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Abstract: Stream permanence classifications (i.e., perennial, intermittent, ephemeral) are a primary
consideration to determine stream regulatory status in the United States (U.S.) and are an important
indicator of environmental conditions and biodiversity. However, at present, no models or products
adequately describe surface water presence for regulatory determinations. We modified the Thorn-
thwaite monthly water balance model (MWBM) with a flow threshold parameter to estimate flow
permanence and evaluated the model’s accuracy and precision for more than 1.3 million headwater
stream reaches in the U.S. Pacific Northwest (PNW). Stream reaches were assigned to one of eight
calibration groups by unsupervised classification based on sensitivity to MWBM parameters. Suitable
MWBM parameter sets were identified by comparing modeled stream permanence estimates to
surface water presence observations (SWPO). Parameter sets with accuracies > 65% were considered
suitable. The MWBM estimated stream permanence with high precision at 40% of reaches, with poor
precision at 20% of reaches, and no suitable parameter sets were identified for 40% of reaches. Results
highlight the need for increased SWPO collection to improve calibration and assessment of stream
permanence models. Additionally, implementation of the MWBM to estimate surface water presence
indicates potential for process-based models to predict stream permanence with future development.

Keywords: surface water; stream permanence; perennial; intermittent; water balance model

1. Introduction

In the United States, stream permanence classifications (i.e., perennial, intermittent,
and ephemeral) are a primary consideration to determine stream regulatory status under
the Clean Water Act and are also an important indicator of environmental conditions
and biodiversity [1–3]. Currently, the National Hydrography Dataset (NHD) [4] is the
most comprehensive dataset describing stream permanence for the contiguous United
States (CONUS) [2]. However, NHD stream permanence classifications (SPC) have been
shown to exhibit up to 50% disagreement with in-situ observations [5,6] and the highest
disagreement rates occur on headwater streams [7]. The US Environmental Protection
Agency and Army Corps of Engineers have determined that NHD SPC, derived decades in
the past, are usually not adequate for regulatory determinations, and that more reliable SPC
mapping products are required that consider dynamic climate and land use in headwater
and low stream order environments (https://www.epa.gov/sites/production/files/2020
-01/documents/nwpr_fact_sheet_-_mapping.pdf, accessed on 27 January 2022).

A primary reason for the uncertainty of NHD SPC is that designations originated
from observations made by topographic survey crews throughout the 1900s [5,7,8]. The
classification methods of survey crews incorporated first-hand knowledge of stream reaches
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but this was limited to climatic conditions during the survey year (or recent past). Thus,
climatic conditions during the survey year may not represent long-term average conditions
and survey crew observations may not capture the full range of variability for surface water
conditions at a stream reach [7]. Another reason for uncertainty is the SPC designations
themselves. The definitions for perennial, intermittent, and ephemeral streams have
changed through time, and streams were not given definitions that could be accurately
assessed by survey crews over a short period of time [7–9]. For example, perennial streams
were defined as “streams that flow continuously except in periods of extreme drought”, but
extreme drought is not defined [9]. Additionally, surveys for adjacent topographic maps
were often made multiple years apart. Thus, SPC designations for part of a watershed
could have been made under very different climate conditions than other portions of the
same watershed [7].

Multiple efforts have sought to add dynamic context to static NHD SPC by modeling
streamflow for NHD stream reaches at sub-annual time steps [10,11]. Two efforts include
the NHD enhanced runoff method (EROM), which is a unit hydrograph approach that is
integrated into the NHDPlus (i.e., NHD flowlines with additional descriptive attributes)
itself [10], and a machine learning approach developed by the U.S. Geological Survey [11]
(hereafter referred to as the “Miller data” or “Miller streamflow model”). Key to both
modeling efforts were runoff estimates that are generated from the USGS Thornthwaite
Monthly Water Balance Model (MWBM) [12]. The MWBM has been implemented in
multiple studies to evaluate various components of the hydrological cycle, water supply,
and water demand for the CONUS [13–17]. These studies demonstrate the utility of the
MWBM to represent streamflow patterns over large spatial extents at a monthly time step.
However, previous studies do not necessarily inform surface water presence because most
of the gages used for MWBM calibration represent perennial streams draining larger basins,
which gives a limited understanding of how well the model represents smaller basins with
non-perennial streamflow [18].

Recently, stream permanence was assessed in Australia with a daily water balance
model calibrated and validated with stream gauge data [19,20]. These results indicate
that the MWBM may be useful for modeling stream permanence, especially since the
MWBM can easily be applied at regional, continental, and even global extents. Because the
MWBM is already integrated with the NHD and other hydrological modeling efforts [10,21],
applying the MWBM to estimate stream permanence could quickly yield results over large
spatial extents. However, procedures for estimating, calibrating, and assessing stream
permanence with the MWBM have not been developed. With the greatest uncertainty in
SPC usually occurring on headwater streams [5,7], data sources in addition to streamflow
time series will be required for model calibration and assessment [22–24].

