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Abstract: Holding a lasting balance between the water resources and water demands has become a
challenging task for water resources managers, especially in recent years with the looming global
warming crisis and its resulting climatic change effects. This paper focuses on modeling the optimized
operation of the Zayandehrud Reservoir, located in west-central Iran, under two fifth-generation
climate change scenarios called RCP4.5 and RCP8.5. A novel variant of the gravitational search
algorithm (GSA), named the adaptive accelerated GSA (AAGSA) is proposed and adopted as the
optimizer of the reservoir operation in this paper. The major advancement of the AAGSA against the
original GSA is its high exploration capability, allowing the proposal to effectively tackle a variety of
difficulties any complex optimization problem can face. The goal of the optimization process is the
maximization of the sustainability of supplying the downstream water demands by the reservoir. The
optimal results obtained by the original GSA and the proposed AAGSA algorithms suggest that the
AAGSA can achieve much more accurate results with much less computational runtime, such that the
proposed AAGSA is able to achieve the reservoir operation sustainability index of 98.53% and 99.46%,
under RCP4.5 and RCP8.5 scenarios, respectively. These figures are higher than those obtained by
the original GSA by 23.5% and 16% under RCP4.5 and RCP8.5, respectively, while the runtime of
the proposal is reduced by over 80% in both scenarios, as compared to the GSA, suggesting the
high competence of the proposed AAGSA to solve such a high-dimensional and complex real-world
engineering problem.

Keywords: optimization; gravitational search algorithm (GSA); reservoir operation; climate change;
HEC-HMS

1. Introduction

In recent years, climate change has turned into a critical phenomenon as it takes
considerable effects on decreased available water resources. Increased population, urban
construction, land erosion, land-use change, and mismanagement of the water resources
have all made the climate change effects doubly important and more necessary to miti-
gate [1,2]. The variations in the time, intensity, and type of precipitation, the increased
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frequency of the extreme phenomena such as floods and droughts, the decreased snowfall,
and the intensified ice melting, are among the major and tangible consequences of climate
change [3–5]. These events may take negative and irreversible effects on human health and
the environment if no planning is suggested to adapt the water management policies to
climate change [6]. The research shows that climate change could pose significant changes
in the inflow and the release of the surface water reservoirs. Since the reservoirs have
mainly been designed and operated to achieve a wide range of purposes such as supplying
the domestic, industrial, and agricultural water demands, generating the hydro-power
energy, controlling the floods, and navigation and tourism purposes [7], the effects of
climate change on the reservoirs could pose increased conflict and competition between the
stakeholders and water consumers, deepening the water crisis and thus, highly urging the
managers to revisit the reservoir operation policies even more than before [8,9]. As a result
of the increased water demands, conflicts between users of any water resources will arise
and this is the more valuable water users’ demand which would have the decision-makers
consider reallocation policies to avoid over-exploitation of water resources [10].

In many of the research studies recently conducted on reservoir operation under cli-
mate change, numerous optimization methods along with several climate change scenarios
have been utilized to better project the climatic components and the resulting inflow to the
reservoirs [11–14]. All these methods and scenarios are based on the general circulation
models (GCMs) to simulate the global climate and make long-term projections using the
Intergovernmental Panel on Climate Change (IPCC) emission scenarios as the boundary
conditions of these models. The GCM models also need the downscaling methods to project
the climate variables at the regional and sub-regional scales [15]. In the reservoir opera-
tion problems, the precipitation and temperature are first projected by the GCM models.
Thereafter, they are downscaled and fed to a rainfall-runoff processing model to yield the
inflow to the reservoirs. For example, Zamani et al. [16] utilized LARS-WG to downscale
the outputs of 14 GCM models under the A2 and B1 scenarios and entered the results into
the IHACRES rainfall-runoff model to obtain the inflow to a reservoir in Iran. The purpose
was to optimize the performance of the reservoir. In this research, projecting the climate
variables utilizing several GCM models and weighting these models using the sensitivity
analysis is found to be more accurate than projecting the climate variables using only one
GCM model. Besides the use of accurate projection models, adopting the appropriate
optimization method is also necessary to optimize the reservoir operation under climate
change conditions [17]. Various mathematical optimization methods have been applied to
reservoir operation optimization problems. Dobson et al. [18] reviewed the literature of the
works carried out in the field of reservoir operation optimization and presented a novel
classification system focusing on the different arguments of the optimization problems
in this specific field. Recently, the meta-heuristic optimization algorithms open a new
horizon to effectively and reliably solve the intrinsically complex, high-dimensional, and
hard-to-handle reservoir operation optimization problems [19,20]. In most recent research
studies, various optimization algorithms are developed to face complex problems. Rezaei
et al. [21] proposed the VAGWO algorithm in which a velocity term is added to the position-
updating procedure of the original GWO algorithm to improve the exploration capability of
GWO. The results proved it’s the proposed algorithm can yield higher-quality results with
a plausible computational cost compared to GWO in solving a variety of high-dimensional
and complex benchmark functions and several engineering problems. To solve a reservoir
operation problem, many input parameters should be inserted into the optimization model
such as precipitation, inflow, evaporation from the reservoir surface, and the downstream
demands. The output of such optimization models could generally be the optimal water
releases in different time steps. Jothiprakash and Shanthi [22] utilized the genetic algorithm
(GA) to minimize the square water shortages while holding the reservoir storage at a desir-
able level. Cheng et al. [23] introduced the chaotic genetic algorithm (CGA) in which the
chaotic operators replace the ordinary GA operators. The results suggested that the CGA
could properly avoid local optima and increase the hydro-power energy generated by the
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reservoir and decrease the convergence rate of the algorithm, as compared to the dynamic
programming (DP) and the original GA. Rezaei and Safavi proposed DFPSO algorithm
by integrating the abilities for evaluation of fitness and diversity of the particles in the
PSO algorithm to avoid unbalanced solutions’ movements in determining their global
guides. After being verified by several benchmark functions, the proposal was applied to a
conjunctive surface–ground water use problem to minimize the shortages in meeting irri-
gation water demands under different climatic conditions while holding the groundwater
resources sustainable to use. The results showed its high efficacy and efficiency in solving
such a complex engineering problem [24]. Zhang et al. [25] proposed an improved particle
swarm optimization (PSO) algorithm, named IAPSO, which can dynamically adjust the
cognitive and social scaling parameters to avoid premature convergence. The proposed
algorithm was then applied to a hydro-power reservoir operation optimization problem
and demonstrated to be an efficient algorithm to boost the hydro-power generation with a
high convergence speed. Asvini and Amudha [26] applied the plant propagation algorithm
(PPA) to optimal reservoir operation in a case study in India and the results suggested the
high performance of the algorithm to meet a large portion of the water demands even in
the dry months of the planning period. Bozorg-Haddad et al. [27] examined the capability
of the GSA to solve the optimization problems via the implementation of this algorithm
on three benchmark functions, a hydropower reservoir, and a four-reservoir optimization
problem. The results suggested the ability of the GSA to faster and also more accurately
converge to the optimal solution as compared to the GA. Turgut et al. [28] introduced the
master–slave and crow search algorithms and applied them to the long-term operation of
a high dam reservoir. The results revealed the superiority of the master–slave algorithm
to solve this problem mainly due to its high ability to realize the uncertain and non-linear
nature of the reservoir systems.

Recently, hybrid models and algorithms have been developed and used in various
research studies to produce more reliable outcomes. Alizamir et al. [29] investigated two
hybrid models ANFIS-PSO and ANFIS-GA to calculate reference evapotranspiration (ET0)
in Antalya and Isparta stations in Turkey. The results showed that both hybrid models
are able of generating more accurate monthly ET0 than those resulting from ANN, ANFIS,
and CART. Kadkhodazadeh et al. [30] developed the LSSVM-GBO algorithm to assess
water quality parameters EC and TDS in Ahvaz, Armand, and Gotvand stations in the
Karun River basin after validating their performance via applying them to three benchmark
datasets. The results revealed the LSSVM-GBO to be superior to the ANN and ANFIS.

