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Abstract: Assessing the environmental hazard of potentially toxic elements in bottom sediments has
always been based entirely on ground samples and laboratory tests. This approach is remarkably
accurate, but it is slow, expensive, damaging, and spatially constrained, making it unsuitable for
monitoring these parameters effectively. The main goal of the present study was to assess the quality
of sediment samples collected from Lake Qaroun by using different groups of spectral reflectance
indices (SRIs), integrating data-driven (Artificial Neural Networks; ANN) and multivariate analysis
such as multiple linear regression (MLR) and partial least square regression (PLSR). Jetty cruises
were carried out to collect sediment samples at 22 distinct sites over the entire Lake Qaroun, and
subsequently 21 metals were analysed. Potential ecological risk index (RI), organic matter (OM),
and pollution load index (PLI) of lake’s bottom sediments were subjected to evaluation. The results
demonstrated that PLI showed that roughly 59% of lake sediments are polluted (PLI > 1), especially
samples of eastern and southern sides of the lake’s central section, while 41% were unpolluted
(PLI < 1), which composed samples of the western and western northern regions. The RI’s findings
were that all the examined sediments pose a very high ecological risk (RI > 600). It is obvious that the
three band spectral indices are more efficient in quantifying different investigated parameters. The
results showed the efficiency of the three tested models to predict OM, PLI, and RI, revealing that the
ANN is the best model to predict these parameters. For instance, the determination coefficient values
of the ANN model of calibration datasets for predicting OM, PLI, and RI were 0.999, 0.999, and 0.999,
while they were 0.960, 0.897, and 0.853, respectively, for the validation dataset. The validation dataset
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of the PLSR produced R2 values higher than with MLR for predicting PLI and RI. Finally, the study’s
main conclusion is that combining ANN, PLSR, and MLR with proximal remote sensing could be a
very effective tool for the detection of OM and pollution indices. Based on our findings, we suggest
the created models are easy tools for forecasting these measured parameters.

Keywords: pollution load index; organic matter; potential ecological risk index; PLSR; MLR; ANN;
SRIs; potentially toxic hazard

1. Introduction

The potential toxic metals (PTMs) assessment in the bottom sediment of lakes, particu-
larly in the arid and semi-arid countries, has become a global topic with much attention
from researchers [1,2]. The environmental pollution level has resulted from industry, agri-
culture, and unplanned urbanization activities determined through monitoring the degree
of pollution in lakes [3,4]. Sediment monitoring, on the other hand, provides useful infor-
mation on a variety of pollution indicators [5]. Sediments scrupulously store evidence of
human activity and are crucial in determining pollution sources, history, dispersion, and
damage to the ecosystem [6–8]. The lake’s aquatic environmental conservation programs
crucially need a clear explanation of the spatial distribution of PTMs in lake’s bottom
sediments and inferring the possible ecological risk [9,10]. The investigation of PTMs in
sediments close to contaminated areas may perhaps be used to assess their effects on ecosys-
tems and determine the hazards posed by waste pumped into the environment [2,11,12].
Potential toxic metals contaminants are usually absorbed and laid into sediments by par-
ticulate matter in the aquatic environment, and subsequently, the pollutants go back to
the water bodies normally via the desorption mechanism [13,14]. Pollutants like PTMs
in sediments have different distributions and concentration depending on particle size,
silicates content, oxide-hydroxide content, carbonates, and organic matter content in sed-
iments [15–17]. Saleh et al. [2] concluded that the main factors that may influence the
distribution of metals in lakes’ bottom sediment include: (1) organic matter percentages;
(2) clay minerals; (3) salinity; (4) coagulations caused by the blending both fresh and
salty water; (5) magnesium and iron oxides; (6) processes of oxidation and reduction; and
(7) metal sources.

Lake Qaroun is one of the Egyptian Western Desert’s most prominent geomorphologi-
cal features. Apart from serving as a natural discharge location for El-Fayoum district, it is
a destination for migratory birds, fisheries, salt production, and tourism activities, in both
winter and fall seasons [2,11,18]. In 1989, the Prime Ministerial Decree No. 943/1989 [19]
established Lake Qaroun as a natural protectorate, in accordance with Law 102/1983. Lake
Qaroun annually received a vast volume (<0.45 billion cubic meter per year) of untreated
effluents from agricultural, domestic, industrial, and aquacultural activities [20–22]. The
lake’s water is only lost through evaporation processes, causing a steady increase in its
water salinity and pollution content [21,23]. So, the lake’s environmental quality is sensitive
and threatened by the accumulation of pollutants, affecting the food chain and ecosystem.

The quality and sustainability of aquatic ecosystems have been evaluated by several
geochemical, statistical, and artificial methods, which assess the environmental risk of
PTMs in bottom sediments [2,24–26]. The potential ecological risk index (RI) and pollution
load index (PLI) are two of the most important indicators for assessing the environmental
combined danger of several PTMs in bottom sediments [27]. Environmental data is often
processed using geochemical pollution indices and multivariate modelling to identify
probable pollution sources that impact different aquatic systems. It is a well-known
method of natural-resource management that aids in the selection of the optimum pollution
remedies [28]. The combination of these approaches can significantly increase the accuracy
of PTMs contamination assessments in bottom sediments [29]. As technology progresses
and expands its functions, newly developed approaches for monitoring aquatic ecosystems’
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quality are employed. Cutting-edge technologies, such as spectral analysis of bottom
sediments and artificial modelling, utilize aquatic ecosystems evaluation and monitoring
to minimize money and time while enhancing accuracy [26]. Consequently, the Lake
Qaroun ecosystem quality should be regularly checked to take appropriate precautions
against any environmental hazards, evaluate current protection and remediation projects
at the lake, and support decision-makers in protecting this nature reserve from potential
ecological risks.

Grain size and the amount of organic matter (OM) are two of the most important
parameters in determining the distribution of PTMs in sediments [15,30]. Higher PTM
concentrations are seen in fine-grained sediments [31], which are linked to higher magnetic
susceptibility. Organic matter, according to Farhat and Aly [32], was more significant in
governing PTM distribution. Organic matter was also found to be a significant indicator for
ecological risk [33]. Saleem et al. [34] revealed that OM may preserve PTMs in sediments
and play a crucial role in bottom sediment quality evaluation. Organic matter is important
in several physical and chemical processes in the sediment environment, and thus it has a
significant influence on sediment spectral reflectance characteristics.