Both EROM and the Miller streamflow model are calibrated to gauged streamflow time
series, which is the general standard for hydrological modeling. However, results can only
be evaluated where continuous gaging stations exist. In the United States, stream gauges
are strategically placed to primarily monitor water supply and flood [25]. As a result of
these priorities, the majority of stream gauges are located on larger-order rivers and streams,
with very few gauges in headwater catchments [18]. It is in headwater catchments where
the greatest uncertainty of NHD SPC is documented and where few continuous records of
streamflow exist to inform traditional modeling efforts [7,23]. As a result, performance (e.g.,
accuracy and uncertainty) of regional- and national-extent models in headwater streams is
largely unknown. Assessing model performance in headwater streams is especially salient
because more than 50% of all stream reaches are classified as headwaters [26].

To increase the spatial coverage of calibration and validation data from fixed stream
gauges, some statistical and process-based models have used simple surface water presence
observations (SWPO) to develop and evaluate stream permanence estimates [22,24,27–29].
SWPO are easy to collect and represent more spatial locations than streamflow gauges [30].
While SWPO represent many locations, most SWPO locations have only one observation.
Thus, SWPO have much lower temporal resolution than stream gauge data [30]. SWPO
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are also subject to temporal and spatial bias (observations made in convenient locations
at convenient times), subjectivity, and differing definitions of what constitutes a ‘wet’ or
‘dry’ observation. Nevertheless, SWPO have been effectively used to develop statistical
models at local [27,28] and regional extents [17,20] and process-based models [24,29,31] at
local extents where existing stream gauge networks did not provide sufficient information
to model stream permanence in headwaters and other small tributary streams.

Herein, we implement the MWBM to estimate stream permanence on headwater
streams of the United States’ Pacific Northwest (PNW) region using SWPO for model
calibration and assessment. Our primary objective is to determine if the MWBM can
generate dynamic (e.g., change year-to-year) SPC estimates with accuracy better than
NHD SPC (e.g., >60%) [5,7]. To accomplish this objective, we first assess the accuracy of
annual stream permanence estimates generated from the MWBM to identify parameter
combinations that perform at least as well as NHD SPC. Then, with the suitable parameter
combinations, we calculate the precision of MWBM SPC on headwater streams throughout
the PNW. This is a unique application of the MWBM and will increase knowledge about
the accuracy of the MWBM in often difficult-to-model headwater streams. Additionally,
this study will help establish how the MWBM can be used to assess stream permanence at
large spatial extents and identify where more data and different modeling approaches may
be necessary to improve stream permanence estimates.

2. Methods
2.1. Study Area

The study area consisted of the Pacific Northwest region of the United States (PNW).
We define the PNW as Hydrographic Region 17 of the United States [32]. The PNW
is bounded on the north by the United States–Canada border, the west by the Pacific
Ocean, and the east and south by the boundaries of the Columbia River Basin, coastal
watersheds, and contains several endorheic basins (Figure 1). Elevations in the region
range from sea level in the coastal regions to over 4000 m above sea level in the Cascade
Mountain Range. Annual precipitation ranges from 200 mm in the rain shadow of the
Cascade Mountains to over 5000 mm in the coastal regions. Previous studies have examined
stream permanence in this region through field observation and modeling, resulting in a
rich dataset of publicly available surface water presence observations (Figure 1) that are
imperative for this modeling study [7,22,33,34].
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2.2. The Monthly Water Balance Model

The MWBM has been previously implemented at global and CONUS extents to
estimate monthly runoff [13,17,35,36]. The MWBM generates monthly runoff values by es-
timating the magnitude of hydrologic processes that supply and demand water. Equations
governing hydrological processes were originally presented by [37,38] and are explained
in detail by [10]. The basic model logic for the MWBM implemented herein progresses as
follows and is similarly explained by [13] following the methodology of [12].

Model inputs are mean monthly temperature (T), total monthly precipitation (P), soil
water holding capacity, and latitude. Monthly estimates of P and T were obtained from
monthly PRISM (~4 km) data for each month from January 1975 to December 2019 [39].
PRISM climate data were used because other monthly climate datasets (e.g., Daymet,
Gridmet) did not cover the entire SWPO period of record (1977–2019) with data for two
prior years (1975–1976) for a model spin-up period. Soil water holding capacity estimates
were obtained from STATSGO polygons [40]. STATSGO polygons were intersected with
the extents of PRISM grid cells to obtain the water holding capacity corresponding to the
footprint of each PRISM grid cell. A default value of 150 mm [12] was used in areas where
STATSGO data were not available.

