error as results.
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2.5. Analytical Methods

To avoid the photodegradation of TC, TC stock solution and samples were preserved
in the brown reagent bottle at 4 ◦C for further analysis. Samples were filtered through
0.22 µm glass fiber prior to determination of TC concentration via high performance liquid
chromatography (HPLC, Waters 2695). The total organic carbon (TOC) was measured using
TOC analyzer (Elementar, Langenselbold, Germany). Samples were taken from permeate
solution at different hydraulic residence time (0.99, 1.35, 1.64, 2.11, 2.96 min) to detect
degradation intermediates by HPLC-MS-MS (Q Exactive Plus). Based on quantitative
structure–activity relationship (QSAR) model, the safety of TC and degradation products
were evaluated via TEST software.

The removal rate of TC (RTC) was calculated by Equation (1):

RTC =

(
1 − CP

CF

)
× 100% (1)

where CF and CP are the TC concentration (ppm) in feed and permeate samples, respec-
tively.

The membrane flux (J, LMH) of ECNFM-based electrochemical filter was calculated
by Equation (2):

J =
Q

Am
(2)

where Q is the flow rate (L h−1) and Am is the effective filtration area (m2).
The energy consumption (EC, kWh m−3) could be calculated using Equation (3):

EC =
UIt

V log
(

CF
CP

) (3)

In particular, for the flow-through electrochemical filtration process, EC could be
calculated using the following equation:

EC =
UI

Q log
(

CF
CP

) (4)

where U, I, t and V are the operating voltage (V), the current intensity (A), the hydraulic
retention time (h) and the permeated volume (L), respectively.

3. Results and Discussion
3.1. Structure, Morphology and Electrochemical Characteristics of ECNFM

The morphologies of electrospun and carbonized nanofibers were observed via SEM.
As can be seen from Figure 2a, the electrospun nanofibers owned uniform diameters
without obvious beads, and the rough surfaces resulted from solvent evaporation [38]. The
carbonized nanofibers maintained stable structures without breaking or collapsing, and
they interconnected with each other, which was beneficial to electron transfer (Figure 2b).
The diameters of the electrospun and carbonized nanofibers were mainly in the range of
300 to 450 nm (Figure S1), and the average diameter of the nanofibers was slightly decreased
from 392 nm to 373 nm after carbonization, which might due to thermal contraction [39]. As
shown in Figure S2, the electrospun and carbonized nanofiber membranes were composed
of interwoven nanofibers and owned loose porous structures. Moreover, there were some
pores inside the carbon nanofiber matrix resulted from PTA sublimation, which was
beneficial to improve the tensile strength and porosity.
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Figure 2. SEM images of (a) electrospun nanofibers (2.5 wt% PTA) and (b) carbonized nanofibers
(ECNFM-2.5%-1000).

The effect of PTA on the tensile stress of ECNFM was explored, as shown in Figure 3a.
With the PTA weight ratios increasing from 0 to 2.5%, the tensile stress was significantly
enhanced from 0.12 to 0.75 MPa, indicating that adding PTA promoted the mechanical
strength of ECNFM. However, only a slight increase (0.1 MPa) in the tensile stress of
ECNFM-4%-1000 was observed, which might be due to the limited solubility of PTA in
spinning solution. The flexibility before and after the addition of PTA was also compared by
bending and twisting (Figure S3). Different from the cracked ECNFM-0-1000 after bending,
ECNFM-2.5%-1000 could be bent and twisted easily, exhibiting the potential as a membrane
electrode. The improvement on mechanical strength might be attributed to the sublimation
of PTA, which created holes on the nanofibers to relieve stress [36].
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Figure 3. (a) Tensile stress–strain curves of ECNFM-R-1000 (R = 0, 1, 2.5, 4%); (b) pore distribution of
ECNFM-R-1000 (R = 0, 2.5%).