Sediment OM, PLI, and RI estimation has always been based entirely on point-
sampling and laboratory tests. Although this approach is slightly accurate, it is not fast,
expensive, damaging, and spatially constrained, making it ineffective for monitoring these
parameters. Remote sensing approaches have recently been used to estimate OM, since
visible (VNIR) spectroscopy is a non-destructive, quick, and repeatable tool for quantifying
soil’s chemical, physical, and biological properties [35,36]. Vibrations in the bonds between
various atoms (C, N, H, O, P, and S) produce reflectance signals. Weak overtones and inter-
actions of basic vibrations dominate the NIR range (700–2500 nm) and electronic transitions
(400–700 nm) regions of the electromagnetic (EM) spectrum as a result of the stretching and
bending of OH, NH, and CH groups [37]. Many researchers (e.g., Chang and Laird [38];
Bartholomeus et al. [39]; Barthès et al. [40]; Viscarra Rossel et al. [41]; Cécillon et al. [42];
Franceschini et al. [43]; Vaudour et al. [44]) have noted the advantages of the VIS and
mid-infrared spectral range in terms of a shorter cycle and less cost for quantifying OM in
comparison to traditional OM estimation procedures, which may lead to significant cost
savings [45–48].

The correlation coefficient curve between OM contents and spectral reflectance can
be used to find the sensitive spectral area. As a result, OM spatial estimate can be
achieved by creating a link between real OM contents for every sample and fundamental
band information of selected images (e.g., digital number (DN), reflectivity, power func-
tions/derivatives/logarithms based on original reflectivity) [49–51]. OM dominates the VIS
range (400–700 nm) and NIR (700–2500 nm) wavelength ranges [52,53]. Recently, relative
studies have frequently incorporated a variety of environmental parameters (e.g., terrain,
humidity, and vegetation) in conjunction with the fundamental universal bands mentioned
above, with the goal of improving the spatial accuracy of OM mapping [54,55]. The ra-
tio vegetation index (RVI), normalised difference vegetation index (NDVI), soil-adjusted
vegetation index (SAVI), and greenness vegetation index (GVI), had greater efficiency
than the many indices to assess OM content [51,56]. For example, the NDVI extracted
from the Sentinel-2A satellite’s reflectance simulated the OM in India’s Sariska Tiger Re-
serve; and for single-phase synchronisation data, the R2 reached 0.74 [57]. OM was found
to be linked with reflectance range of 500–1200 nm according to Mathews et al. [58], al-
though Beck et al. [59] claimed that the 900–1220 nm zone is suitable for mapping OM.
Krishnan et al. [60] predicted OM content using a slope parameter of roughly 800 nm.

Although there are many previous studies available to estimate OM using spectral
reflectance indices (SRIs), there is very little information about estimating pollution indices
such as PLI and RI using SRIs. Variable deterministic models have been used in this area
for decades [61]. However, the statistical performance of varying deterministic models
is typically low because in reality natural ecosystems are typically too complicated for
state-of-the-art models.
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ANN, PLSR, and MLR might be used to create models for estimating sediment quality
indicators in lake systems quickly and accurately. Recently the ANNs demonstrated high
performance as a regression method when used for pattern recognition and function deter-
mination [62]. In comparison to traditional methods, an ANN can tolerate and interpret
an incomplete dataset; approximate results as well as are less vulnerable to outliers [63].
As a result of its tremendously parallel processing architecture, ANNs can effectively han-
dle complicated calculations and therefore are among the most preferred techniques for
high-speed processing of massive datasets [64]. As a machine learning approach, ANN
has increasingly been used to address environmental issues [65]. Technologies such as
remote sensing, Internet of Things (IoT), Unmanned Aerial Vehicles (UAVs), Big Data
Analytics (BDA), and Machine Learning (ML) are especially promising and have the po-
tential to revolutionize environmental monitoring methods [66]. IoT is one of the most
innovative technologies in modern wireless communications [67,68]. The fundamental
principle is the interaction of various physical entities or devices linked to the Internet via
specialised addressing systems. IoT technology may be used in a variety of industries,
including manufacturing, transportation, healthcare, cars, smart homes, agriculture, and
environment [69,70].

In addition, the methods of expressing a linear connection between different variables
(independent and dependent) are known as PLSR and MLR [71,72]. These models are able
to aggregate data from SRIs into a single index to increase the predictability of an estimated
variable. One of the most important features of PLSR is its ability to reduce many collinear
components to a few non-correlated latent parameters, reduce duplicate data, and also limit
overfitting and underfitting to a minimum [73,74]. Based on the advantages of ANN, PLSR,
and MLR, the OM and two polluted indices (PLI and RI) may be estimated concurrently
from many SRIs using these approaches.

Very little attention has been given to assess the efficacy of ANNs, PLSR, and MLR
models combined with SRIs for quantifying OM, PLI, and RI. Therefore, the overall goal
of this research was to provide useful tools for making informed decisions regarding the
sediment quality of Lake Qaroun. The premise behind this research was that different SRIs
groups’ machine learning modelling (ANNs) and multivariate models (PLSR and MLR)
may be useful tools for measuring OM, PLI, and RI of sediment in Lake Qaroun.

Consequently, the particular goals of this study were to: (i) determine the OM, pol-
lution rate, and environmental hazards of possibly toxic elements (PTMs) in the bottom
sediment of Lake Qaroun via the calculation of PLI and RI; (ii) extract the optimized
NSRIs-2b and NSRIs-3b for OM, PLI, and RI using the 2-D and 3-D-dimensional slice map;
(iii) assess the accuracy of three distinct SRI groups in measuring OM, PLI, and RI of bottom
sediments; and (iv) based on selected SRIs, estimate the accuracy of ANNs, MLR, and PLSR
models in quantifying the OM, PLI, and RI of bottom sediments.