The MWBM allows precipitation to occur as rain or snow, determined by T. Snowfall
accumulates from month to month to form a snowpack, which melts as temperatures warm.
Rainfall can be converted to direct runoff, evapotranspiration (ET), soil moisture storage,
and surplus water. Monthly potential evapotranspiration (PET) is determined by T and
latitude per the Hamon equation [41]. When the sum of rainfall and snowmelt for a month
is less than PET, actual evapotranspiration (AET) is the sum of rainfall, snowmelt, and the
portion of water that is evaporated from the soil. When the sum of rainfall and snowmelt is
greater than or equal to PET, AET is equal to PET. Water remaining after AET recharges soil
water storage. Water in excess of AET and soil water storage becomes surplus. A specified
proportion of surplus is converted to runoff each month, and the remaining surplus is
temporarily held in storage. Thus, water is lost through AET and total runoff is the sum
of direct runoff and surplus runoff. Runoff was summed for each NHD catchment and
multiplied by catchment area to arrive at a runoff volume for each month. Runoff volumes
were converted to mean monthly flow (volume/s).

In addition to ET, water fluxes in the MWBM are modulated by five parameters: runoff
factor, direct runoff factor, snow temperature, rain temperature, and snow-melt coefficient
(Table 1). Rain temperature (TR) is the temperature above which all precipitation falls as
rain. Snow temperature (TS) is the temperature below which all precipitation falls as snow.
When temperature is less than TR and greater than TS the proportion of rain to snow is
determined by linear interpolation. Snow-melt coefficient (MC) is the maximum proportion
of snow storage that can melt in a single month. Direct runoff (DR) is the proportion of
precipitation and snowmelt that becomes overland runoff. Runoff factor (RF) determines
the proportion of watershed storage that is converted to runoff each month.

We also added precipitation factor (PF) and temperature addition (TA) parameters to
the MWBM models presented within this paper to adjust climate inputs to the MWBM, as
in previous studies [13]. PF and TA were included in sensitivity and calibration analyses
to identify the impact of climate inputs on MWBM performance. Descriptions, units, and
value ranges of model parameters are presented in Table 1.

To convert MWBM runoff estimates to permanent or non-permanent stream classifica-
tions, we added a third parameter, flow threshold (FT), to the MWBM models presented
herein (Figure 2). Streams were classified as permanent for a month (model time step) when
mean monthly streamflow was greater than FT and non-permanent for a month when mean
monthly streamflow was less than FT. Flow threshold has been used in previous stream
permanence modeling studies to identify surface water presence and absence and flow
values from these studies were used to determine the range of FT for this study [20,24,29].
We classified a stream as permanent for a calendar year (annual permanence) when the
MWBM predicted a stream to be permanent for each month of the year. Calendar year was
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used instead of hydrological year because the irrigation season extends through October
in most of the PNW. Streams the MWBM predicted to be dry at least one month of a
calendar year were classified as non-permanent for the calendar year. We determined
stream permanence at an annual time step to align with the observational data available
for calibration (i.e., the year for many dry observations was recorded but not the month).
Additionally, the current best data describing stream permanence for headwater streams
(i.e., the NHD) use perennial and non-perennial classifications which describe permanence
at a minimum time step of one year.

Table 1. Parameters assessed in sensitivity analysis and calibration of the monthly water balance
model.

Parameter Name ID Description Units Range

Runoff Factor RF Proportion of catchment storage that is
converted to streamflow each month - 0.0–1.0

Direct Runoff Factor DR
Proportion of precipitation that is
converted to streamflow without

infiltrating or evaporating
- 0.0–0.5

Snow Temperature TS Temperature below which all
precipitation is snow

◦C −10.0–
2.0

Rain Temperature TR Temperature above which all
precipitation is rain

◦C 0.0–10.0

Snow-Melt Coefficient MC
The maximum proportion of snow water

equivalent that can melt in a single
month

- 0.0–1.0

Flow Threshold FT Mean monthly flow above which a
stream segment is considered permanent L/s 0.0–14.2

Precipitation Factor PF Multiplier for input PRISM precipitation - 0.1–2.0

Temperature Addition TA Value added to increase or decrease
mean monthly temperature

◦C −2.0–2.0
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2.2.1. Model Application

Stream catchments and flowlines in the PNW were represented by the High Resolution
version of the National Hydrography Dataset with added attributes (NHDPlus HR) [4]. The
MWBM was applied only to headwater streams in the PNW as determined by NHDPlus
HR. Modeling was limited to headwater streams because these are the portions of the
stream network where NHD SPC exhibit the most uncertainty and where calibration and
validation data for previous MWBM applications have been limited. Additionally, by
excluding downstream segments, we eliminated the need to include flow routing in the
model and could perform more model computations to evaluate model performance in
the headwaters. Assessing only headwater stream segments also limited the impacts of
human-altered landscapes on basin hydrology. Less than 0.1% of headwater catchments
had permanent snow or ice that covered greater than 10% of the catchment area.