Several different indices are already proposed in the literature to benchmark the
performance of the water resources systems including: (1) drought severity index [31];
(2) environmental sustainability index [32]; (3) integrated drought index [33]; (4) water
system performance index (WSPI) [34]; and (5) sustainability index [35]. The sustainability
index is a combination of three well-known and widely used criteria including reliability, re-
silience, and vulnerability (RRVs) [36]. Sandoval-Solis et al. [37] modified the sustainability
index by improving the structure and scale of this index to be well adjusted to any water use
sector and any water basin throughout the world. There are numerous methods proposed
in the literature to more reliably and more accurately calculate the RRVs index [38–40].
Safavi and Golmohammadi [41] proposed a new approach utilizing fuzzy logic to calculate
the sustainability index of the Zayandehrud Reservoir operation in west-central Iran. They
compared their proposed approach with those calculating the sustainability index through
the classical equations. They concluded that the fuzzy index could take into account the
uncertainties in meeting a portion of water in the temporal intervals and allow the experts
and the stakeholders to have more tangible data ahead and enable them to more reliably
judge on the level of sustainability held in the water resources systems operation. Several
other research studies have been carried out on the role of fuzzy logic to improve the notion
of the sustainability of the water resources systems in the literature [42–44].

The Zayandehrud River basin is located in the arid and semi-arid climatic conditions
in west-central Iran. Since a streak of drought events has occurred in this river basin,
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especially in recent years, the optimal management of the only large dam operating in this
basin is of high importance [45–47]. Accordingly, this reservoir is investigated as a case
study of this paper to be optimally managed when operating to meet the water demands
in a near-future climate-change-affected period.

Figure 1 illustrates a brief flowchart of the research carried out in this paper. As
can be seen in the figure below, the evaporation from the surface of the reservoir is first
estimated using the Torrent White method, based on the daily temperature data processed
and downscaled by the LARS-WG model. These data along with the precipitation data are
already inserted into the HEC-HMS rainfall-runoff model under the RCP4.5 and RCP8.5
climate change scenarios to simulate the inflow to the reservoir. All of these preliminary
stages are already accomplished by Sangestani [48], Shamaeian [49], and Alkantar [50]. The
novelty of this paper is in proposing a new variant of the gravitational search algorithm
(GSA), named adaptive accelerated GSA (AAGSA) to maximize the sustainability in a
reservoir operation problem. The main objective of the optimization process is to minimize
the water shortages to meet the total downstream demands while preserving the reservoir
storage sustainability to enable the stakeholders to consistently operate the reservoir in the
years following the planning period. The performance of the AAGSA is then compared
to the original GSA to benchmark the best-performing algorithm to yield the maximum
sustainability index as a criterion explaining the degree of satisfaction for the demands
while controlling the water stored in the reservoir.

Figure 1. Flowchart of reservoir operation optimization model.

The remainder of this paper is organized as follows. Section 2 explains how to prepare
climate data under the climate change scenario and estimate the inflow to a reservoir as
the main characteristic of a reservoir system affected by climate change. In the following,
this Section describes the methodology of this paper, reviewing the gravitational search
algorithm (GSA) and proposing the AAGSA algorithm developed to improve the key
capabilities of the GSA. Section 3 introduces the study area and presents the optimization
model framework to be solved in this paper. Section 4 presents the results and discusses
them. Finally, Section 5 concludes the paper.

2. Materials and Methods
2.1. Projection of the Future Climate Variables

In the last few years of the 20th century, the evidence of the effect of global warming
on the earth’s climate system, contributed to the founding of the Intergovernmental Panel
on Climate Change (IPCC). The mission of this panel is to scientifically evaluate the climatic
changes throughout the world, the resulting consequences of these changes, and propose
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effective and practical solutions to decrease the likely dangers of climate change that
threaten the lives of humans and the other living bodies in all over the world. According
to the recent reports of the IPCC, the mean temperature of the world in 2017 has reached
1 ◦C more than that recorded in the Industrial Revolution era, and it may even approach
1.5 ◦C above than that in the Industrial Revolution era until 2040, imposing irreversible
damages to humankind and the environment. Following the negative consequences of
climate change, the IPCC mandates countries to decrease the emission of greenhouse gases
by the extent adjusted to the share of each country to emit these gases to the atmosphere [6].
The IPCC proposes several climate change scenarios to approximately estimate the effect
of climate change in the long-term future period to enable the policymakers to better
adjust the development schemes to the climatic conditions ahead. The representative
concentration pathway (RCP) scenarios are first proposed in 2009 and prescribed by the
IPCC to climatically model the world in 2014. These scenarios fall into four main categories
named RCP2.6, RCP4.5, RCP6, and RCP8.5, based on the level of the radiation induction
resulting from the greenhouse gases emitted to the atmosphere until 2100. As a result, the
RCP2.6 is taken as the most optimistic scenario and the RCP8.5 scenario is rated as the most
pessimistic one.

To project the temporal events occurring in the atmosphere, the general circulation
models (GCMs) are usually used. These models can solve the equations governing the
atmosphere to simulate the earth’s climate within spatial intervals. The dimensionality of
the spatial simulations performed by these models is 200 km by 200 km. The GCMs use
the boundary conditions assumed in the IPCC scenarios to make long-term projections
on the climate variables. As a result, the GCMs are unable to directly project the climate
variables in the pointwise or regional scales, but their projected data must be downscaled
to fit any desired scale [51]. There are two methods to carry out downscaling: (1) dynamical
methods and (2) statistical methods. In this paper, the long Ashton Research Station
Weather Generator (LARS-WG) model is used as a statistical model to estimate the climatic
outputs with an accuracy of 0.5 degrees. In the statistical downscaling, the univariate
or multi-variate regression, artificial neural networks (ANNs), or some other statistical
approximation techniques are utilized to hold a relation between the real behavior of the
climate station and the output of the general circulation models (GCMs). The statistical
methods are more interested among the researchers, as they are more computationally
efficient and also easier to implement compared to the other downscaling methods. The
LARS-WG was first developed in 1991 in an agricultural risky evaluation project conducted
by the Hungarian scientists’ academy. This model can generate a time series of the daily
climatic data such as the precipitation, maximum and minimum temperature, and the
solar radiations as the outputs of the model. The inputs of the LARS-WG include the
characteristics of the climate stations such as their names and the coordinates, and also
a list of the observed daily climatic data. The data generation process conducted by this
model is summarized in three main steps as follows:

1. Calibration (site analysis): analyzing the observed data and saving the information
reached in two separate folders.

2. Validation (Qtest): comparing the data artificially generated by the model with the
data observed and inserted to the LARS-WG based upon the substantial statistical
differences between these two data sets.

3. Generation: producing a time series of the spatially downscaled future temporal data
with a daily scale [52].

2.2. Runoff Estimation

To estimate the runoff occurring in the future planning period, the HEC-HMS rainfall-
runoff model is utilized in this paper. The HEC-HMS is one of the hydrological modeling
software developed to simulate the rainfall-runoff process in the dendritic basins systems.
This model is able to divide the hydrological cycle into several controllable pieces and
discriminating the boundaries in the river basin to accurately build up the rainfall-runoff
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processing model. Each mass or energy in this model can be represented by a mathematical
model. The main sections of the HEC-HMS include the river basin’s physical characteristics,
climatic characteristics, hydrological simulations, parameter tuning, calibration stage, and
finally validation stage. The latter stage is to evaluate the degree of adaptation between
the computed data and the observed data regarding a number of the performance criteria
existing in the model [53].

In this paper, the HEC-HMS rainfall-runoff model was fed by the inputs including the
precipitation, and maximum and minimum daily temperature data obtained for the six
selected stations in the upstream basin of the Zayandehrud Reservoir. These inputs are the
outputs of the LARS-WG model that were achieved and reported in [48,49], after the model
was built up, calibrated, and validated in [50]. The HEC-HMS was then used to generate
the inflow to the reservoir for the 2020–2033 future planning period under the RCP4.5
and RCP8.5 scenarios. Since there are no significant and tangible differences between the
outputs of the simulation models under either of the RCP scenarios in the near-future
period, the RCP4.5 scenario was adopted as a medium-standing scenario, representing all
of the other scenarios to be used in the reservoir operation optimization process under
climate change conditions. The reservoir inputs under the RCP8.5 scenario were also
chosen to generate input data for the HEC-HMS simulation model. The simulated inflow
data provided were then imported to the optimization models. Thereafter, the outcomes of
the optimization models including the sustainability index were evaluated to be compared
with those offered by the models run by the data produced by the RCP4.5. The inter-basin
water transferred through the tunnels in the future planning period was also simulated by
the WEAP model in [48]. The water volume transferred was added to the natural inflow to
the reservoir to form the total inflow estimated under the climate change scenarios for the
planning period in this study.