The pore structures of ECNFM-R-1000 (R = 0, 2.5%) were further investigated by MIP.
It was found that ECNFM-0-1000 and ECNFM-2.5%-1000 were macroporous structures
with average pore sizes of 1.07 and 2.52 µm (Figure 3b), and the porosity was 80.0% and
92.8%, respectively (Table S1). Furthermore, the permeation fluxes of ECNFM-0-1000 and
ECNFM-2.5%-1000 were measured to be 7.66 × 104 L m−2 h−1 bar−1 and 1.15 × 105 L m−2
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h−1 bar−1, respectively. These results demonstrated that the sublimation of PTA could
increase the porosity of ECNFM, which was conducive to improving permeation flux and
enhancing convection [40,41].

FTIR technology was employed to explore the bond structure of nanofibers synthesized
at different stages, as shown in Figure 4a. In the FTIR curve of the electrospun membrane,
the characteristic peaks at 1231, 1298, 1690 and 2243 cm−1 belonged to C-O, C-OH, C=O
and C≡N functional groups of the precursors of PAN and PTA [42,43]. After stabilization,
the peak corresponding to C≡N groups vanished, whereas a sharp peak appeared at
1585 cm−1 related to the C=N and C=C functional groups [43]. The variation in functional
groups indicated the occurrence of dehydrogenation and cyclization of C≡N to form a
heat-resistant ladder structure, which could maintain the structural stability of nanofibers
in the carbonization process [44]. As can be seen from Figure S4, the color of the stabilized
fibers turned to yellow, verifying the formation of chromogenic groups, such as C=C
and C=N [45]. In the FTIR curve of ECNFM, the intensity of above adsorption peaks
was decreased and new characteristic bands of C-C at 1567 cm−1 and C=C at 1140 cm−1

appeared, which were attributed to dehydrogenation, denitrification and generation of
the aromatic ring structure [46]. With the carbonization temperature rising to 1000 ◦C,
the FTIR spectrum became flat and the characteristic peaks almost disappeared, implying
the completion of the carbonization process, during which a graphite-like structure was
formed [46].

XPS technology was used to further reveal the elemental composition and bond struc-
ture of ECNFM-2.5%-1000. The survey spectra displayed three typical peaks corresponding
to the elements of C, N and O. The doped N, which is beneficial to promote conductivity
of ECNMF, derived from the decomposition of PAN and N2 introduced in the carboniza-
tion process (Figure 4b inset) [47]. The O atoms might come from introduced O2 in the
stabilization process and precipitated PTA on the surface. Meanwhile, the C 1s spectrum
could be divided into three individual peaks located at 284.87, 286.02 and 288.69 eV related
to C-C, C-O or C-N and C=O, respectively, and C-C bonds possessed the highest relative
abundance among them (Figure 4b) [48]. In summary, the precursors of PAN and PTA have
been converted into carbon materials successfully after stabilization and carbonization at
1000 ◦C based on the results of FTIR and XPS.
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Raman technology was employed to explore the carbon structure of the ECNFM at
different carbonization temperatures (Figure 5a). Generally, the degree of graphitization
of the carbon nanofibers can be measured by the intensity ratio of the D and G bands
(ID/IG), which are located at 1350 and 1580 cm−1 in the spectrum, respectively, and the
smaller ID/IG value suggests the higher degree of graphitization and regularity of the
carbon structure, as well as enhanced electrical conductivity [49]. The ID/IG values of
ECNFM carbonized at 800, 900, 1000 and 1100 ◦C were calculated as 1.12, 1.00, 0.97 and
0.96, respectively, implying that the increase in carbonization temperature would facilitate
the graphitization and electrical conductivity of ECNFM.

Water 2022, 14, x FOR PEER REVIEW 8 of 17 
 

 

  
(a) (b) 

Figure 4. (a) FTIR spectra of ECNFM-2.5%-T (T = 800, 900, 1000, 1100 °C); (b) high-resolution of C 
1s spectrum (inset panel: full survey scan) of ECNFM-2.5%-1000. 

Raman technology was employed to explore the carbon structure of the ECNFM at 
different carbonization temperatures (Figure 5a). Generally, the degree of graphitization 
of the carbon nanofibers can be measured by the intensity ratio of the D and G bands 
(ID/IG), which are located at 1350 and 1580 cm−1 in the spectrum, respectively, and the 
smaller ID/IG value suggests the higher degree of graphitization and regularity of the car-
bon structure, as well as enhanced electrical conductivity [49]. The ID/IG values of ECNFM 
carbonized at 800, 900, 1000 and 1100 ˚C were calculated as 1.12, 1.00, 0.97 and 0.96, re-
spectively, implying that the increase in carbonization temperature would facilitate the 
graphitization and electrical conductivity of ECNFM. 