We defined headwater streams and catchments as those with no upstream segments
or tributaries where the NHDPlus ‘Start_Flag’ attribute equaled 1 [42]. This included only
the uppermost portions of the stream network (see example in Figure 3). With the MWBM,
we calculated total monthly runoff within each headwater catchment in the PNW at the
resolution of the input PRISM grid (~4 km). Total monthly runoff volume for headwater
catchments was calculated by multiplying MWBM runoff depth by catchment area. When
catchments intersected multiple PRISM grid cells, the volume was calculated for each
intersecting area and summed to obtain the total volume. We calculated the mean monthly
flow rate (L/s) at the outlet of each headwater stream segment as the catchment’s total
monthly runoff volume divided by the number of seconds in each month. Thus, MWBM
results represent runoff estimates at the outlet (most downstream point) of each headwater
stream in the PNW.
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Monthly stream permanence was determined with the FT parameter. When mean
monthly flow was less than FT the stream reach was classified as non-permanent for that
month. When mean monthly flow was greater than or equal to FT the stream reach was
classified as permanent for that month. Stream reaches that were classified as permanent
every month of a calendar year were classified as permanent for that year. Any stream
reach that was classified as non-permanent for least one month during a calendar year
was classified as non-permanent for that year. This analysis grouped both intermittent and
ephemeral streams into the non-permanent category.

We implemented the MWBM, as presented by [12], in the Python programming
language [43] in order to adapt the MWBM to headwater streams and scale millions of
model runs on a super computer. All MWBM model runs were completed on the USGS
Yeti supercomputer [44].

2.2.2. Data Availability

All input data for this methodology are from publicly available sources. Final results
and intermediate products from this study are available from [45].

2.3. Observation Data

Model calibration and precision analyses were conducted with observational data
that described the presence or absence of surface water in headwater streams (SWPO).
Only three USGS stream gauges [46] were located on headwater streams (as defined
by NHDPlus HR) in the PNW. Therefore, SWPO provide the best spatial coverage and
hydrological information for most headwater streams in the PNW. Observational data were
primarily acquired from a dataset compiled as part of the Probability of Stream Permanence
(PROSPER) [22] modeling effort in the PNW [33]. These data were supplemented with more
recent SWPO collected with the FLOwPER application [34]. SWPO were made by a variety
of agencies, including the Sauk-Suiattle Indian Tribe, Idaho Department of Environmental
Quality, Oregon Department of Fish and Wildlife, U.S. Bureau of Land Management, U.S.
Forest Service, USGS, and the U.S. Environmental Protection Agency. SWPO spanned the
years 1977–2019. Each observation recorded the date (some older SWPO only specified the
year) the observation was made, the geographic coordinates of the observation location,
and the presence (wet) or absence (dry) of surface water in the observed stream channel
(Figure 1).

All dry SWPO were used to represent streams that were annually non-permanent.
Only wet SWPO made in August or September were used to represent annually permanent
streams since streams in the study area that maintained flow in the driest months at the
end of summer were assumed to be perennial. An observation point was assumed to
represent the entire flowline (i.e., headwater stream reach). Each observation was joined to
the nearest NHDPlus HR flowline. SWPO farther than 50 m from a flowline were excluded
from the analysis. All SWPO greater than 20 m from a flowline were manually inspected to
ensure they were associated with the correct flowline and SWPO near a confluence were
inspected to ensure the observation was assigned to the correct flowline. There were no
flowlines with observations from multiple years. Similar methodologies were implemented
by [7] and [22] to identify SWPO for stream permanence assessment and modeling. In all,
2804 SWPO (1120 dry and 1684 wet) were used for model calibration (Figure 1). Though
the MWBM produces runoff and stream permanence estimates at a monthly time step, we
assessed the model on annual permanence because approximately half of the dry SWPO
only specified the year of the observation and not the day and month.



Water 2022, 14, 895 8 of 21

2.4. Sensitivity Analysis

We assessed the relative sensitivity of annual stream permanence classification from
the MWBM to each of the eight model parameters (Table 1) with the Fourier Amplitude
Sensitivity Test (FAST [47,48] over the period 1977–2019. Sensitivity analysis was conducted
with the SALib Python module [49]. In all, we tested 1200 parameter combinations for
1.3 million headwater catchments in the PNW. Parameter values were selected from uni-
form distributions that spanned the range of parameter values recommended by previous
studies [12,13,17] displayed in Table 1. For many stream reaches, the sensitivity analysis
produced “not-a-number” values. Upon inspection of the model runs, we observed that
most of the not-a-number results occurred on stream reaches where greater than 95% of
simulations predicted the same outcome (i.e., permanent, non-permanent) for all years.
This indicated low sensitivity to model parameters for these stream reaches. To represent
this sensitivity in further analysis, the sensitivity value for stream reaches where the initial
FAST result produced not-a-number, but where greater than 99% of FAST simulations
produced the same result (i.e., stream permanence classification), was set to 0.01.

2.5. Parameter Regionalization

Parameters for headwater stream reaches were regionalized by grouping reaches that
responded similarly to changes in model parameters [13,50]. It is common for the optimal
parameter values of hydrological models to vary spatially [51]. Parameter regionalization
results in different model parameterizations for different regions to improve model outputs.
We performed an unsupervised, K-means classification [52] based on MWBM parameter
sensitivities to assign stream reaches to calibration groups (i.e., regions). Each headwater
stream reach, as defined by NHDPlus HR, was classified based on its sensitivity to the
eight MWBM parameters (as calculated in the previous section). We selected the number
of calibration groups by qualitatively balancing the K-means classification error (squared
distance from each point to the class center) with the number of SWPO available for each
group. The number of SWPO for each group decreased as the number of calibration groups
increased. We tested the K-means classification for 2–15 groups and determined that
eight calibration groups best minimized K-means classification error while simultaneously
maximizing the number of SWPO in each group. Physical characteristics, parameter
sensitives and number of SWPO for each calibration group are presented in the Results
section.