2.3. Gravitational Search Algorithm

The gravitational search algorithm (GSA), first proposed by Rashedi et al. [54], is one
of the well-known meta-heuristic optimization algorithms modeling the gravitational laws
and the Newtonian motion in the framework of an artificial system operating in a discrete-
time domain to search for the global optimum of the single-objective optimization problems.
The GSA could be categorized in the metaphor-based, memory-free, and population-based
algorithms, with a multi-neighborhood structure for the search agents that are aimed at
optimizing a static objective function. In the GSA system search, each search agent has a
mass calculated to reflect its fitness in the search space. Each search agent attracts another
agent with an acceleration component directly proportional to its mass and inversely
proportional to the distance between these two masses. In this algorithm, the search agents
with the best fitness are called the elite agents. The number of these elite agents is high at
the early stages of the optimization process and is gradually decreased when approaching
the final stages of this process.

Generally, the more the mass of an elite search agent, the more the tendency of a
search agent to move toward that elite agent provided that the distance between the two
agents is short enough. When an agent faces an elite one having a long distance to it,
the agent deaccelerates its motion toward the elite agent provided that the mass of the
elite agent is low enough to justify this deacceleration made to the movement. The main
reason for this behavior of the search agents in that the search space may be hidden in
the exploration and exploitation mechanisms considered to be held in the GSA system
search. When there is a long distance between an elite agent and an ordinary one, there are
a lot of points undetected in the search space and the neighborhood of the ordinary agent,
urging that agent to retard its movement through the elite agent to become able to find
out any further good positions in this course. Nevertheless, if the mass of the elite agent is
large enough, the ordinary agents could get more accelerated when moving toward the
elite agent. In this way, both the exploration and the exploitation processes may be better
accomplished during the optimization process. Furthermore, there might be a smooth
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and effective exploration–exploitation balance in the search process through gradually
decreasing the number of the elite agents by lapse of the optimization stages. The stages of
the optimization could be modeled as the discrete iterations by lapse of which the heaviest
agent (the fittest point) in the search space may be found before reaching the pre-defined
stopping criterion of the optimization process.

Suppose for an N-agent system. The position of the ith agent at the dth dimension
may be expressed as follows:

Xi =
(

x1
i , . . . , xd

i , . . . , xn
i

)
for i = 1, 2, . . . , N (1)

The gravitational force applied to the ith agent by the jth one at the tth iteration is
calculated through Equation (2).

Fd
ij (t)= G(t)

Mpi(t)×Maj(t)

Rij(t) + ε
(x d

j (t)− xd
i (t)) (2)

Rij(t)= ||Xi(t), X j(t)||2 (3)

where Maj, and Mpi are the active and passive masses of the jth and ith agents, respectively;
G(t) is the gravitational constant at the tth iteration; and Rij(t) is the Euclidean distance
between the ith and jth agents at the tth iteration. ε is a small positive constant applied to
hinder singularity. G(t) can be calculated as follows:

G(t) = G0e−
αt
T (4)

where G0 is the initial constant value which should be precisely set for G(t), and α is a con-
stant which should be carefully set to significantly reduce the G(t) at the final iterations to
allow the exploitation process to be started. T is the total number of iterations representing
the life span of the system. The resultant force applied to the ith agent by the elite agents
can be calculated as shown in Equation (5).

Fd
i (t) = ∑

j∈Kbest , j 6=i
randd

j Fd
ij (t) (5)

Kbest =
(

finalper +

(
1− t

T

)
×
(

100− finalper

))
× N

100
, finalper= 2 (6)

where Kbest is the dynamic number of the elite agents adjusted with regard to the number of
iterations as formulated in Equation (6). randd

j is a uniformly distributed random number
that should be generated in [0, 1] and assigned to the dth dimension of the jth agent.
These random numbers are mainly generated in the GSA to impart a stochastic nature
to any movement made by the search agents in this algorithm. Finally, the acceleration
the ith search agent takes in the dth dimension at the tth iteration denoted by ad

i (t) can be
calculated as follows:

ad
i (t) =

Fd
i (t)

Mii(t)
(7)

where, Mii(t) is the inertial mass of the ith agent which is assumed to be equal to the active
and passive masses of the corresponding agent in the original version of the GSA. The
updating equation for the velocity and the position of each agent in the search system of
the GSA is as follows:

vd
i (t + 1)= randi×vd

i (t) + ad
i (t) (8)

xd
i (t + 1)= xd

i (t)+vd
i (t + 1) (9)

where, vd
i (t + 1) and vd

i (t) denote the updated and the current velocity of the ith agent;
xd

i (t + 1) and xd
i (t) are the updated and the current position of the ith agent; ad

i (t) is the
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acceleration the ith agent takes at the current iteration; and randi is a random number in
[0, 1] generated and assigned to the current velocity of an agent. Since finding a better
agent with the heavier mass in the GSA memory-less search system is not guaranteed
at any iteration, applying a decreasing inertial weight in this algorithm is avoided and
instead, these random numbers are employed to gradually make the agents static in the
search space.

The masses of the agents at each iteration are calculated according to their fitness
as follows:

mi(t) =
fiti(t)−worst(t)
best(t)−worst(t)

(10)

Mi(t) =
mi(t)

∑N
j=1 mj(t)

(11)

best(t) = min
j∈{1,...,N}

fitj(t) (12)

worst(t) = max
j∈{1,...,N}

fitj(t) (13)

where fiti(t) is the fitness function of the optimization problem. Furthermore, Equations (12) and (13)
are set for the minimization problems. For the maximization problems, the min and max in
Equations (12) and (13) must be replaced with max and min, respectively.

Equation (7) can be rewritten according to Equation (5) and after some simplifications,
as follows:

ad
i (t)= G(t)× ∑

j∈Kbest , j 6=i
randd

j ×
Mj(t)

Rij(t)+ε
×
(

xd
j (t)−xd

i (t)
)

(14)

The steps of the GSA are as follows [17]:

1. Defining the bounds of the search space.
2. Randomly generate the positions of the search agents.
3. Fitness evaluation of the search agents.
4. Updating the G(t), best(t), worst(t), Mi(t), for i = 1, 2, . . . , N.
5. Calculating the resultant force applied to every agent in all dimensions.
6. Calculating the acceleration of all agents.
7. Updating the velocity and position of the agents.
8. Repeating steps 3 to 7 until reaching the stopping criterion.
9. Stop.

2.4. Proposed Algorithm: Adaptive Accelerated Gravitational Search Algorithm

The main weakness of the GSA may be found in its procedure to calculate the accel-
eration of the search agents as the major novelty discriminating this algorithm from the
others. Accordingly, an improved mechanism is proposed in this paper to better define an
acceleration component for each search agent to impede the premature convergence for the
GSA. This premature convergence mainly occurs when the original GSA generally holds
the acceleration components too small and thus, slows down the global search procedure
and disrupts the exploration phase of the optimization process. This drawback of the
GSA may be exacerbated when the optimization problem the GSA attempts to solve is of
high complexity and/or high dimensionality. To alleviate the drawbacks mentioned above
and to enhance the exploration capability of the GSA, a novel variant of the GSA, named
adaptive accelerated gravitational search algorithm (AAGSA), is proposed in this paper.
The main improvements the AAGSA makes to the original GSA can be summarized in two
major points:

1. In the AAGSA, the distances between each couple of the search agents are also
normalized and transformed to the values lying in [0, 1], as the masses remain
normalized. This procedure can, on the one hand, better show the differences among
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several distances an elite search agent may have with the ordinary agents attempting
to move toward it, and on the other hand, can impede these distances from rapidly
growing, especially in the high-dimensional problems. In this way, the exploration
capability could be boosted, as the value of the acceleration term of the updating
procedure can be significantly increased to better solve the optimization problems,
especially the high-dimensional and complex problems. The secondary effect of
the normalization of the distances in the AAGSA is rectifying the dimensionality of
the acceleration term. As can be seen in Equation (8), the acceleration term would
be added to the velocity term. As a result, the dimensionality of the acceleration
is necessary to be of the length dimensionality, whereas in the original GSA, the
acceleration term is dimensionless. While the normalization of the distances between
the agents makes the acceleration be of length dimensionality. In this way, this
technical drawback of the GSA is removed.