  
(a) (b) 

Figure 5. (a) Raman spectra and (b) EIS plot of ECNFM-2.5%-T (T = 800, 900, 1000, 1100 °C). 

The electrical conductivity of ECNFM was further confirmed via EIS measurements, 
as shown in Figure 5b. The diameter of semicircles in the high frequency region represents 
the electron transfer resistance (Rct) [37]. With the carbonization temperature increasing 
from 800 to 1000 °C, the value of Rct decreased notably from 130.23 to 23.52 Ω, and then 
came to 21.82 Ω at 1100 °C, which was in agreement with the Raman analyses. These re-
sults confirmed that the conductivity of ECNFM could be promoted by carbonization, 
which was mostly completed above 1000 °C. 

Figure 5. (a) Raman spectra and (b) EIS plot of ECNFM-2.5%-T (T = 800, 900, 1000, 1100 ◦C).

The electrical conductivity of ECNFM was further confirmed via EIS measurements,
as shown in Figure 5b. The diameter of semicircles in the high frequency region represents
the electron transfer resistance (Rct) [37]. With the carbonization temperature increasing
from 800 to 1000 ◦C, the value of Rct decreased notably from 130.23 to 23.52 Ω, and then
came to 21.82 Ω at 1100 ◦C, which was in agreement with the Raman analyses. These
results confirmed that the conductivity of ECNFM could be promoted by carbonization,
which was mostly completed above 1000 ◦C.

Considering performance and energy consumption comprehensively, ECNFM-2.5%-
1000 was chosen for subsequent experiments.

3.2. Effect of Operational Parameters on TC Removal during Electrochemical Filtration

Under the condition of pH 6.1, Na2SO4 0.1 mol L−1, TC 10 ppm, membrane flux 594
LMH, the effect of the applied voltage on TC removal by ECNFM-based electrochemical
filtration was depicted in Figure 6a. The TC removal rate was lower than 5% when the
voltage was 0–1 V. With the voltage further improving, a sharply enhanced TC removal
rate was observed and reached the maximum at 2 V (99.1%), which dropped to 86.0% at
4 V. The low TC removal rate (1.2%) without the assistance of applied voltage suggested a
poor adsorption performance of ECNFM-2.5%-1000. However, with an excessive voltage,
the bubbles produced by the side reaction of oxygen evolution would hinder the contact
between the TC molecules and ECNFM-2.5%-1000, working against TC removal. Thus, 2 V
was chosen as the optimal operating voltage for follow-up studies.
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concentration on TC removal rate in ECNFM-based electrochemical filter. The volume of treated
water was 250 mL.

The pH value of the feed was adjusted using 0.1 mol L−1 H2SO4 or NaOH to explore
the effect of pH. As shown in Figure 6b, the TC removal rate was maintained above 99%
in the pH range of 3 to 11, which was different from most of the previous reports that the
electrochemical treatment performance is greatly influenced by the pH condition due to the
pH-dependent generation of •OH [50]. The possible reason was the nonparticipation of
•OH in TC removal. A similar phenomenon was also observed in TC removal by Ti/RuO2-
IrO2 anode [51]. The natural pH of 6.1 without adjustment was selected for subsequent
experiments.

Figure 6c illustrates the TC removal efficiency as a function of Na2SO4 concentration.
The removal rate of TC (<2%) in DI water was equally matched with that without applied
voltage. The main reason was that low conductivity was disadvantageous to the electro-
chemical reaction, further confirming the main role of electrochemical oxidation in the
removal of TC. With the Na2SO4 concentration increasing from 0.01 to 0.15 mol L−1, the TC
removal raised from 90.7% to 99.2% gradually. In the flow-through process, the continuous
convection on the membrane electrode surface promotes charge neutralization, reducing
the sensitivity to ionic strength [52]. Therefore, a high TC removal rate was achieved in a
wide range of electrolyte concentrations (0.01–0.15 mol L−1).
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The effect of the initial TC concentration on treatment performance by ECNFM-based
electrochemical filtration can be seen from Figure 6d. The highest removal rate (99.8%) was
obtained when the TC concentration was 2 ppm. The TC removal rate slightly decreased
to 96.4% with 30 ppm TC, and then reduced obviously to 82.2% under the condition of
50 ppm TC, which might be due to the limited surface active sites of ECNFM-2.5%-1000. It
was confirmed that the electrochemical filtration technology was tailored for the condition
of low pollutant concentration, indicating its application potential for drinking water
treatment [19].