2.6. Parameter Set Selection

One million parameter sets (randomly selected using a Monte Carlo approach) from
the same uniform distributions with the same ranges used for sensitivity analysis (Table 1)
were evaluated for each calibration group using the spotpy python module [53]. For
parameter set selection, we only ran simulations for the stream reaches where SWPO
were located. Suitable parameter sets were identified by their accuracy with SWPO. The
accuracy of a parameter set was determined as the sum of simulated stream permanence
classifications that agreed with SWPO divided by the total number of SWPO within a given
calibration group. We used previous studies that quantified the accuracy of NHD SPC on
headwater streams to range from 50 to 65% [5–7] as benchmarks to identify parameter sets
that produced a good model ‘fit’ in each calibration region. Therefore, we required suitable
parameter sets to have greater than 65% overall accuracy against all SWPO and greater than
60% accuracy against wet or dry SWPO, individually. All parameter sets that produced
suitable accuracy results in a calibration region were retained to assess model precision.
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2.7. Precision Analysis

Modeled stream permanence was assessed on model precision (i.e., consistency).
Selection of suitable parameter sets (see Section 2.6) provided an assessment of model
accuracy, but the limited number (compared to implementations of the MWBM that were
assessed with streamflow values where millions of observations are available) of SWPO
(2357) presented opportunity for overfitting. Additionally, because all SWPO were used for
model calibration we did not have an independent subset of data to assess overall model
performance. Therefore, we used consistency of modeled annual stream permanence (i.e.,
permanent, or non-permanent) between suitable parameter sets as the model evaluation
metric (referred to as precision, or model precision, hereafter).

To calculate model precision, annual stream permanence was predicted for all suitable
parameter sets in each calibration region. This resulted in multiple stream permanence
estimates for each headwater stream reach. Model precision was assessed by agreement of
simulated stream permanence classifications between suitable parameter sets. High model
precision was exhibited when all suitable parameter sets simulated the same permanence
classification. Model precision decreased as different parameter sets predicted different
permanence classifications for the same stream in the same year. We represented model
precision as the proportion of parameter sets resulting in a permanent classification. Model
precision values ranged from 0.0 to 1.0 where values of 0.0 and 1.0 indicated all parameter
sets simulated non-permanent (0.0) and permanent (1.0) classifications, respectively. A
value of 0.5 indicated that half of the parameter sets simulated a permanent condition, and
the other half simulated a non-permanent condition, resulting in poor model precision.
Precision values of 0.0–0.1 indicated high precision for non-permanent classifications and
values of 0.9–1.0 indicated high precision for permanent classifications. Precision values
0.25–0.75 indicated poor precision.

For example, 20 individual stream permanence predictions would be made each year
for each stream reach in a calibration group where 20 suitable model parameterizations
were identified (one prediction for each parameter set). In a year where 19 of the parameter
sets resulted in a permanent classification, the precision value would be 0.95. On the same
stream reach, in a different year, it is possible that 10 parameter sets resulted in a permanent
classification (precision value of 0.5), indicating inconsistencies in classification between
parameter sets and, thus, poor model precision. In yet another year, it is possible that
0 parameter sets resulted in a permanent classification (precision value 0.0), indicating
high agreement between model predictions for a non-permanent classification. Thus, the
precision value is similar to estimating the probability a stream reach is permanent for a
given year based on model agreement.

3. Results
3.1. Sensitivity Analysis

Parameter sensitivity values ranged from 0.0 to 1.0, where larger values indicated
greater parameter sensitivity. Generally, parameter sensitivities were low for interior
mountain ranges, moderate for coastal mountain ranges, and high on the interior plains
and plateaus (Figure 4). Most headwater streams exhibited some degree of sensitivity to the
RF and FT parameters. This is expected as RF is the main parameter controlling monthly
flow rates and FT is the primary parameter controlling the model result (permanent or
non-permanent).

3.2. Parameter Regionalization

The K-means classification of parameter sensitivities and the number of SWPO avail-
able for each group best supported eight calibration groups (Table 2). Headwater streams
in groups 1–5 exhibited relatively high sensitivity to RF and FT and moderate sensitivity to
all other parameters (Figure 5). Streams in group 6 exhibited highly variable sensitivities to
FT and PF and low sensitivities to all other parameters. Headwater streams in groups 7–8
showed high sensitivity to all parameters, especially FT.
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Table 2. Number of wet and dry surface water presence observations used to calibrate the monthly
water balance model for each calibration group, where %HW is the percentage of the 1.3 million
headwater stream reaches within the study area assigned to each group, stream length is the total
length of streams in each calibration group and drainage area is the total area drained by streams in
each calibration group.