2. In the original GSA, all the random numbers multiplied by the forces are generated
in [0, 1], disregarding if the algorithm is in the early or the late iterations of the
optimization process. While a more efficient exploration–exploitation balance can be
held by the proposed AAGSA algorithm through emphasizing the masses of the agents
at the early iterations less, while emphasizing the distances in these iterations more. By
lapse of iterations, the influence of the masses is gradually increased and the influence
of the distances is decreased. These modifications can be justified as the masses are
assumed to be of more uncertainty at the early iterations and are deemed to be of
less uncertainty at the later iterations. On the other hand, the distances are assumed
to have more effect in guiding the agents at the early iterations while their effect
gradually decreases and is equated to the effect of the masses when approaching the
final iterations. These adjustments are mainly made to the AAGSA to help it diversify
the search agents at the initial iterations and intensify the local search in achieving
the high-fitness areas in the search space at the final iterations. These adjustments
can be made to the AAGSA via modifying the ranges the random numbers are to be
generated in, such that the lower bounds and the upper bounds of these ranges are
dynamically growing from the upper neighborhood of 0 to the lower neighborhood of
1 in the general interval [0, 1]. In this procedure, c1(t) ≤ randd

j ≤ c2(t), and randd
j is

the random number generated for the jth attracting agent at the dth dimension, while
the parameters c1(t) and c2(t) can be calculated based on Equations (15)–(19). The
resulting ranges are thus made something similar to [0, 0], [0, 0.1], [0.1, 0.2], [0.2, 0.3],
. . . , [0.9, 1], and [1, 1] as the iterations go on.

c1(t)= 1−
1− t

T
1− µ1(t)× t

T
(15)

c2(t)= 1−
1− t

T
1− µ2(t)× t

T
(16)

µ1(t)= 1−
(

t
T

)power(t)
(17)

µ2(t)= 1− t
T

(18)

power(t)= powermax − (power max−powermin)×
t
T

(19)

In these equations, power(t) is a control parameter linearly decreasing from powermax
to powermin as the iterations progress. powermax is set to 4 and the powermin is set to 1
in this paper. During the optimization process, c1(t) and c2(t) consistently increase to
make both the upper bound and lower bound of the ranges of the random numbers go
ahead and reach [1, 1] = {1}. The role of the parameter power(t) can be found to make
µ1(t) ≥ µ2(t) and so, c1(t) ≤ c2(t). The parameters µ1(t) and µ2(t) have the mission of
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making the parameters c1(t) and c2(t) larger than what is normally expected, contributing
the ranges of the random numbers to be consistently closer to [1, 1] = {1} than what is
normally expected. These mathematical properties based on which the random numbers
are frequently generated in AAGSA can be very effective in strengthening the exploitation
capability. This improvement made to the GSA along with enhancing the exploration
capability of this algorithm which is already carried out through normalizing the distances
could comprehensively strengthen the GSA in the framework of the proposed AAGSA.
Accordingly, Equations (20)–(22) propose a new definition for the acceleration term as is set
in the AAGSA.

randj= c1(t)+randc × (c2(t)−c1(t)) (20)

ad
i (t)= G(t)× ∑

j∈Kbest , j 6=i
crandom×randj ×

Mj(t)(
Rij(t)/Rmax

)
+ε
×
(

xd
j (t)−xd

i (t)
)

(21)

Rmax =

√
∑
d
(x d

max−xd
min

)2
(22)

where randc is a random number generated in [0, 1] to make the randj be produced in
the range set [c1(t), c2(t)]. crandom is a coefficient set to 2 to further help the agents not be
trapped in local optima. xd

max and xd
min are the upper and lower numerical values of the

search space at the dth dimension of this space, and Rmax is the maximum distance between
any two points in the search space to be used to normalize the distances represented by
Rij(t) in Equation (21). Finally, ad

i (t) is the acceleration term redefined in the proposed
AAGSA and used in the updating procedure of this algorithm. It is noteworthy that since
the diversification process of the AAGSA is set to be much better than that of the GSA,
the random numbers generated to make the search process stochastic are decided to be
varied by only the agent and are constant when the dimension varies. This is why this
random number is represented by randj rather than randd

j in Equations (20) and (21). This
modification can also significantly reduce the computational cost of the AAGSA compared
to that of the GSA, especially when handling high-dimensional optimization problems.

The secondary modification applied to the GSA in the framework of the AAGSA is to
redefine the bound constraint handling of this algorithm. While in the GSA an infeasible
variable is randomly reinitialized between the upper and lower bounds based on a uniform
probability distribution, a uniform mutation is imposed on these infeasible variables in
AAGSA. In this mutation, the mutation coefficient is large at the early iterations and is
dwindling by lapse of iterations to further keep the agents in the search space at the early
stages of the optimization and to gradually decrease pushing the infeasible agents to be
feasible when approaching the later stages. Equations (23) and (24) show the constraint
handling mechanism in the original GSA.

xd
i (t + 1)= xd

min+rand×
(

xd
max−xd

min

)
; if xd

i (t + 1)<xd
min (23)

xd
i (t + 1)= xd

max−rand×
(

xd
max−xd

min

)
; if xd

i (t + 1)>xd
max (24)

Equations (25)–(27) illustrate the constraint handling procedure proposed in the
AAGSA.

xd
i (t + 1)= xd

min+rand×mut(t + 1)×
(

xd
max−xd

min

)
; if xd

i (t + 1)<xd
min (25)

xd
i (t + 1)= xd

max– rand×mut(t + 1)×
(

xd
max−xd

min

)
; if xd

i (t + 1)>xd
max (26)

mut(t + 1)= mutmax − (mutmax−mutmin)×
t
T

; mutmax= 0.9; mutmin= 0.1 (27)

In the original GSA, there is no constraint on the velocities of the agents at any
dimension. Hence, as the final modification applied to the AAGSA, for the velocity of
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the search agents in all dimensions an upper bound and a lower bound are also defined,
exceeding which is assumed as the sign of infeasibility of the decision variables represented
by the search agents’ positions in the search space.

3. Study area
3.1. Zayandehrud Dam Reservoir

The Zayandehrud Dam is constructed on the Zayandehrud River as the largest river
running in the Isfahan Province at the central plateau of Iran (Figure 2). The Zayandehrud
River basin is the most Zayandehrud Dam-consuming sector and is located between
50◦24′–53◦24′ longitudes and 31◦11′–33◦42′ latitudes. Covering an area of 26,917 km2, this
river basin is rated the most important basin in central Iran necessitating the Zayandehrud
Dam as the main surface water storage system upstream of this basin to supply a large
variety of domestic, agricultural, industrial, and environmental water demands of the
basin [55]. The Zayandehrud Reservoir operates to supply the drinking and sanitary water
for 5.2 million people residing in three provinces included in the Zayandehrud basin. In
addition, this reservoir is in charge of supplying water demands of more than 200,000 ha
of the agricultural areas in the basin. Furthermore, most of the largest industries of Iran
are centralized and located in this basin such as the steel and cement production factories,
power stations, oil refineries, and so on. A large portion of the water requirements of these
industries is supplied by the Zayandehrud Reservoir. Moreover, since the Zayandehrud
River, as one of the longest and most important Rivers in Iran, is running through the
globally reputed and tourist city of Isfahan located at the center of the Zayandehrud
Basin, this Basin is of high importance in terms of the tourism industry and the relevant
industries that can grow and flourish due to the tourism industry. As a result, the perennial
water stream in the Zayandehrud River is one of the other factors of high importance
that can be supported by the proper and adequate water released from the Zayandehrud
Reservoir. Moreover, the water resources of this basin are transferred to the adjacent basins
to supply the water of two other large cities of Iran for drinking and sanitary purposes.
In the past decade, in particular, the basin was suffering from a streak of severe droughts
accompanied by increased population and thus, increased water demands in the domestic
and agricultural sectors. All of these characteristics counted for the Zayandehrud basin have
made an imbalance between the water resources, especially the surface water resources
stored in the Zayandehrud Reservoir, and the water demand by all sectors. In recent years,
global warming and its resulting climatic changes have significantly escalated the imbalance
between these water resources and water demands and have strongly encouraged the water
managers, planners, and decision-makers to adapt their plans to the newly emerging and
specific conditions for the water resources and water demands in this important basin, as
much as possible. As a result, the Zayandehrud basin has been made a very strategic region
needing the consistent attention of the authorities when planning the water resources
management schemes for the basin. The points expressed in this sub-section could suitably
unravel the importance of the Zayandehrud Reservoir to be addressed as the case study of
the reservoir operation in this paper [55]. The water inflowing to this reservoir is supplied
by the direct precipitation, three rivers in the basin, and also three tunnels transferring
the water from the adjacent basin of this basin [56,57]. The location of the Zayandehrud
Dam and Reservoir in the Zayandehrud upstream basin is displayed in Figure 2. Table 1
summarizes the detailed characteristics of the Zayandehrud Dam and Reservoir.
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Figure 2. The location of the Zayandehrud River basin, its upstream basin, and the Zayandehrud Dam.