2. Materials and Methods
2.1. Study Area

Lake Qaroun is an oval natural inland saline lake with an average length of 45 km
east to west and a width of 5.7 km south to north, with a water depth of 1–8.8 m. It is
situated in the El-Fayoum Depression, Western Desert, some 95 km south-west Cairo,
Egypt. It exists between 30◦24′ and 30◦50′ E longitudes and 29◦24′ and 29◦33′ N latitudes
(Figure 1). The water body of the lake occupies a surface area of 235 km2. Several land
use and human activities (e.g., agricultural, industrial, and entertainment) surround the
lake on the east and south. In addition, there are urbanized regions and a well-developed
transportation network. The two drains (El-Bats and El-Wadi), which together discharge
338 million m3/year, provide the majority of the water in Lake Qaroun [22]. Further, there
are 12 secondary drains at the lake’s southern side, which also discharge water into the
lake (Figure 1).
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El-Fayoum Depression digs include gyps-ferrous shale, limestone, white marls, and
sandstone from Middle Eocene rocks [75]. Lake Qaroun is encompassed with eolian,
nilotic (alluvial sediments), and lacustrine layers of Quaternary deposits. In alluvial
deposits, sands and gravels in different sizes mix with calcareous clay and silt content. The
lacustrine deposits compose ferruginous sandy silt intercalated with claystone, gypsum,
and calcareous minerals [76]. Fine particles (>63 microns) made up nearly 70% of the
bottom sediments on the eastern and southern sides of Lake Qaroun. The lake water
salinity ranged from 28 to 40 g/L, the surface temperature ranged from 22 to 25 ◦C, and the
while drain water salinity ranged from 0.6 to 2 g/L. Heavy minerals made up more than
1% of the sand dunes [21,77,78].

Qaroun Lake’s climate is characterized by a hot summer and cold winter. So in winter,
the temperature and surface wind speed reach their minimum degree, and the humidity
and the rainfall reach their maximum. While in summer, the maximum temperature records
and the minimum degree of moisture and rainfall are noted. Generally, the water level and
the water salinity in the lake increase in winter and decrease in summer.

2.2. Sampling and Analyses

A Van Veen Grab sampler was employed to collect representative bottom sediment
samples [79] in autumn 2018 and 2019 from depths between 2 and 5 m at 22 different
locations to cover the entire lake (Figure 1). Three sediment samples were gathered at
each site. The sampling location‘s co-ordinates were identified with a hand-held GPS
(Garmin/eTrex Vista HCx/personal navigator). Once the samples were collected, they
were preserved in tight plastic bags and then taken to the laboratory in an ice-box for
analysis. The sediments were left to dry out at room temperature to achieve a constant
weight prior to sieving through 2.0 mm sieves. It was then ground using an agate mill
(Retsch RM200) before being kept in a little glass bottle for analysis.

The total organic matter content (TOM) in sediment samples was determined using
the loss-on-ignition (LOI) procedure as described by Allen et al. [80]. Each sediment sample
was digested using a Speedwave microwave digestion device, according to the US EPA
3052 procedure [81]. The digested solution was filtered and diluted in a measuring flask
to 50 mL with deionized water. Quality control procedures utilized included replicating
samples and using standard sediment reference substances (GBW07333) given by China’s



Water 2022, 14, 890 6 of 26

Second Institute of Oceanography (SOA). The used glass was pre-cleaned and immersed in
dilute nitric acid for a minimum of 24 h, followed by soaking and rinsing with deionized
water to help avoid test vessel contamination. A blank was prepared in the same method
and with the same reagents for precision testing. Inductively coupled plasma mass spectra
(ICP-MS) (ICAP TQ ICP-MS Thermo Fisher Scientific Inc., Waltham, MA, USA) was applied
to define the concentrations of 21 PTMs. The 21 PTMs of each sample were analysed as
indicated in Tables S1 and S2 over 2 years. The laboratory procedures were run at the
University of Sadat City’s (Environmental and Food Lab (EFL); Environmental Geology
Lab (EGL)- ISO/IEC 17025/2017).

2.3. Environmental Pollution Indices

The Lake Qaroun bottom sediment was evaluated by applying ecological risk assess-
ment methodologies such as PLI and RI depending on the PTMs concentration in sediments.

2.3.1. Pollution Load Index

The PLI is one of the successful methods to determine the severity of sediment pol-
lution. The Equation (1) proposed by Tomlinson et al. [82] was used to calculate PLI for
each location.

PLI = (Cf1 × Cf2 × Cf3 × . . . × Cfn)1/n (1)

where Cf refers to the contamination factor for each tested metal in sediment; n refers to
the number of PTMs analysed in every sample (n = 21). Based on the PLI results, the tested
samples can be split into two main groups: non-polluted (PLI < 1) and polluted (PLI > 1),
as presented in Table 1.

2.3.2. Potential Ecological Risk Index

The RI explores the potential ecological threat caused by PTMs contained in sediment
by measuring the sensitivity of varying biological populations to harmful metals [83,84].
Håkanson’s [85] Equations (2) and (3) were used in the RI calculation.

RI = ∑n
1 Er (2)

Er = Tr × Cf (3)

where Er is the individual element’s potential RI, and Tr is the metals’ toxic reaction factor
proposed by Håkanson [80]. The PLI is divided into four categories, ranging from minimal
to very high ecological risk as summarized in Table 1.

Table 1. Classes of pollution load index (PLI) and potential ecological risk index (RI).

Contamination
Indices Values Classes Reference

PLI
1 > PLI Unpolluted

[86]1 < PLI Polluted

RI

RI < 150 Low ecological risk

[85]
150 < RI < 300 Moderate ecological risk
300 < RI < 600 Considerable ecological risk

600 < RI Very high ecological risk

2.4. In Situ Ground-Based Reflectance Measurements

The reflected spectra of each sediment sample were acquired using a mobile spectrom-
eter (tec5 AG, Oberursel, Germany) at VIS and NIR wavelengths with a spectral range of
302–1148 nm, which was interpolated to 2 nm final spectral resolution, yielding a total of
424 data values per spectrum curve. The device is made up of two basic units; the first unit
was linked to a diffuser, which was responsible for measuring radiation as a reference signal.
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Sediment samples were kept in 10 cm diameter black Petri dishes. The spectrometer had a
scanning area of 0.05 m2 when held at 25 cm above sample and in a vertical position (nadir
position). To the fluctuations in sun zenith angle at a minimum, spectral measurements
were obtained around midday. Spectral measurements were duplicated three times at each
surface sediment sample, for a total of 15 scans. The mean value of three measurements
was calculated to derive the measured spectrum for a single surface sediment sample. To
calibrate the spectra collected by the spectrometer, a white reference standard (Apolyte-
trafluoroethylene white Spectralon reflectance panel) was utilized. Finally, noise at the two
ends of the spectrum was removed by smoothing the spectral reflectance.