Group %HW
Stream

Length (km)
Drainage

Area (km2) Observations

Dry Wet

1 26.7 13,735 154,176 425 525
2 13.6 2502 11,236 41 119
3 13.2 2255 8087 25 145
4 2.4 69 625 3 15
5 17.1 5043 35,648 98 202
6 13.8 2096 7588 42 68
7 8.2 4332 39,436 102 100
8 5.0 4696 90,012 192 255

Total - 34,728 346,808 928 1429
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Figure 5. Distribution of relative parameter sensitivities for stream segments within each calibration
group (Table 2).

SWPO were not distributed equally among calibration groups (Table 2). The majority
of SWPO occurred on stream reaches in calibration groups 1 and 8. Most headwater streams
in Idaho fall in these calibration groups and the majority of SWPO were located in Idaho.
Only 2.4% of headwaters stream reaches were assigned to calibration group 4, and just 18
SWPO fell in this group.

Calibration groups also exhibited geographical similarities and spatial autocorrelation
(Figure 6). Group 8 tended to represent mountainous regions of the interior PNW and some
mountainous, coastal regions. Groups 2, 3 and 5 tended to represent coastal mountains.
Groups 1, 6, and 7 tended to represent headwater streams in the plains, foothills, and
plateaus of the interior PNW. While geographical similarities are apparent within calibration
groups, it is also apparent that headwater streams near to each other may exhibit different
sensitivities to model parameters and be classified into different calibration groups.
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Figure 6. Spatial occurrence of stream reaches in each calibration group as determined by the
parameter regionalization methods.

Calibration groups displayed some physiographic differences. Drainage areas for
groups 2–6 were quite small (<0.25 km2), but these groups were separated by differences
in elevation and annual precipitation (Figure 7). While there is overlap in catchment area,
maximum elevation, and annual precipitation between the eight calibration groups, it is
also apparent that the groups are somewhat distinct from each other. For example, group 8
contained the largest catchments and had the greatest average maximum elevation. Group
4 primarily represented small, arid catchments. Groups 3 and 5 were similar in catchment
size and elevation but had slightly different precipitation distributions (Figure 7).

3.3. Parameter Set Selection

We identified multiple (n = 13–92), suitable parameter sets for calibration groups 2–6
(Table 3). The overall accuracy of suitable parameter sets ranged from 65 to 90%. The
highest accuracy was simulated for group 4, which only contained 18 SWPO. No parameter
sets met accuracy constraints for calibration groups 1, 7, and 8 (Table 3). The majority
of SWPO occurred in groups 1, 7, and 8 and these groups represent 39.9% of headwater
streams in the PNW.

Table 3. Number (n) and accuracy range of parameter sets for each calibration group that met
accuracy constraints for annual and monthly simulations. The ‘wet’ and ‘dry’ columns present the
range of accuracy when MWBM stream permanence classifications are assessed on only wet SWPO
or dry SWPO. The median accuracy value is displayed in parentheses.

Group n Annual Accuracy
Dry Wet Overall

1 0 - - -
2 32 0.61–0.78 (0.63) 0.61–0.72 (0.67) 0.65–0.70 (0.66)
3 13 0.60–0.76 (0.64) 0.64–0.74 (0.66) 0.65–0.73 (0.66)
4 92 0.67–1.00 (0.67) 0.67–0.93 (0.80) 0.67–0.89 (0.78)
5 41 0.60–0.74 (0.62) 0.61–0.75 (0.68) 0.65–0.71 (0.66)
6 19 0.67–0.79 (0.71) 0.60–0.68 (0.63) 0.65–0.69 (0.66)
7 0 - - -
8 0 - - -
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Figure 7. Distributions of drainage area (log scale), maximum elevation, and total annual precipitation
for headwater catchments in each calibration group (Table 2). Median values are reported in the
top-right corner of each histogram.

Suitable parameter values for groups 2–6 occurred across nearly the entire distribution
for each parameter, with some distinctions among calibration groups (Figure 8). The
exception was FT, which tended to values near zero. RF values tended to be less than 0.5,
except for group 5 where a more uniform distribution was observed between 0.3 and 1.0.
TS for groups 2 and 6 tended towards zero, while the distribution was relatively uniform
for the other calibration groups. Overall, the relatively uniform distributions of suitable
parameters appear to indicate a high degree of equifinality in model parameterization
(Figure 8).