Table 1. The detailed characteristics of the Zayandehrud Dam and Reservoir.

Characteristics Statements

Dam type Arch dam

Coordinates
32.73◦ N
50.74◦ E

Total capacity 1470 MCM
Dead storage 150 MCM

Average annual inflow About 1400 MCM
Dam lake area 54 km2

As mentioned in the reports, the Zayandehrud Reservoir must operate to supply
400 million cubic meters (MCM) annually as the domestic (drinking and sanitary) water
demands, while the environmental water needs of the Gavkhouni wetland is estimated to
be 176 MCM, which is never fully supplied by the Zayandehrud Reservoir in the recent
years. Furthermore, the industrial sectors annually demand 152 MCM of water, while the
agricultural sector is rated as the major water-demanding sector in the basin, consuming
over 80% of the whole water consumed in the basin. However, the major portion of the
agricultural water demands is supplied by the groundwater resources of the Basin and
the remainder of the demand is supplied by the surface water stored in the reservoir,
amounting to 1016 MCM. Despite the real portion of the reservoir supplying the water
demand of the whole basin is not clear, this portion could be approximated according to
the annual reservoir water releases in a historical period, as a method to estimate the water
which should be supplied by the reservoir in different years.

In this paper, a 13-year long-term period beginning from the 2020–2021 water year,
ending in the 2032–2033 water year is adopted as the near-future planning period. For
estimating the water demands in each year, the 13-year historical period beginning from
2006, ending in 2019, is considered and the years included in this period are divided into
two wet and normal years. Since the historical data suggest 1300 MCM is a proper figure
for the water release to meet the normal water demands properly and sufficiently in the
basin, the year with this volume of the water released from the reservoir is assumed as
the normal year. The years in which more than 1300 MCM of water is released from the
reservoir are placed in the wet division and the other years are put inside the normal
division. Consequently, the years of the near-future planning period when the inflow to
the reservoir is more than the inflow volumes to the reservoir in the assumed normal year
were deemed to be the wet years, and the years with less than the normal inflow to the
reservoir were assumed to be the normal years. The water released from the reservoir
in the wet water year 2006–2007 is amounting to 1680 MCM, while the released water in
the normal water year 2011–2012 is recorded to be 1110 MCM. As a result, the total water
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demands to be supplied by the reservoir is considered to be 1600 MCM, and 1100 MCM for
the wet and normal water years, respectively. Then, the portion of each month of the wet
and normal years is estimated by dividing the monthly water demands of these years into
their total demand. Thereafter, the near-future 13-year planning period is also divided into
two wet and normal water years, as indicated in Table 2. Then, the annual domestic water
is adopted to increase by 100 MCM, while the annual environmental water requirements
are set to be increased by 100 MCM to cover the damages the environment suffered during
the severe droughts in the past few years. Meanwhile, no increase is considered for the
other water demand types assuming the water resources management plans would go
well in the near-future period in the agricultural and industrial sectors. Accordingly, water
demand of the wet and normal years of the near-future planning period is estimated to be
increased by 200 MCM, resulting in 1800 MCM and 1300 MCM, respectively. The monthly
water demands in these years are also determined considering the portion of each month
from the total water demand of either of the wet or normal years of the historical period
(Table 3).

Table 2. The wet and normal water years of the near-future 13-year planning period and the
corresponding inflows considering the inter-basin water transfer and the upstream withdrawals
under the RCP4.5 scenario.

Data/Year 2020–
2021

2021–
2022

2022–
2023

2023–
2024

2024–
2025

2025–
2026

2026–
2027

2027–
2028

2028–
2029

2029–
2030

2030–
2031

2031–
2032

2032–
2033

Inflow (MCM) 1327.8 1699.8 1489.9 1597.6 1746.4 1295.1 1227.7 1514.3 1403.1 1541.2 1142.5 1775.2 1298.2
wet year (W)

Or
normal year (N)

N W N W W N N N N W N W N

Table 3. Monthly water demands of the wet and normal water years assumed for the near-future
planning period.

Year/Month Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Wet (MCM) 82.9 94.53 98.77 50 50 55.28 144.37 213.03 264.15 254.24 274.41 249.75
Normal (MCM) 77 145.4 153 55.37 52.9 78.44 149.25 179.57 166.97 77.92 83.68 80.5

Moreover, according to this point that in each year the reservoir must supply the
domestic (drinking and sanitary) demands at an amount of 400 MCM and must also supply
the demand of the industry by 40 MCM, an amount of 40 MCM is considered to be the
minimum monthly water demand which must be allocated by the reservoir. This figure is
increased to 50 MCM to be assigned to the near-future planning period.

It is worth mentioning that in this research, not that much drought condition was
considered for the years coming in the near-future planning period. The main reason for
this decision was that if the water demands, especially the agricultural water demands that
are to be supplied by the reservoir was set to be at a very low level, then there would be
a very large portion of the water demands to be supplied by the groundwater resources.
Having no clear vision on the potential of the groundwater resources to sufficiently supply
the large agricultural water demands as well as considering the risk of groundwater over-
exploitation that might lead to making the vital groundwater resources unsustainable to
further use in the long-term future period and to avoid considering demand management
plans in the case of the groundwater overuse, it is decided not to take the drought condition
into account as a climatic condition in the planning period, to impede the problem from
being more complicated to solve.

The evaporation from the reservoir is rated as the main factor accounting for the water
loss from the reservoir surface. In this paper, the Torrent White method is adopted to
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approximate the evaporation through holding relation between the evaporation and the
mean temperature, as can be seen in Equations (28)–(31) [58].

ETp= 16 ×
(

10× tn

I

)a

(28)

I =
12

∑
n=1

(
tn

5

)1.514
=

12

∑
n=1

in (29)

in=
(

tn

5

)1.514

(30)

a = (0.675× I3−77.1×I2 +17920× I + 492390)× 10−6 (31)

where ETp denotes the monthly potential evapotranspiration (mm); I is the annual heat
index; in is the monthly heat index; and tn represents the mean monthly temperature (◦C).
Equation (31) is prescribed to be used only when 0 < tn ≤ 26.5. When tn ≤ 0, ETp is
assumed to be zero, and when tn > 26.5, the ETp is calculated based on the different values
of tn, as indicated in Table 4. Since these equations only calculate the evapotranspiration
for the 30-day months and 12 h sunshine per day, the obtained evapotranspiration value is
required to be modified for the other months and/or the other latitudes the focused study
area is located in.

Table 4. Monthly potential evapotranspiration for the months (mm) in which tn>26.5 (◦C).

tn 27 28 29 30 31 32 33 34 35 36 37
ETp 139 147 155 162 168 173 177 180 183 184 185

3.2. Reservoir Operation Optimization Model

The main goal of the optimization model solved in this paper is to maximize the
sustainability index (SI) of the Zayandehrud Reservoir operation subject to several con-
straints mainly aimed at maintaining the reservoir sustainability at a desirable level to
guarantee the water allocation from the reservoir during the planning period and even
afterward. The planning period is a 13-year near-future period, beginning from the water
year 2020–2021, ending in the water year 2032–2033. The sustainability index is assumed
to be calculated based on Equation (33), as recommended by Sandoval-Solis et al. [37].
The performance criteria of a reservoir or any water resource system contribute to the
sustainability index. These performance criteria mainly include reliability (Rel), resilience
(Res), and vulnerability (Vul). However, in this paper, these criteria are calculated based on
fuzzy logic concepts. Safavi and Golmohammadi [41] expressed the effectiveness of using
the fuzzy-based performance criteria in holding a direct and reliable relation between the
uncertainties in the water demand satisfaction and the water deficit in each time step to
make a water resource system performance assessment more tangible and more reliable for
the decision-makers and also the stakeholders. A fuzzy membership function can represent
a degree of fuzziness of a fuzzificable variable. In this paper, the water deficit/surplus is
assumed as the fuzzificable variable which is assigned the bell-shaped fuzzy membership
function. This type of membership function has three tunable parameters of a, b, and c, that
are set based on the experts’ points of view in this paper, as recommended in [41]. The
full water deficit/surplus could be taken as the failure of a water resource system. This
is why the membership degree of 0 must be possible to be assigned to this case. On the
contrary, no water deficit/surplus may be taken as the full success of a water resource
system and as a result, the membership degree of 1 must be assigned to this case. The
bell-shaped membership function is asymptotic to 0 and also receives 1 in its range of the
fuzzy membership function values, making it eligible to represent the water deficit/surplus
as the fuzzificable variable to which a membership degree must be assigned. Furthermore,
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the fact that the bell-shaped function is asymptotic to 0 can impede the sustainability index
to obtain the absolute 0 in its range of values. On the other hand, having three tunable
parameters can make the bell-shaped function more flexible as compared to the other
types of the membership functions such as the Gaussian membership function which only
has two tunable parameters. The detailed formulation of the optimization model of the
reservoir operation is as follows:

Minimize Z =(100− SI)×(1 + Pen 1+Pen2+Pen3) (32)

Subject to:

SI = 3
√

Rel× Res×(100−Vul) (33)

µn
i =

1

1+
∣∣∣ x×100−c

a

∣∣∣2b ; x = Min
(

Rn
i +SPn

i
demn

i
, 1
)

;a = 30; b = 2; c = 100; for i = 1, 2, . . . , 12 , n = 1, 2, . . . , 13 (34)

If µn
i <µn

i+1 Then Wn
i = µn

i+1−µn
i Otherwise Wn

i = 0 , for i = 1, 2, . . . , 11; n = 1, 2, . . . , 13 (35)

If µn
12<µn+1

1 Then Wn
i = µn+1

1 −µn
12 Otherwise Wn

i = 0; for n = 1, 2, . . . , 13 (36)

Rel =
∑13

n=1 ∑12
i=1 µn

i
12× 13

×100; 0 ≤ Rel ≤ 100 (37)

Res = ∑13
n=1 ∑12

i=1 Wn
i

∑13
n=1 ∑12

i=1(1− µ n
i

)×100; 0 ≤ Res ≤ 100 (38)

Vul =
∑13

n=1 ∑12
i=1(1− µ n

i

)
12× 13

×100; 0 ≤ Vul ≤ 100 (39)

The spilled water in the ith month of the nth water year is denoted by SPn
i in

Equation (34) and is calculated based on the following equations:

If
(

S1
0+I1

1−R1
1−loss1

1

)
>Smax Then SP1

1= S1
0+I1

1−R1
1−loss1

1−Smax Otherwise SP1
1= 0 (40)

If
(
Sn

i +In
i+1−Rn

i+1−lossn
i+1
)
>Smax Then SPn

i+1= Sn
i +In

i+1−Rn
i+1−lossn

i+1−Smax

Otherwise SPn
i+1= 0; for i = 1, 2, . . . , 11; n = 1, 2, . . . , 13

(41)

If
(

Sn
12+In+1

1 −Rn+1
1 −lossn+1

1

)
>Smax Then SPn+1

1 = Sn
12+In+1

1 −Rn+1
1 −lossn+1

1 − Smax

Otherwise SPn+1
1 = 0; for n = 1, 2, . . . , 13

(42)

A n
i =

(
4.22× 10−17)×(S n

i
)6
+
(
2.11× 10−13)×(S n

i
)5

+
(
−4.25×10−10)×(S n

i
)4
+
(
4.33× 10−7)×(S n

i
)3
+
(
−2.30×10−4)×(S n

i
)2

+(0.0916)×(S n
i )+(1.087);

for i = 1, 2, . . . , 12; for n = 1, 2, . . . , 13

(43)

lossn
i = (evapo n

i −pn
i )× A n

i ×10−3; for i = 1, 2, . . . 12; n = 1, 2, . . . , 13 (44)

The reservoir storage at each time step is calculated as follows:

S1
1= S1

0+I1
1−R1

1−loss1
1−SP1

1 (45)

Sn
i+1= Sn

i +In
i+1−Rn

i+1−lossn
i+1−SPn

i+1; for i = 1, . . . 11; n = 1, 2, . . . , 13 (46)

Sn+1
1 = Sn

12+In+1
1 −Rn+1

1 −lossn+1
1 −SPn+1

1 ; for n = 1, 2, . . . , 13 (47)
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The bound constraints and the penalty function constraints of the model are formu-
lated as follows:

demi,min ≤ Rn
i ≤ demn

i ; for i = 1, 2, . . . , 12 ; n = 1, 2, . . . , 13 (48)

Sdead ≤ Sn
i ≤ Smax; for i = 1, 2, . . . , 12 ; n = 1, 2, . . . , 13 (49)

Sn
i = Sopt ; for i = 12; n = 1, 2, . . . , 13 (50)

Pen1= C1 ×
T
∑

t=1
[max(sgn (Sdead−St) , 0)×(Sdead−St)/Sdead];

for t = 1, 2, . . . , 157
(51)

Pen2= C2 ×
T
∑

t=1

[(
Sopt−St

)
/Smax

]2;

for t = 13, 25, 37, 49, 61, 73, 85, 97, 109, 121, 133, 145, 157
(52)

Pen3= C3 ×
T

∑
t=1

[(SPn
i )/demn

i ]; for t = 1, 2, . . . , 157 (53)

The parameters of the optimization model are defined as follows:
SI = Sustainability index.
µn

i = Fuzzy membership degree of the reservoir performance in fuzzy demand satis-
faction set in the ith month of the nth year.

Rn
i = Water volume released from the reservoir in the ith month of the nth

year (MCM).
SPn

i = Water volume spilled from the reservoir in the ith month of the nth
year (MCM).

demn
i = Water volume demanded downstream of the reservoir in the ith month of the

nth year (MCM).
Sn

i = Water volume stored in the reservoir in the ith month of the nth year (MCM).
In
i+1 = Inflow volume to the reservoir in the (i+1)th month of the nth year (MCM).

Rn
i+1 = Water volume releases from the reservoir in the (i+1)th month of the nth

year (MCM).
lossn

i+1 = Water loss from the reservoir in the (i+1)th month of the nth year (MCM).
Smax = Reservoir storage capacity set to be 1470 MCM.
SPn

i+1 = Water volume spilled from the reservoir in the (i+1)th month of the nth
year (MCM).

A n
i = Area of the reservoir lake surface in the ith month of the nth year (km2).

evapon
i = Height of the stored water evaporated from the reservoir surface in the ith

month of the nth year (mm).
pn

i = Height of the precipitation falling on the reservoir in the ith month of the nth
year (mm).

demi,min = Minimum water demand required to be met in the ith month of the year
set to 50 MCM.

Sdead = Dead reservoir storage volume set to 150 MCM.
Sopt = Optimal reservoir storage volume required to be kept in the reservoir at the

final of each water year for preserving the sustainability of the reservoir, set to be 450 MCM.
sgn = Sign function in mathematics.
Pen1 = First penalty function.
Pen2 = Second penalty function.
Pen3 = Third penalty function.
C1 = Penalty coefficient of the first penalty function.
C2 = Penalty coefficient of the second penalty function.
C3 = Penalty coefficient of the third penalty function.
i = Indicator of the month of each water year of the planning period.
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n = Indicator of each water year of the planning period.
t = Indicator of the month included in the total planning period.
Z = Objective function with the penalty functions added as the constraints to be minimized.

4. Results and Discussion

In this paper, the time series of all the input data necessary to launch the optimization
process of the reservoir operation including the precipitation, temperature, and the inflow
to the reservoir are extracted from [48–50], and then the GSA and the proposed AAGSA
optimization models are implemented in the future period beginning from 2020–2021, end-
ing in 2032–2033, under the climate change RCP4.5 and RCP8.5 scenarios. The algorithms
in both scenarios are run for 30 independent runs. The minimum fitness function value
obtained in the best run of either of the examined algorithms is adopted as the final result
of the optimization process, resulting in the best decision variables (water releases) and
state variables (water storages) for the case study.

As the results suggest, for RPC4.5, the best fitness function value given by the proposed
AAGSA is 56 times (98.2%) less than that offered by the GSA, while for RPC8.5, this value
is 44 times (97.7%) less than that evaluated by the GSA. Furthermore, the runtime of the
AAGSA is nearly 5 times (80%) less than that of the GSA in both scenarios, suggesting the
best overall performance of the AAGSA compared to the GSA in terms of both the quality
of the results and the computational cost. Figures 3 and 4 show the convergence curves
plotted upon implementing the AAGSA against those plotted when running the GSA for
RCP4.5 and RCP8.5, respectively. The detailed parameter settings of the algorithms and the
final results obtained upon running both the GSA and AAGSA algorithms for RCP4.5 and
RCP8.5 are presented in Table 5.