2.5. Selection of Newly Constructed and Previously Published Spectral Reflectance Indices

Table 2 shows the formula and references for various SRIs. Eight published spectral
indices (PSRIs) and 24 newly extracted SRIs were assessed in this research as presented
in Table 2. Two and three band ratios (NSRIs-2b and NSRIs-3b) were derived using 2-D
and 3-D correlogram maps. Different 2-D and 3-D correlogram maps were created using
MATLAB 7.0 (The MathWorks, Inc., Natick, MA, USA). 2-D and 3-D correlogram maps
aimed to present the determination coefficient (R2) values of the linear regression between
measured parameters and potential interactions between any two wavelengths in the
entire spectral range for NSRIs-2b (Figure 2) and possible interactions between any three
wavelengths in the visible region (VIS) and red-edge (Red) region from 390 to 750 nm for
NSRIs-3b (Figure 3).

As indicated in Table 2, a ratio spectral index the NSRIs-2b was calculated according
Elsayed et al. [26]:

RSI = R1/R2 (4)

R1 and R2 refer to the values of spectral reflectance at various wavelengths.
As indicated in Table 2, the NSRIs-3b was calculated as a normalised difference index:

NDI = (R1−R2−R3)/(R1 + R2 + R2) (5)

R1, R2, and R3 represent the values of spectral reflectance at selected wavelengths

Table 2. Descriptions commonly used in the literature and newly derived spectral indices examined
in this study.

Spectral Reflectance Indices Formula References

PSRIs
Average Blue (450 to 486 nm) ρBlue [87]
Average Red (620 to 750 nm) ρRed [87]

Average NIR average (700 to 1100 nm) ρNIR [87]
Normalized difference vegetation index (NDVI780–550) (R780 − R550)/(R780 − R550) [88]
Red-Normalized difference vegetation index (R-NDVI) (ρNIR − ρRed)/(ρNIR + ρRed) [89]

ratio vegetation index (RVI) ρNIR/ρRed [87]
Difference vegetation index (DVI) ρNIR − ρRed [90]

Optimized soil-adjusted vegetation index (OSAVI) (1 + 0.16) × (ρNIR − ρRed)/ρNIR + ρRed + 0.16 [91]
NSRIs-2b

Ratio spectral index
RSI674,666 R674/R666 Present study
RSI660,680 R660/R680
RSI676,664 R676/R664
RSI800,650 R800/R650
RSI750,740 R750/R740
RSI680,664 R680/R664
RSI1080,650 R1080/R650
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Table 2. Cont.

Spectral Reflectance Indices Formula References

RSI822,642 R822/R642
RSI1078,656 R1078/R656
RSI666,670 R666/R670
RSI900,1042 R900/R1042
RSI912,1028 R912/R1028
NSRIs-3b

Normalized difference spectral index
NDSI682,666,692 (R682 − R666 − R692)/(R682 + R666 + R692) Present study
NDSI682,692,666 (R682 − R692 − R666)/(R682 + R692 + R666)
NDSI684,666,692 (R684 − R666 − R692)/(R684 + R666 + R692)
NDSI684,692,662 (R684 − R692 − R662)/(R684 + R692 + R662)
NDSI656,664,676 (R656 − R664 − R676)/(R656 + R664 + R676)
NDSI682,692,664 (R682 − R692 − R664)/(R682 + R692 + R664)
NDSI682,690,666 (R682 − R690 − R666)/(R682 + R690 + R666)
NDSI682,666,690 (R682 − R666 − R690)/(R682 + R666 + R690)
NDSI682,668,692 (R682 − R668 − R692)/(R682 + R668 + R692)
NDSI680,688,672 (R680 − R688 − R672)/(R680 + R688 + R672)
NDSI680,666,688 (R680 − R666 − R688)/(R688 + R666 + R688)
NDSI658,650,670 (R658 − R650 − R670)/(R650 + R666 + R670)
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2.6. Back-Propagation Neural Network (BPNN)

The BPNN is one of the most widely utilized artificial neural network models in
the backpropagation neural network [92]. There are three types of layers in the BPNN:
(1) the input layer is primitive data for the neural network, (2) the concealed layer is an
intermediate layer between independent input and dependent output layers, and (3) the
output layer offers the results of the identified inputs. The ANN is a machine-learning
technique that uses multiple layers to extract elevated-level features from low-level input.
The network has two hidden layers, with the number of nodes determined by the efficiency
of the regression. The “activation” nodes are represented by the hidden layers, which are
commonly labeled as weight. The final layer represents the output layer, which displays
the measured parameter’s anticipated value. ANN models are extrapolated mathematical-
based models that employ a sequence of nodes or neurons connected by rated connections
to replicate human cognition in pattern recognition and prediction [93,94].

At least 2000 iterations were used in training the network, or until the error reached a
value less than 10−4. The validation procedure with the LOOV method was used on the
training data set to identify the number of neurons in the concealed layer for this model.
The parameter of restricted memory (lbfgs) was used as a weight optimizer to perform the
algorithm more effectively [95]. The following formula was used to find the most relevant
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feature to increase the regression model’s predictive capacity and reduce hyperspectral
image dimensionality [96]:

M =
∑nH

j=1

[(
|I| Pj / ∑

np
k=1 |I| Pj,k

)
|O|j

]
∑

np
i=1

(
∑nH

j=1

[(
|I| Pi,j / ∑

np
k=1 |I| Pi,j,k

)
|O|j

]) (6)

where M is the important estimate of the input variable, np represents the number of input
variables, |I| Pj is the absolute value of the unseen layer rate matching to the pth input
variable and the jth hidden layer, nH refers to the number of unseen layer nodes, and |O|j
is the absolute value of the output layer rate consistent with the jth unseen layer.