3.4. Model Precision

Model precision for permanent and non-permanent streams varied with climate condi-
tions. In general, more streams showed higher model precision for permanent classification
in wet years (e.g., 1997). The opposite occurred in dry years, where more streams showed
higher model precision for non-permanent classifications (e.g., 1987; Figure 9). Through
time, model precision was highest and most stable for group 6 (Figure 10). Group 3 exhib-
ited a high amount of variability year to year. Precision was higher for permanent streams
in groups 2–5 than for non-permanent streams. Group 6 showed slightly higher precision
for non-permanent streams but was more balanced overall.
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Figure 9. Model precision estimates for headwater streams in the Pacific Northwest during a drier
than normal year (1987), approximately normal year (1990), wetter than normal year (1997), and
the averaged precision estimates for the entire modeled period (1977–2019). Darker blue represents
greater precision for a permanent classification and darker red represents greater precision for a
non-permanent classification. Yellow indicates stream reaches with poor precision for the permanence
classification.
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Figure 10. Estimated model precision for each calibration during each year of the study period where
n is number of suitable parameter sets tested for each calibration group. Darker blue represents
greater precision for a permanent classification and darker red represents greater precision for a non-
permanent classification. Yellow indicates stream reaches with a poor precision for the permanence
classification.

For the entire PNW region, model precision was generally greater for permanent
classifications than non-permanent classifications. However, precision for non-permanent
streams was less variable across years (Figures 10 and 11). Overall, the percentage of
headwater streams in the PNW where model precision exceeded 90% ranged from 28 to
45%. Forty percent of headwater streams in the PNW did not have suitable parameterization
so, in a given year, 15–32% of modeled stream reaches had questionable (<90% and >10%)
precision. These results only describe how well different model parameterizations agreed
with each other and not the accuracy of each parameterization.
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Figure 11. Estimated model precision summed for the entire study area (PNW) for each year of this
study. The black line is total percentage of headwater streams with greater than 90% model precision.
That is, the sum of the two darkest red and two darkest blue areas on the plot. Darker blue represents
greater precision for a permanent classification and darker red represents greater precision for a
non-permanent classification.

4. Discussion

While the MWBM produced precise results for only 40% of headwater streams in the
PNW, it is important to consider these results in context. Ungauged headwater streams can
be difficult to model even when abundant data are present to characterize the catchment [54].
The fact that the MWBM generated precise results for 40% of headwater catchments
indicates the potential for development of regional stream permanence models. While
the simple MWBM has its shortcomings for this application, results indicate potential for
future development of simple, stream permanence models. The shortcomings identified
for this particular use of the MWBM highlight important considerations and processes to
include in future modeling efforts. Development of predictive stream permanence models
is extremely important for assessment of how changes to land cover and climate may
influence stream regulation and stream ecology in the United States and worldwide.

The primary objective of this study was to evaluate if the USGS Thornthwaite Monthly
Water Balance Model (MWBM) could generate annual dynamic stream permanence classifi-
cations (SPC, e.g., perennial, non-perennial) estimates with similar accuracy to static NHD
SPC. Previous studies that calibrated the MWBM to discharge data from stream gauges
produced good results for large streams over regional and national extents [12,13]. These
previous results indicated the MWBM has potential for modeling stream permanence over
similar spatial extents for headwater streams but needed observational data to validate
this possibility. By adding a flow threshold parameter to the MWBM, we were able to
generate dynamic stream permanence estimates for all headwater streams in the PNW.
Our methods and results highlight important considerations for future collection of SWPO,
stream permanence classification with the MWBM, and stream permanence modeling in
general.

Better accuracies for calibration groups that represented smaller ranges of catchment
area and annual precipitation may indicate that increasing the number calibration groups
would result in better parameterization. However, incorporation of additional calibration
groups in this study was limited by the total number of SWPO. Accuracy and precision
results were best for calibration groups 4 and 6, which, generally, represented small, arid
catchments. Calibration groups 2, 3, and 5, which represented small catchments across a
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wide range of annual precipitation, had good accuracy results, but more variable precision
estimates (Figure 10).

The spatial scale of PRISM data (~4 km) may not account for important heterogeneity
in climate inputs at the scale of some headwater catchments. As shown in Figure 3, one
PRISM grid cell often represented temperature and precipitation for multiple headwater
catchments and small catchments were often represented by a single PRISM grid cell.
Because topography is not an input to the MWBM, catchments are represented by climatic
conditions and catchment area. Other studies have also indicated that PRISM data do not
always capture climatic heterogeneity in mountainous regions [55,56]. Thus, differences in
catchment topography and morphology could be important factors contributing to stream
permanence, and incorporation of downscaled climate data or other remotely sensed data
(e.g., geomorphons from lidar topography, soil moisture, and land cover) may aid in stream
permanence classifications in headwater catchments.

Calibration groups were determined by how catchments responded to changes in
model parameters (i.e., parameter sensitivity). Given these results, that demonstrate physio-
graphic similarities between calibration groups, it would be useful to test a regionalization
method based on physiographic characteristics of catchments—for example, grouping
catchments based on a suite of factors that represent geology, temperature, precipitation
regime, and land cover. We did not take this approach because, while a thorough dataset of
physiographic variables has been linked to NHDPlus (medium resolution) catchments [57],
a similar dataset does not yet exist for NHDPlus HR catchments, which better represent
headwater streams. This could be an area of important future research that would aid in
regional and continental hydrologic studies. Additionally, the number of calibration groups
we considered was limited by the number of SWPO available for accuracy assessment in
each calibration group. Increasing the number of SWPO would make it possible to consider
additional calibration groups while still providing suitable observations for calibration and
validation.