3.3. Long-Term Operation Performance for TC Removal

To test the long-term operational stability of the ECNFM-based electrochemical filter,
an 8-h continuous operation experiment was performed in flow-through mode (condition:
voltage 2 V, pH 6.1, Na2SO4 0.1 mol L−1, TC 10 ppm), as displayed in Figure 7. In the first
hour, the ECNFM-2.5%-1000 reached the highest TC removal rate of 99.8% with the optimal
flux of 425 LMH (corresponding flow rate and hydraulic residence time were 5 mL min−1

and 2.96 min, respectively). The removal rate then decreased gradually with the increase of
flux and dropped to 91.2% at 1274 LMH (corresponding flow rate and hydraulic residence
time were 15 mL min−1 and 0.99 min, respectively). This might be due to the short residence
time in the filter, resulting in insufficient contact between TC molecules and the active
sites of ECNFM [53]. After 8 h of continuous treatment, the TC removal rate decreased
marginally from 99.8% to 97.5% at 425 LMH, implying a good treatment stability. It could
be verified by no obvious damage to the used ECNFM-2.5%-1000, as shown in Figure S5.
Nevertheless, the removal rate remarkably dropped from 91.2% to 60.2% when the flux
was 1274 LMH, which might be attributed to the excessed treatment load. All the same, the
treatment efficiency of the ECNFM-based electrochemical filter is superior to most of the
state-of-the-art electrochemical filtration processes (Table S2), which might be attributed to
the high porosity and excellent conductivity of ECNFM-2.5%-1000.
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3.4. Comparison of Efficacy and Energy Consumption between Flow-Through and Batch Mode

The efficacies in flow-through and batch mode were compared via kinetics analysis, as
illustrated in Figure 8a. The electrochemical degradation of TC by the ECNFM-based elec-
trochemical filter was well-matched with pseudo-first-order kinetics, and the reaction rate
constant (k) was 2.28 min−1 in flow-through mode, which was 10.53 times higher than that
in batch mode (0.22 min−1). In the conventional electrolysis process under batch operation,
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the limited contact area leads to the inferior mass transfer rate and lower reaction efficiency,
which can be improved by the enhanced convection in flow-through operation [20,21].
The flow-through configuration would be a potential strategy to efficiently improve the
treatment performance of the electrochemical process.

Energy consumption (EC) is a key parameter that should be considered for water
treatment. Based on 90% TC removal, EC with applied voltages in flow-through and batch
modes was calculated (Figure 8b). Benefiting from the high treatment efficiency, the EC
values of the flow-through operation were obviously lower than that of the batch operation
in all the conditions. The EC of the ECNFM-based electrochemical filter in the flow-through
configuration raised from 0.016 to 0.085 kWh m−3, with the applied voltage increasing from
1.5 to 3 V and then sharply reaching 0.278 kWh m−3 at 4 V owing to the occurrence of side
reactions, such as oxygen evolution, demonstrating the importance of adjusting applied
voltage. Compared with similar studies (Table S2), ECNFM-2.5%-1000 possessed a lower
EC, which was closely related to its high permeate flux and electron transport efficiency
endowed by the large porosity and low electrical resistance.

Water 2022, 14, x FOR PEER REVIEW 11 of 17 
 

 

Figure 7. 8-h continuous operation performance. Experimental condition: voltage = 2 V, natural pH 
= 6.1, [Na2SO4] = 0.1 mol L−1, [TC] = 10 ppm. 