2.7. Multiple Linear Regression (MLR) and Partial Least-Square Regression (PLSR)

In this work, both PLSR and MLR statistical models were evaluated as innovative
techniques to assess the OM two pollution indices (PLI, and RI). Both models were built with
the unscramble X software in V. 10.2. (CAMO-Software AS, Oslo, Norway). Both models
included the best SRIs, which were selected by ANN model as input variables (independent
variables) for the prediction of OM, PLI, and RI as output variables (dependent variables).
To link between the inputs and outputs, PLSR was run in tandem with the LOOCV. One
of the critical stages in PLSR analysis is to identify the right number of latent variables
(LVs) to show the calibration data while avoiding both overfitting and underfitting. The
procedure of random ten-fold cross-validation was performed on the datasets to enhance
the reliability of the obtained results. The least-square technique was run to determine the
parameters for the MLR, which minimised the total of errors squared.

2.8. Model Evaluation

The following statistical metrics were used to evaluate the performance of a regression
model: coefficient of determination (R2) and root mean square error (RMSE) [97,98]. The
following are the explanations for all parameters: Fave is the average value, Fact is the actual
value that was quantified from laboratory calculations, Fp is the forecast or simulated value,
and N is the total number of data points.

Root mean square error

RMSE=

√
1
N ∑N

i=1

(
F act − F p

)2 (7)

Coefficient of determination

R2=
∑
(

F act − F p
)2

∑ (F act − F ave)
2 (8)

3. Results and Discussion
3.1. Metals Distribution

The average metal concentrations in sediment samples gathered from Lake Qaroun
through years of investigation, 2018 and 2019, are shown in Tables S1 and S2. The sediments
on the lake’s eastern side have the greatest concentrations of metals. The western side
sediments reported the lowest metals concentration values. The eastern and centre regions
of the lake (near the exits of El-Wadi and El-Bates drains) contain higher contents of
OM than the western side. PTMs distributions in sediments vary depending on particle
size, oxide-hydroxide content, and OM content [15,17]. Previously, El-Zeiny et al. [22],
El-Kady et al. [11], and Saleh et al. [2] emphasized a similar observation. All PTMs in
the lake sediment samples appeared to be accumulated at the exits of El-Bats and El-
Wadi drains, indicating high concentrations in the eastern and central parts of the lake.
Abdel Wahed et al. [20] demonstrated a link between PTMs found in lake sediments and
those found in drain water. As a result, El-Bats outflow is the lake’s primary source
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of environmentally sensitive metals, particularly in the lake’s eastern and north-eastern
sections. El-Sayed et al. [9]; Attia et al. [18]; El-Kady et al. [11]; and Saleh et al. [2] previously
established the susceptibility of the southern and eastern sides of the lake due to metal pile
up in lake sediments. Coagulation at the mouth of drains that flow into the lake, caused
by the mixing of freshwater and saltwater, will result in significant sedimentation at the
drains’ mouths, increasing the percentage of fine particles and OM [99]. A diminishing
aquatic ecology can be found in areas with high content of organic materials, like the areas
under examination near drain inlets. Reducing zones may have low dissolved metals as a
result of microbial reduction, allowing PTMs to precipitate [100].

3.2. Assessment of Organic Matter, Pollution Load Index (PLI) and Risk Index (RI) of Bottom
Sediment in Lake Qaroun

Over 2018 and 2019, shipboard field visits were conducted to collect sediment samples
to identify the OM, PLI, and RI. Table 3 shows the descriptive statistical analysis of the OM
and two environment pollution indices of sediment samples. According to the obtained
results, the three measured indicators are significantly different from one site to another.
The content of OM is obviously higher on the lake’s eastern side than on the lake’s western
side. As presented in the table, the content of OM differed from one site to another with a
minimum content of 0.72% at site 19 on the western side of the lake and a maximum value
of 17.97% at site 9 on the eastern side. At sites 1 through 5 the OM was higher than those
from sites 10 through 22. These increases in the OM content in the lake’s eastern side may be
attributed to the elements that come through El-Bats drain. Like the results obtained for the
OM, PLI had the same trend since the greatest value of PLI was recorded at site 9 while the
minimum record of PLI was obtained at site 17. Again, the PLI was recorded higher on the
eastern side of the lake in comparison to the western side with a few exceptions (e.g., at site
21). Regarding RI, its values significantly varied from one point to another with respective
minimum and maximum values of 808.24 and 1515.8 obtained at sites 16 and 9. As plotted
in Figure 4, PLI data revealed that around 59% of Lake Qaroun is polluted (PLI greater than
1), especially samples of southern and eastern sides of the samples at the central location of
the lake, while the 41% that is unpolluted (PLI < 1) is composed of samples of the western
and western northern regions, and thus actions must be taken to minimize the harmful
effects of pollution since the lake is among the main sources to several living organisms.
According to the RI’s findings, all the examined sediments pose a very high ecological risk
(RI > 600) (Figure 4). Human enterprises including entertainment, industrial, agricultural,
aquaculture, and urban, all of which surround Lake Qaroun, are thought to be possible
sources for hazardous metal enrichment in lake sediments. Continuing to dispose these
wastes without proper treatments leads to elevated proportions of harmful metals in the
lake sediments, which in the end causes the deterioration of the lake’s various ecological
systems, a full end of fishing and other recreational activities, and also a direct effect on
migratory birds.

Table 3. Statistical description of some sediment quality parameters in Lake Qaroun over the
2-year study.

OM (%) SD (%) PLI SD RI SD

Site 1 14.38c 0.212 1.27bc 0.008 1301.4bc 58.419
Site 2 16.31b 0.028 1.24b–d 0.032 1240.3cd 24.316
Site 3 12.43d 0.141 1.11b–g 0.128 1058.6f–h 32.500
Site 4 12.47d 0.320 1.24b–d 0.057 1106.5e–g 89.238
Site 5 11.90e 0.151 1.27bc 0.059 1220.6c–e 35.169
Site 6 4.24j 0.184 1.15b–f 0.031 1128.1d–f 76.646
Site 7 3.08lm 0.212 0.91g–h 0.076 932.45h 87.842
Site 8 3.11lm 0.086 0.86h–i 0.301 1289.7bc 3.791
Site 9 17.97a 0.147 1.65a 0.045 1515.8a 39.498

Site 10 5.80i 0.071 1.07b–h 0.044 992.3h 4.913
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Table 3. Cont.