Figure 3. Convergence curves plotted for the GSA and AAGSA when applied to the reservoir
operation problem under RCP4.5.

The detailed results of applying both algorithms to the reservoir operation problem for
RCP4.5 and RCP8.5 are presented in Tables 6 and 7, respectively. As Table 8 suggests, the
average performance criteria of the AAGSA over the whole planning period is significantly
improved as compared to those of the original GSA for both climate change scenarios.
In detail, when employing the proposed AAGSA against the original GSA for solving
the problem under the RCP4.5 scenario, the vulnerability index is decreased by 89.8%,
resilience index is increased by 30%, reliability index is increased by 20%, and the final
sustainability index is increased by 23.5%. While implementing the AAGSA against the
GSA to solve the problem under the RCP8.5 scenario reveals that the vulnerability index
is decreased by 94.6%, resilience index is increased by 20%, reliability index is increased
by 14%, and the final sustainability index is increased by 16%. Moreover, the average
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water demand percentages met calculated by the proposed AAGSA are increased by 11.5%
and 9.3% as compared to those obtained by the original GSA when solving the reservoir
operation problem under the RCP4.5 and RCP8.5 scenarios, respectively.

Figure 4. Convergence curves plotted for the GSA and AAGSA when applied to the reservoir
operation problem under RCP8.5.

Table 5. Parameter setting and the final results of the GSA and AAGSA when applied to the reservoir
operation problem under RCP4.5 and RCP8.5.

Parameters/Results Characteristics
RCP4.5 RCP8.5

AAGSA GSA AAGSA GSA

Parameters

Total number of iterations 1000 1000 1000 1000
Number of search agents 50 50 50 50

Total number of runs 30 30 30 30
finalper 2 2 2 2

G0 100 100 100 100
α 20 20 20 20

Crandom 2 - 2 -
mutmax 0.9 - 0.9 -
mutmin 0.1 - 0.1 -

powermax 4 - 4 -
powermin 1 - 1 -

Results

Run time (seconds) 1463.37 7371.63 1376.49 6216.59
First penalty function value 0 0 0 0

Second penalty function value 0.8736 2.5027 3.0476 4.052
Third penalty function value 3.0917 16.7218 32.1338 55.3013

Minimum fitness function value 7.3083 408.551 19.6172 864.8347
Average fitness function value 18.4301 463.2886 68.7664 1040.2989
Standard deviation of fitness

function v
Values over the total runs

7.9176 40.5558 23.2623 99.0883

Median fitness function values 16.7354 456.5743 62.4131 1045.0276

Sustainability index (%) 98.53 79.79 99.46 85.67
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Table 6. Detailed results showing the performance criteria of the GSA and AAGSA in solving the
reservoir operation problem under RCP4.5.

Criteria Algorithm 2020–
2021

2021–
2022

2022–
2023

2023–
2024

2024–
2025

2025–
2026

2026–
2027

2027–
2028

2028–
2029

2029–
2030

2030–
2031

2031–
2032

2032–
2033

Demand
met (%)

AAGSA 91.65 92.31 92.32 94.2 94.71 93.7 96 95.2 96.29 97.21 94.13 92.77 92.9
GSA 81.49 83.56 87.05 87.91 84.56 83.76 85.77 83.34 88.7 85.38 85.2 79.35 81.57

Vulnerability AAGSA 2.71 2.49 2.3 2.25 3.09 1.52 0.32 0.29 0.18 0.35 0.94 5.81 2.04
GSA 20.96 20.06 12.78 14.68 18.61 15.62 16.6 20.23 9.94 20.87 14.71 32.95 20.53

Resilience
AAGSA 99.26 98.78 98.91 99.1 99.92 99.12 98.33 95.45 97.72 99.87 99.62 99.94 98.89

GSA 63.72 75.48 94.54 74.83 86.38 83.1 94.38 63.82 86.5 75.32 92.03 62.13 69.61

Reliability AAGSA 97.29 97.51 97.7 97.75 96.91 98.48 99.68 99.71 99.82 99.65 99.06 94.19 97.96
GSA 79.04 79.94 87.22 85.32 81.39 84.38 83.4 79.77 90.06 79.13 85.29 67.05 79.47

SI
AAGSA 97.94 97.93 98.1 98.2 97.9 98.69 99.23 98.27 99.11 99.72 99.25 96.07 98.27

GSA 73.57 78.43 89.59 81.67 83.02 83.95 86.91 74.05 88.86 77.84 87.48 65.37 76.03

Table 7. Detailed results showing the performance criteria of the GSA and AAGSA in solving the
reservoir operation problem under RCP8.5.

Criteria Algorithm 2020–
2021

2021–
2022

2022–
2023

2023–
2024

2024–
2025

2025–
2026

2026–
2027

2027–
2028

2028–
2029

2029–
2030

2030–
2031

2031–
2032

2032–
2033

Demand
met (%)

AAGSA 92.78 95.42 99.31 99.81 96.83 95.15 96.65 95.96 99.70 96.78 96.02 97.42 95.97
GSA 84.18 85.93 88.86 90.24 89.10 92.22 94.74 89.96 86.73 86.83 86.50 87.45 87.64

Vulnerability AAGSA 1.94 1.12 0.00 0.00 1.48 0.82 0.61 0.64 0.00 0.93 0.58 0.56 0.37
GSA 17.40 18.79 11.86 13.99 14.62 5.90 2.72 10.51 14.88 17.78 13.50 15.66 11.50

Resilience
AAGSA 99.72 99.71 99.62 100.00 99.89 99.66 99.79 99.76 100.00 99.82 99.80 99.78 99.72

GSA 94.26 92.46 95.59 70.70 50.64 95.84 64.02 90.30 97.95 74.39 83.64 78.44 85.57

Reliability AAGSA 98.06 98.88 100.00 100.00 98.52 99.18 99.39 99.36 100.00 99.07 99.42 99.44 99.63
GSA 82.60 81.21 88.14 86.01 85.38 94.10 97.28 89.49 85.12 82.22 86.50 84.34 88.50

SI
AAGSA 98.61 99.16 99.87 100.00 98.98 99.34 99.52 99.49 100.00 99.32 99.55 99.55 99.66

GSA 86.32 84.80 90.56 80.57 71.74 94.68 84.62 89.76 89.20 79.52 85.54 82.32 87.51

Table 8. Detailed results showing the overall performance criteria of the GSA and AAGSA algorithms
in solving the reservoir operation problem over the whole planning period under RCP4.5 and RCP8.5.

Climate Change
Scenario Algorithm Sustainability

Index Reliability Resilience Vulnerability Water Demand
Met (%)

RCP4.5
AAGSA 98.53 98.13 99.32 1.87 94.10

GSA 79.80 81.65 76.22 18.35 84.43

RCP8.5
AAGSA 99.46 99.30 99.77 0.70 96.75

GSA 85.67 86.99 83.09 13.01 88.49

As can be seen in Table 8, the performance criteria of the AAGSA and GSA under
RCP8.5 are slightly improved compared to RCP4.5. In addition, the improvement obtained
is more significant in the performance of the GSA than that of the AAGSA. The main reason
for this improvement is hidden in the natural characteristics of the RCP8.5 against the
RCP4.5. Under the RCP8.5, the averaged inflow to the reservoir in the future planning
period is predicted to be increased by 24.96% and the average temperature is estimated
to increase by 2.3% [48–50]. The highly increased inflow to the reservoir might have led
to a higher percentage in meeting the water demands in both algorithms alongside the
higher amounts for reservoir storage. While the conditions are eased for either of the
algorithms to solve such a problem, the major weakness of the GSA in the exploration of
the search space is highly downgraded as the optimum is not that extreme in the search
space and gets closer to the center of the problem’s domain, entailing any algorithm to
have more effective exploitation capability than the higher exploration skill. Whereas the
performance of the AAGSA remains strong and efficient when the scenario is switched
from the RCP4.5 to the RCP8.5, as the proposed AAGSA has high competence in both the
exploration and exploitation that allows this algorithm to easily solve the newly emerging
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problem, as well. As the results presented in Table 8 suggest, the SI for AAGSA and GSA
under RCP8.5 is increased by 0.94% and 7.4%, respectively, as compared to those obtained
for these algorithms under RCP4.5. Moreover, the water demand percentage met obtained
under RCP8.5 is increased by 2.4% and 4.8% as compared to those yielded under RCP4.5,
as calculated by the AAGSA and GSA, respectively.