3.4. Comparison of Efficacy and Energy Consumption between Flow-Through and Batch Mode 
The efficacies in flow-through and batch mode were compared via kinetics analysis, 

as illustrated in Figure 8a. The electrochemical degradation of TC by the ECNFM-based 
electrochemical filter was well-matched with pseudo-first-order kinetics, and the reaction 
rate constant (k) was 2.28 min−1 in flow-through mode, which was 10.53 times higher than 
that in batch mode (0.22 min−1). In the conventional electrolysis process under batch oper-
ation, the limited contact area leads to the inferior mass transfer rate and lower reaction 
efficiency, which can be improved by the enhanced convection in flow-through operation 
[20,21]. The flow-through configuration would be a potential strategy to efficiently im-
prove the treatment performance of the electrochemical process. 

Energy consumption (EC) is a key parameter that should be considered for water 
treatment. Based on 90% TC removal, EC with applied voltages in flow-through and batch 
modes was calculated (Figure 8b). Benefiting from the high treatment efficiency, the EC 
values of the flow-through operation were obviously lower than that of the batch opera-
tion in all the conditions. The EC of the ECNFM-based electrochemical filter in the flow-
through configuration raised from 0.016 to 0.085 kWh m−3, with the applied voltage in-
creasing from 1.5 to 3 V and then sharply reaching 0.278 kWh m−3 at 4 V owing to the 
occurrence of side reactions, such as oxygen evolution, demonstrating the importance of 
adjusting applied voltage. Compared with similar studies (Table S2), ECNFM-2.5%-1000 
possessed a lower EC, which was closely related to its high permeate flux and electron 
transport efficiency endowed by the large porosity and low electrical resistance. 

  
(a) (b) 

Figure 8. (a) Kinetics and (b) energy consumption of TC degradation under batch and flow-
through modes. 

3.5. The Removal Mechanism of TC 
3.5.1. Electrochemical Oxidation Mechanism 

The electrochemical oxidation pattern involves direct anodic oxidation and indirect 
anodic oxidation. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), open-circuit 
potential (OCP) measurements and scavenging experiments were employed to reveal the 
anodic oxidation mechanism of ECNFM-2.5%-1000. Oxalic acid (OA) was used as the 
probe to verify the direct oxidation mechanism via CV analysis, which was carried out in 
0.1 mol L−1 Na2SO4 solution. As shown in Figure 9a, a distinct oxidation peak appeared at 
0.82 V (vs. Ag/AgCl) on the CV curve with the addition of 10 mmol L−1 OA, whereas no 

Figure 8. (a) Kinetics and (b) energy consumption of TC degradation under batch and flow-through
modes.

3.5. The Removal Mechanism of TC
3.5.1. Electrochemical Oxidation Mechanism

The electrochemical oxidation pattern involves direct anodic oxidation and indirect
anodic oxidation. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), open-circuit
potential (OCP) measurements and scavenging experiments were employed to reveal the
anodic oxidation mechanism of ECNFM-2.5%-1000. Oxalic acid (OA) was used as the probe
to verify the direct oxidation mechanism via CV analysis, which was carried out in 0.1 mol
L−1 Na2SO4 solution. As shown in Figure 9a, a distinct oxidation peak appeared at 0.82 V
(vs. Ag/AgCl) on the CV curve with the addition of 10 mmol L−1 OA, whereas no peak
was observed in the absence of OA, implying the existence of a direct oxidation reaction.
The higher oxygen evolution potential (OEP) of ECNFM-2.5%-1000 (1.3 V vs. Ag/AgCl)
in the LSV curve (Figure S6) further confirmed the theoretical feasibility of direct anodic
oxidation [54].

In the path of indirect anodic oxidation, reactive oxygen species participated in the
degradation of organics. In an ECNFM-based electrochemical filter using Na2SO4 as an
electrolyte, the active oxidation species, such as •OH and SO4

−•, might be generated and
serve as oxidizers. The OCP method was applied to explore the potential distribution of the
anode and cathode. As depicted in Figure 9b, the anodic potential was 1 V (vs. Ag/AgCl)
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at a total voltage of 2 V, much lower than the thermodynamic potentials for the formation
of •OH (2.18 V vs. Ag/AgCl) and SO4

−• (2.2 V vs. Ag/AgCl) [41]. Whereas, under
higher applied voltage, the oxygen evolution reaction of ECNFM-2.5%-1000 possessed
a greater preponderance than the production of •OH and SO4