OM (%) SD (%) PLI SD RI SD

Site 11 8.33h 0.283 1.039c–h 0.092 1122.3d–g 33.086
Site 12 2.66mn 0.071 1.02d–h 0.197 1065.1fg 17.422
Site 13 9.59g 0.530 1.20b–e 0.041 1386.1b 66.197
Site 14 3.41kl 0.156 0.95f–h 0.060 1085.0fg 47.264
Site 15 3.71k 0.124 0.97e–h 0.104 1008.0f–h 7.010
Site 16 2.21o 0.141 0.64i–j 0.003 808.24i 18.236
Site 17 1.25q 0.113 0.50j 0.070 930.36h 12.838
Site 18 2.66mn 0.078 0.84h–i 0.052 1030.3f–h 122.010
Site 19 0.72r 0.042 0.85h–i 0.003 1035.3f–h 23.724
Site 20 8.24h 0.255 1.30b 0.109 1346.3bc 34.741
Site 21 10.97f 0.092 1.15b–f 0.069 1336.1bc 10.675
Site 22 1.71p 0.361 0.95f–h 0.041 1002.4f–h 113.860

Minimum 0.72 0.03 0.50 0.00 3.79 808.24
Maximum 17.96 0.53 1.65 0.30 122.01 1515.85

Mean 7.14 0.17 1.05 0.07 43.61 1133.70
Note: The mean values of the three estimated parameters in a column with the same letter are not statistically
different from one another according to Duncan’s multiple range test at a 0.05 significance level. SD refers to the
standard deviation.
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A strong relationship (R2 = 0.7) between PLI and OM content of lake sediments
was found (Figure 5). Also, OM content related with RI (R2 = 0.5) (Figure 5). Organic
matter in bottom sediment is an important food source for benthic species in aquatic
habitats. Furthermore, because most organic and inorganic pollutants have a high sorption
affinity for OM, it can have a substantial role in the dispersion and bioavailability of
contaminants as potential harmful metals. Previously there has been evidence of trace metal
enrichment in organic-rich sediments. The constant flow of residential wastewater into
aquatic environments raises metal levels and organic material concentrations [15,17,101].
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Figure 5. The relationships between organic matter (OM), pollution load index (PLI), and potential
ecological risk index (R1) across 2 years. *** indicates high significance at p ≤ 0.001 probability level.

3.3. The Variation of Spectral Measurements and Evaluation of SRIs Groups to Assess the
Measured Parameters

The spectra measurements were made at various sampling stations throughout the
Lake Qaroun over the 2-year investigation. Figure 6 depicts the association between
wavelength and reflectance collected from different points across the lake during various
dates of lake shipboard cruises. The results illustrated in the figure demonstrated significant
variations in respective spectral characteristics related to the reflectance values over visible
(VIS) and near infrared (NIR) ranges. The results further showed a slight difference in the
combined shape of spectral signature and the wavelength-locality from 400 to 500 nm. It
is also obvious that the spectral signature collected at different sampling stations varies
from one location to another, showing low reflectance over the region that ranged from
400 to 500 nm (blue region), which may be a result of the absorption by the components of
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OM. The variation in spectra at the green and red range (500–700 nm) showed a greater
difference compared with the blue range (400–500 nm). The peak of the reflectance was
recorded roughly around 800 nm (over the near infrared region; NIR). It is noticeable from
the results that the difference in spectral signature between sampling stations over the
NIR region is the greatest among different regions of the electromagnetic spectrum. It
is also noted that there are two turning points centred around 670 and 950 nm, which
would be useful for the formulation of band ratios to predict different parameters of the
contents found in the collected sediment samples. The variation of the composite shape
of the spectral signature obtained at different sampling points seems to be a function
of absorption by OM content. Several researchers found that the spectral behaviour of
sediments was dependent on physical and chemical properties, particle size distribution,
and organic matter [101–104]. With increasing OM contents, the preventing role of spectral
reflectivity was between 550 and 700 nm, as well as reflectance information, including
410 nm, 570 nm, 660 nm, and 870 nm, which is considered one of the most sensitive spectral
bands for discriminating varying OM contents [105,106].
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Figure 6. Spectra signature of the various sediment samples gathered from different locations across
Lake Qaroun.

Estimating OM and pollution indices based on heavy metal levels using SRIs is a
way of constructing spectral indices based on the VIS and NIR ranges, from which the
model may be built. This approach may significantly improve the connection among
spectral variables and metal concentrations by reducing background noise interference,
supplementing information between various bands, and remarkably strengthening the
association between spectral variables and various metal contents. It was possible to
choose the optimal bands for estimating measured parameters, which compensated for the
disadvantages of employing the entire bands. On the other hand, accurate estimate could
only be performed by developing proper indices [107,108]. For that, the advantage of the
present study was the optimization of two and three band SRIs by combining two or three
bands, which were established by different 2-D and 3-D contour maps. In addition, there
was very little information about the relationships between SRIs and PLI and RI.

Previously published, two- and three-band SRIs were evaluated in this research to
assess their efficiency in the detection of OM, PLI, and RI. According to the results presented
in Table 4, it is obvious that the three band spectral indices are more efficient in quantifying
different investigated parameters. Generally, the previously published indices showed
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poor to moderate efficiency to predict OM and poor efficiency to predict PLI and RI, since
the least amount of R2 for the relationship between the three parameters and PSI were
found with them with a minimum R2 of 0.20, 0.15, and 0.03 for predicting OM, PLI, and RI,
respectively. According to the results, DVI produced the weakest relationships to predict
OM, PLI, and RI. Among all tested indices, DVI index seems to be the least for predicting
the three investigated parameters. Two tested band indices demonstrated moderate to
strong R2 for the detection of OM, PLI, and RI. The NDSI682,666,692, NDSI682,690,666, and
NDSI680,688,672 seem to be the optimum indices for predicting OM, PLI, and RI, respectively,
with respective R2 of 0.85, 0.63, and 0.58. From the results, it is obvious that the three
band indices based on the wavelengths ranged from 660 to 690 are sensitive to the three
tested indicators, having the greatest R2 values when compared with the values produced
from the newly constructed two- and three-band indices. In agreement with this study,
Line et al. [33] found that RVI could be used to assess the total organic matter of the soil
with R2 = 0.69.