Figures 5–8 show the monthly volume of the water released, the monthly volume of
the downstream water demand, and the monthly volume of the inflow to the reservoir over
the whole planning period resulting from the GSA and AAGSA algorithms implemented
under RCP4.5 and RCP8.5. As these figures suggest, the AAGSA can better supply the
demands over the planning period. The main reasons for the AAGSA to more appropriately
meet the water demands can be divided into three main points: (1) the reservoir storage is
at a desirably high level to meet the demands, especially in the dry periods; (2) the inflow
to the reservoir is properly high within the periods with high rates of the precipitation
and the resulting runoff volumes; and (3) the water demands are essentially at low levels
at the months whose water demands are desirably met. Among these three reasons,
the first one is the factor related to the performance of the optimization models as the
experiments accomplished in this paper suggest the superiority of the AAGSA to handle
the optimization problems of any type and any condition. The second and the third reasons
are related to the conditions experienced by the problem in the focused case study and
are both consequently assumed constant for the GSA and the proposed AAGSA. As a
result, an algorithm could have better performance than the other one when getting more
adapted to these conditions when operating the reservoir. As the detailed results obtained
under RCP4.5 indicate, the AAGSA and GSA could meet more than 95% of the whole
monthly water demands in 100 out of 156 (64%), and 43 out of 156 (27.6%) of the planning
period, respectively. Under RCP8.5, these figures are turned into 78.85% and 42.95%, for the
AAGSA and GSA, respectively. Meanwhile, both algorithms can meet the water demands
in nearly 95% of the months having been assigned the least demands under both climate
change scenarios. Moreover, the AAGSA could meet the demands by more than 85% in
all the months after the months May and June of all years of the planning period when
the reservoir storage is at the maximum level in both scenarios, while the GSA could
meet the demands of such months by more than 85% at only 11 out of 26 (42.3%) of these
months, suggesting the much worse performance of the GSA to make the water demands
sustainable to be met over a critical future planning period under a climate change scenario;
however, this matter occurs in 21 out of 26 (80.8%) of these months under RCP8.5, which is
due to the GSA’s better performance under this scenario as previously mentioned.

Figure 5. Water release, water demand, and inflow volumes in the reservoir operation problem
solved by the GSA under RCP4.5.
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Figure 6. Water release, water demand, and inflow volumes in the reservoir operation problem
solved by the GSA under RCP8.5.

Figure 7. Water release, water demand, and inflow volumes in the reservoir operation problem
solved by the AAGSA under RCP4.5.

Figure 8. Water release, water demand, and inflow volumes in the reservoir operation problem
solved by the AAGSA under RCP8.5.

As Figures 9 and 10 display, when the reservoir operation problem is solved by the
GSA, the reservoir tends to hold its storage volume at much higher levels than that offered
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by the AAGSA. This performance of the GSA can make the releases from the reservoir less
than those presented by the AAGSA, and the spilled water volume much more than that
offered by the AAGSA. This behavior of the GSA to handle the reservoir operation problem
impedes this algorithm to generate the favorite results, at least as compared to the proposed
AAGSA, as the goals of the optimization model are (1) maximizing the sustainability of
the water demands to be met, and (2) holding the reservoir storage at a well-balanced
level, such that the storage level is neither too low to make the water demands in the dry
months of the planning period not be desirably met, nor too high to frequently lead the
water to be spilled from the reservoir, as the monthly spilled water volume is restricted in
the formulation of the optimization model. The latter point is realized to not be properly
met by the GSA, as this algorithm makes the water storage of the reservoir be spilled
at 22 out of 156 months (14%) of the planning period under RCP4.5 and 53 out of 156
months (34%) under RCP8.5, while the proposed AAGSA only makes the water be spilled
at 4 out of the 156 months (2.5%) of the total planning period under RCP4.5 and 35 out of
156 months (22.4%) under RCP8.5. As previously mentioned, the reason for higher levels
of reservoir storage volumes under RCP8.5 compared to those under RCP4.5 is referred to
highly increased inflow volumes in the former scenario [48–50].

Figure 9. Reservoir storage volume fluctuations in the reservoir operation problem solved by the
GSA and AAGSA under RCP4.5.

Figure 10. Reservoir storage volume fluctuations in the reservoir operation problem solved by the
GSA and AAGSA under RCP8.5.
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5. Conclusions

The main goal of this study was to maximize the sustainability index of a reservoir to
meet the downstream water demands. The optimization model was also subject to several
constraints the major of which is to keep the reservoir storage sustainable during the whole
planning period to provide better conditions for the reservoir to satisfy the water demands
as much as possible. A future period beginning from 2020–2021, ending in 2032–2033,
was assumed as a 13-year long-term planning period whose data necessary to simulate its
climatic conditions were obtained as the outputs of the RCP4.5 and RCP8.5 climate change
scenarios. The RCP4.5 was chosen as the climate change scenario mainly because of two
main points: (1) the RCP climate change scenarios are not so different in the outputs and the
data they project in the near-future periods such as the period adopted to be the planning
period for optimizing the reservoir operation in this paper, and (2) the RCP4.5 was adopted
as a medium-standing scenario and thus, a representative scenario for all the other RCP
scenarios. As a result, the examination of the effects of the other scenarios was avoided
in the near-future planning period. After the results of solving the reservoir operation
problem were revealed under the RCP4.5 scenario, the two optimization models were also
applied to the problem under the RCP8.5 scenario, to benchmark the possible differences
between these two scenarios and their effect on the way to operate the reservoir during the
near-future planning period. The examination of the RCP8.5 could also help how one can
rely on the RCP4.5 as a representative for all the other climate change scenarios.

The classic sustainability index involves Boolean logic in its calculations. The Boolean
logic rates the performance of a focused water resource system as a success only when fully
supplying the water demands, and only considers it as a failure when not managing to
fully supply the water demands by that focused water resource system. This behavior of
the Boolean logic cannot provide an accurate, tangible, and plausible view for the decision-
makers and stakeholders when the reservoir operates. To avoid these problems, the fuzzy
logic is used to calculate the components of the sustainability index in this paper, as the
fuzzy logic partly validates the performance of a water resource system when supplying
the water demands at any level possible for that system. The Zayandehrud Reservoir was
adopted as the case study of this paper. This reservoir has experienced severe climatic
changes, droughts, and mismanagements during recent years and thus it is necessary
to adapt the reservoir to the current trend of climatic conditions which can be projected
by the climate change scenarios, helping the operating policies of such a reservoir be
optimally updated. An adaptive accelerated gravitational search algorithm (AAGSA) is
developed as a new variant of the robust gravitational search algorithm (GSA) to solve the
optimization model built up in this paper. The AAGSA has two main advantages against
the GSA, discriminating it from the GSA and making it a highly effective meta-heuristic
algorithm, especially to solve the large-scale optimization problems: (1) the exploration
phase of the AAGSA is significantly accelerated to avoid the algorithm to be trapped in
local optima and to entirely search the decision space to detect all the promising regions in
this space before the exploitation process is started, and (2) an effective balance is held in
the AAGSA between the exploration and exploitation phases of the optimization process
through de-emphasizing the masses (fitness) of the search agents at the early iterations
while emphasizing the masses and de-emphasizing the distances between the agents up
to the final iterations. The AAGSA demonstrated higher-quality results while reducing
the runtime by 80%, as compared to the original GSA. The GSA presented higher storage
volumes for the reservoir causing the reservoir to spill the water, whereas this behavior is
rated undesirable during a reservoir operation period and thus, the reservoir was restricted
to unduly spill the water as formulated in the optimization model. Furthermore, under
RCP4.5 and RCP8.5, the proposed AAGSA made the reservoir averagely meet the water
demands by 94% and 96.75% (11.5% and 9.3% better than that offered by the GSA) and
present the total sustainability index to be 98.5% and 99.46% (23.5% and 16% better than
that suggested by the GSA). Finally, the AAGSA improved the fitness function of the
optimization by 98.2% compared to the GSA under RCP4.5, and by 97.7% under RCP8.5
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compared to the GSA, demonstrating the significant superiority of the proposed AAGSA
to the original GSA in solving such a high-dimensional and highly constrained practical
engineering problem.
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