−• due to the lower OEP
(1.3V), inhibiting the generation of •OH and SO4

−•. Furthermore, Tert-butyl Alcohol (TBA)
and EtOH with a concentration of 10 mmol L−1 were introduced to the feed solution as the
scavengers to investigate the action of •OH and SO4

−•, respectively [32]. As expected, the
removal rate of TC displayed negligible change in the presence of scavengers (Figure S7),
which agreed with the results of the OCP analysis.
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Accordingly, the direct anodic oxidation instead of indirect oxidation accounted for
TC degradation due to the low OEP and anode potential of ECNFM-2.5%-1000. Direct
oxidation is usually thought to be inefficient because of mass transfer limitations, which
can be overcome by the enhanced convection in the flow-through configuration of an
ECNFM-based electrochemical filter.

3.5.2. Proposed TC Degradation Pathway and Safety Evaluation

The intermediate products of TC were detected via HPLC-MS-MS analysis, including
six compounds with m/z = 401, 381, 308, 224, 166 and 122, as listed in Table S3 and Fig-
ure S8. The degradation pathway of TC in the ECNFM-based electrochemical filter was
proposed and shown in Figure 10. The parent compound TC underwent the deamidation
processes to form product A (m/z = 401). After that, product A was converted to product B
(m/z = 381) by cleaving the carbon–carbon double bond and losing methyl group, or prod-
uct C (m/z = 308), via deamination and demethylation. Product C was further transformed
into product D (m/z = 224) via the ring-opening process. With the occurrence of ring open-
ing and dehydroxylation, product D was degraded to product E (m/z = 166), which was
demethylated to product F (m/z = 122) and other small molecules eventually. In conclusion,
the electrochemical degradation of TC mainly involved the removal of functional groups
and ring-opening reaction, which was consistent with previous findings [55].
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Figure 10. Proposed degradation pathway of TC.

Based on the QSAR model, the developmental toxicity and mutagenicity of TC and
degradation products were estimated via TEST software. As displayed in Figure 11a, the
developmental toxicity values of all the intermediates were lower than TC. Products A, B
and C remained mutagenicity positive, while products D, E and F were supposed to be
mutagenicity negative (Figure 11b). The remaining toxicity in the treated water might be
ascribed to the incomplete degradation of TC, which was in accordance with the results of
the TOC analysis (Figure S9).
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3.5.3. Removal Mechanism of TC by ECNFM-Based Electrochemical Filter

The removal mechanism of TC in an ECNFM-based electrochemical filter was put
forward. Under the flow-through mode, when the feed passes through the membrane
anode with high porosity, the enhanced convection contributed to the rapider mass transfer
of TC molecules with ECNFM-2.5%-1000. Meanwhile, the TC molecules were degraded
immediately efficiently in situ to intermediates with lower toxicity, in which the oxygen
evolution reaction was avoided and the corresponding energy consumption decreased.
When the TC removal rate reached 99.1%, the energy consumption was as low as 0.017 kWh
m−3, making ECNFM-based electrochemical filtration an efficient and low-cost technology.
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4. Conclusions

This work suggested an efficient and economical approach for TC removal by an
electrochemical filter based on an ECNFM-2.5%-1000 anode. The mechanical strength and
porosity of ECNFM-2.5%-1000 were improved by the addition of PTA, and the electron
transfer conductivity was increased after high-temperature carbonization. A superior TC
removal efficiency of 99.8% was gained under a high flux of 425 LMH. By virtue of the high
porosity and conductivity of ECNFM-2.5%-1000, the enhanced TC removal rate (2.28 min−1)
and the decreased energy consumption (0.017 kWh m−3) were observed in flow-through
mode. According to the product analysis, TC could be converted to intermediates with
lower toxicity via the loss of functional groups and ring opening reaction, which was
mainly achieved by the direct anodic oxidation. Overall, ECNFM-based electrochemical
filtration was demonstrated as a promising drinking water purification. Nevertheless, how
to introduce indirect anodic oxidation via optimizing ECNFM-2.5%-1000 to facilitate the
mineralization of TC needs to be further investigated, which is of great significance to
ensure the safety of this process.
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