Table 4. Coefficients of determination (R2) for the association between various SRIs and organic
matter (OM), potential ecological risk index (R1), and pollution load index (PLI) across the 2-year
investigation.

SRIs OM PLI RI

ρBlue 0.58 *** 0.32 ** 0.31 **
ρRed 0.36 ** 0.22 * 0.13
ρNIR 0.27 * 0.15 0.10

NDVI780–550 0.38 ** 0.18 0.17
R-NDVI 0.63 *** 0.41 *** 0.16

RVI 0.64 *** 0.42 *** 0.17
DVI 0.20 * 0.17 0.03

OSAVI 0.36 ** 0.21 * 0.13
RSI674,666 0.74 *** 0.52 *** 0.34 **
RSI660,680 0.74 *** 0.44 *** 0.32 **
RSI676,664 0.76 *** 0.51 *** 0.34 **
RSI800,650 0.70 *** 0.41 *** 0.19 *
RSI750,740 0.71 *** 0.40 *** 0.19 *
RSI680,664 0.73 *** 0.45 *** 0.20 *
RSI1080,650 0.59 *** 0.48 *** 0.21 *
RSI822,642 0.70 *** 0.55 *** 0.25 *
RSI1078,656 0.71 *** 0.57 *** 0.26 *
RSI666,670 0.53 *** 0.31 ** 0.39 **
RSI900,1042 0.38 ** 0.43 *** 0.43 ***
RSI912,1028 0.45 *** 0.51 *** 0.46 ***

NDSI682,666,692 0.85 *** 0.62 *** 0.41 ***
NDSI682,692,666 0.85 *** 0.62 *** 0.41 ***
NDSI684,666,692 0.85 *** 0.54 *** 0.38 **
NDSI684,692,662 0.85 *** 0.54 *** 0.38 **
NDSI656,664,676 0.84 *** 0.54 *** 0.39 **
NDSI682,692,664 0.83 *** 0.54 *** 0.45 ***
NDSI682,690,666 0.77 *** 0.63 *** 0.37 **
NDSI682,666,690 0.77 *** 0.63 *** 0.37 **
NDSI682,668,692 0.79 *** 0.61 *** 0.34 **
NDSI680,688,672 0.51 *** 0.55 *** 0.57 ***
NDSI680,666,688 0.70 *** 0.52 *** 0.50 ***
NDSI658,650,670 0.65 *** 0.49 *** 0.51 ***

Note: *, **, and *** indicate significance at p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001 probability levels, respectively.

3.4. Evaluation of ANN, PLSR and MLR, Models for Assessing Organic Matter (OM) Content,
Potential Ecological Risk Index (R1) and Pollution Load Index (PLI)

As demonstrated in Table 5, the spectral reflectance indices (SRIs) were the optimum
integration for screening the uppermost variables. They showed a high ranking for estimat-
ing the tested parameters of the sediment. As presented in Table 5, the neural network was
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trained with 2D and 3D indices (independent variables) for the estimate of OM, RI, and PLI
(dependent variable). After that, a comparison was made between the predicted values and
the reserved values, which were not done for the neural network. Our research evaluated
and compared the results of several multivariate methods, concluding that multivariate
methods considerably improved the predictability process. Because validation data are not
comprised in the model construction process, performing the validation step independently
can be regarded the most efficient technique for evaluating the regression model efficiency.
The ANN- SRIs -9 was found to be the most efficient predictive model as noticed by its
great performance, and there appeared to be a significant association between OM content
and the superlative features of the model. This model involves nine features that had
great significance for estimating OM. The model outcomes showed high efficiency with
R2 values of 0.999 and 0.960 for training and validation datasets, respectively. The ANN-
SRIs -14 model was ranked the first for its high performance to determine PLI with high
R2 values of 0.999 and 0.897 in the training and validation sets, respectively. Regarding
the prediction of RI, the results demonstrated that the ANN- SRIs -17 showed the most
efficient model with respective R2 values of 0.999 and 0.853 for training and validation sets.
According to Elsherbiny et al. [109], the predicted performance was elevated to upgrade the
predictability of the regression algorithms; some steps were fundamentally needed over the
process of training, among which are filtering advanced-level features and also optimizing
hyper-parameters of the model. As depicted in Figure 7, the neural network architectures
collected senior VIs features. The most efficient neural network topology with variants can
be observed in the figure. Every network architecture contains basic information including
the number of unseen neuron layers, synaptic weights trained, convergence techniques,
and overall errors. The network topology is mainly established with a number of hidden
neuron layers and a specific interaction of input variables. The model ANN- SRIs -9, as an
example, had hidden neuron layers (6,22), ANN- SRIs -14 was needed (2,14), and ANN-
SRIs -17 was chosen (12,22). Advanced models of ANN- SRIs -9 are depicted in Figure 7,
ANN- SRIs -14, and ANN- SRIs -17. The training process obligated 27, 5, and 274 steps,
respectively for obtaining less error function. The training had a total error of 13.507, 0.029,
and 4500.334, respectively. As pointed out by Thawornwong and Enke [110], to have better
performance and avoid over-fitting, back-propagation algorithm with early stopping was
used for training the network.

Table 5. Calibration and validation model outcomes of ANNs for the association between SRIs and
organic matter (OM), pollution load index (PLI), and potential ecological risk index (R1) across a
2-year investigation.

Variable Parameters Best Indices Calibration Validation

R2 RMSE R2 RMSE

OM (6, 22) & Tanh
R676/R664, NDSI682,666,690, NDVI780,550, NDSI

680,666,688, R750/R740, RED, NDSI682,668,692,
NDSI656,664,676, R660/R680

0.999 *** 0.0003 0.960 *** 0.819

PLI (2, 14) & Tanh
OSAVI, NDSI682,666,692, R800/R650, NDSI 680,666,688,
R900/R1042, R1080/R650, R684,692,662, DVI, R660/R680,
R680/R664, NDVI, R750/R740, R912/R1028, R1078/R656

0.999 *** 0.002 0.897 *** 0.065

RI (12, 22) & relu

NDSI680,688,672, R900/R1042, R680/R664, NDVI780,550,
NDSI658,650,670, DVI, NDSI656,664,676, R912/R1028,

R750/R740, NDSI 682,692,666, NDSI682,666,692,
R666/R670, NDSI 682,690,666, NDSI 682,666,690,
R660/R680, NDSI682,692,664, NDSI682,668,692

0.999 *** 1.151 0.853 *** 52.70

Note: *** refers to significant values at p ≤ 0.001 probability levels.
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Figure 7. Neural network diagrams established for detecting organic matter (OM), pollution load
index (PLI), and potential ecological risk index (R1).