Sparse SWPO may have also prevented adequate MWBM calibration for some cali-
bration groups. For example, only 18 SWPO occurred in calibration group 4, which could
lead to model overfitting. Because SWPO use to calibrate and assess process-based models
is relatively new, the effects of the sparser truth data on model performance are not well
understood. This is a reason why we evaluated model performance based on precision
across multiple parameter sets. While SWPO represented many more headwater locations
than stream gauges, there were no repeat observations at SWPO locations. This results in a
space-for-time substitution, which assumes SWPO made in different locations account for
the range of conditions stream reaches experience through time and assumes that catchment
physiography and climate variability are well represented. As noted above, calibration
groups representing larger ranges of catchment area and total annual precipitation had
poorer performance than those with narrower ranges, indicating catchment physiography
and climate variability were not well represented by SWPO in each calibration group.

Furthermore, SWPO were collected by multiple agencies for multiple uses using differ-
ent methods [7,33]. SWPO were often obtained as ancillary information to other objectives
and, thus, studies were not designed to create a robust dataset for modeling purposes [23].
Because few SWPO were available, we did not conduct a cross-validation accuracy as-
sessment for each calibration group, but instead used multiple suitable parameter sets
to assess model precision. A larger SWPO dataset would support and encourage more
robust accuracy assessment. Indeed, other stream permanence modeling efforts, conducted
over smaller spatial extents, were able to achieve high accuracies with fuller underlying
datasets [24,27–29]. This points to the importance of increased SWPO collection to support
future stream permanence modeling efforts. For regional studies, it is also important to
give attention to SWPO spatial distribution. Few SWPO for some calibration groups can
present challenges with model overfitting.

Some hydrological processes and topographic features that influence surface water
presence are not explicitly represented by the MWBM. Specifically, groundwater discharge
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is often a major contribution to summer streamflow, especially in mountainous regions [58].
However, in the MWBM, baseflow is lumped into the RF parameter, which also includes
runoff contributions from lateral flow and saturation excess flow. Timing of water delivery
to the stream channel is different for each of these mechanisms. With a monthly time
step it may be reasonable to lump lateral flow and saturation excess flow, but the MWBM
may benefit from explicit representation of baseflow for estimating stream permanence.
Comparisons between the MWBM and other hydrologic models and observations in head-
water streams could provide more information about the suitability of the MWBM runoff
mechanisms to represent hydrology in different areas and climates. Additionally, there is no
representation of valley-bottom geology in the MWBM, which controls water transport in
the subsurface [59–62]. Thus, valley-bottom representation could be an important inclusion
in future stream permanence models.

Local factors, such as the hydraulic conductivity of the streambed, depth to bedrock,
and channel morphometry, that control surface and groundwater exchange at the reach and
sub-reach scale are important for identifying the transition between surface water presence
and absence [62]. These factors become increasingly important at low flows. However,
reach and sub-reach-scale geologic and geomorphic data are sparse. Creation of such
datasets may be important to more accurate modeling of stream permanence.

5. Conclusions

The sheer number of headwater streams in the US and the dynamic nature of stream-
flow precludes collection of SWPO on each individual stream. Thus, dynamic estimates of
stream permanence in the headwaters will require modeling approaches to assess locations
where data cannot be collected. We modified the MWBM by adding a simple flow threshold
model to estimate stream permanence on over 1.3 million headwater streams in the PNW,
then benchmarked MWBM stream permanence estimates against observed accuracies of
NHD SPC to assess precision of the MWBM estimates.

For three of eight calibration groups—approximately 40% of headwater streams—
no parameter combinations produced stream permanence results at least as accurate as
NHD SPC. Precision of MWBM estimates for suitable parameter sets was poor for an
additional 20% of headwater streams. Thus, the MWBM may be suitable to estimate stream
permanence for approximately 40% of headwater streams in the PNW, given the data and
methods used in this study. MWBM precision was best for calibration groups with more
narrow distributions of catchment area and total annual precipitation.

More SWPO that are intentionally collected for modeling studies could greatly improve
model development and calibration. The number of SWPO available for this study was
much less than the number of modeled stream reaches. Thus, the characteristics of some
stream reaches may not have been represented by the observational data used to calibrate
the MWBM and assess its accuracy. Additionally, the MWBM does not explicitly represent
baseflow and valley-bottom processes which can be important for stream permanence
determinations. Future modeling efforts could consider the effect of these processes.

Use of a simple MWBM with primary inputs of monthly precipitation and tempera-
ture produced precise results with comparable accuracy (65%) to the NHD standard for
40% of headwater streams in the PNW. While these results indicate that the MWBM is
not suitable to consistently estimate stream permanence for headwater streams, they do
indicate potential for predictive models to produce reliable stream permanence estimates.
Lessons learned from this modeling application will aid in development of future stream
permanence models over large spatial extents.
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