The results presented in Tables 5–7 show the efficiency of the three tested models
to predict OM, PLI, and RI, revealing that the ANN is the best model to predict differ-
ent parameters (OM, PLI, and RI) with a very high determination coefficient (R2 = 0.999)
associated with low RMSE. Broadly, the validation datasets always produced higher deter-
mination coefficient for the three tested models. For instance, the determination coefficient
values of the ANN model of calibration datasets for predicting OM, PLI, and RI were 0.999,
0.999, and 0.999, respectively, while they were 0.960, 0.897, and 0.853, respectively, for the
validation dataset. As seen in the tables, PLSR produced the lowest performance especially
with the calibration dataset with R2 values of 0.92, 0.875, and 0.552, while with the valida-
tion dataset the PLSR produced R2 values higher than with MLR for predicting PLI and
RI. Figures 8–10 showed the comparison between measuring, calibrating, and validating
datasets for the three investigated indicators (OM, PLI, and RI), using ANN, PLSR, and
MLR. It is obvious from the three figures that there was neither obvious overfitting nor
underfitting for the relationships. Moreover, the results demonstrated significant positive
relationships between the quantified and the detected values with high correlations.



Water 2022, 14, 890 18 of 26

Table 6. Calibration and validation models result of PLSR for the association between SRIs and
organic matter (OM), pollution load index (PLI), and potential ecological risk index (R1) across a
2-year investigation.

Variable PCs Best Indices Calibration Validation

R2 RMSE R2 RMSE

OM 3

R676/R664, NDSI682,666,690,
NDVI780,550, NDSI 680,666,688,

R750/R740, RED, NDSI682,668,692,
NDSI656,664,676, R660/R680

0.920 *** 1.518 0.881 *** 1.858

PLI 7

OSAVI, NDSI682,666,692, R800/R650,
NDSI 680,666,688, R900/R1042,
R1080/R650, R684,692,662, DVI,
R660/R680, R680/R664, NDVI,

R750/R740, R912/R1028, R1078/R656

0.875 *** 0.085 0.589 *** 0.192

RI 3

NDSI680,688,672, R900/R1042,
R680/R664, NDVI780,550,

NDSI658,650,670, DVI, NDSI656,664,676,
R912/R1028, R750/R740, NDSI

682,692,666, NDSI682,666,692, R666/R670,
NDSI 682,690,666, NDSI 682,666,690,

R660/R680, NDSI682,692,664,
NDSI682,668,692

0.552 *** 114.272 0.377 ** 141.941

Note: ** and *** indicate significant values at p ≤ 0.01 and p ≤ 0.001 probability levels, respectively.

Table 7. Calibration and validation models outputs of MLR for the association between spectral
reflectance indices and organic matter (OM), pollution load index (PLI), and potential ecological risk
index (R1) across a 2-year study.

Variable Best Indices Calibration Validation

R2 RMSE R2 RMSE

OM
R676/R664, NDSI682,666,690, NDVI780,550,

NDSI 680,666,688, R750/R740, RED,
NDSI682,668,692, NDSI656,664,676, R660/R680

0.945 *** 1.762 0.824 *** 2.38

PLI

OSAVI, NDSI682,666,692, R800/R650, NDSI
680,666,688, R900/R1042, R1080/R650,

R684,692,662, DVI, R660/R680, R680/R664,
NDVI, R750/R740, R912/R1028, R1078/R656

0.933 *** 0.111 0.496 *** 0.208

RI

NDSI680,688,672, R900/R1042, R680/R664,
NDVI780,550,

NDSI658,650,670, DVI, NDSI656,664,676,
R912/R1028, R750/R740, NDSI 682,692,666,

NDSI682,666,692, R666/R670, NDSI
682,690,666, NDSI 682,666,690, R660/R680,

NDSI682,692,664, NDSI682,668,692

0.946 *** 70.373 0.604 *** 123.448

Note: *** indicates significant values at p ≤ 0.001 probability levels.
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4. Conclusions

Multi-contamination indices, spectral reflectance indices, and data driven and mul-
tivariate modelling, were used as inexpensive approaches for assessing PTMs in bottom
sediments. As a result, we anticipated their ecological dangers and assisted the decision-
makers with environmental protection and remedial procedures. The organic-rich layers
of the lake’s eastern and central regions have the greatest levels of all the metals studied.
The lowest concentrations were often found in western and north-west sediment samples
characterised by a lower percentage of organic matter. The southern and eastern sides of
the lake’s central section were polluted (PLI > 1), but the western and west-northern areas
remained clean (PLI < 1). RI’s findings were that all the examined sediments pose a very
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high ecological risk (RI > 600). It is obvious that the three-band spectral indices are more
efficient in quantifying different investigated parameters. In addition, the results showed
that the efficiency of the three tested models (ANN, PLSR, and MLR) to predict OM, PLI,
and RI, revealed that the ANN is the best model to predict different parameters (with a
very high determination coefficient (R2 = 0.999) associated with low RMSE.

Our future work will hopefully involve a light hand-held apparatus based on two and
three band ratios that may be used for the detection of bottom sediment quality without
disturbing the lake’s bottom. Extrapolating the results of in situ spectroscopy surveys
using advanced newly launched satellites would be a promising tool in lake monitoring
systems in our future work. The newly launched satellites with high spectral capabilities
(high and medium resolution) can successfully detect sediment characteristics effectively
at a large scale. The findings of this research study would be adequate to provide a
potential reference for estimating OM and two pollution indices; also, this research offers
technological assistance for long-term monitoring and assessment of the sediment quality
of lakes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w14060890/s1, Table S1. Average of metal concentrations (ppm) and total organic matter (OM)
in bottom sediment of Lake Qaroun in first year; Table S2. Average of metal concentrations (ppm)
and total organic matter (OM) in bottom sediment of Lake Qaroun in second year.
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