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Abstract: Landslide Susceptibility Assessment (LSA) is a fundamental component of landslide risk
management and a substantial area of geospatial research. Previous researchers have considered
the spatial non-stationarity relationship between landslide occurrences and Landslide Conditioning
Factors (LCFs) as fixed effects. The fixed effects consider the spatial non-stationarity scale between
different LCFs as an average value, which is represented by a single bandwidth in the Geographically
Weighted Regression (GWR) model. The present study analyzes the non-stationarity scale effect of the
spatial relationship between LCFs and landslides and explains the influence of factor correlation on
the LSA. A Principal-Component-Analysis-based Multiscale GWR (PCAMGWR) model is proposed
for landslide susceptibility mapping, in which hexagonal neighborhoods express spatial proximity
and extract LCFs as the model input. The area under the receiver operating characteristic curve
and other statistical indicators are used to compare the PCAMGWR model with other GWR-based
models and global regression models, and the PCAMGWR model has the best prediction effect.
Different spatial non-stationarity scales are obtained and improve the prediction accuracy of landslide
susceptibility compared to a single spatial non-stationarity scale.

Keywords: landslide susceptibility; PCAMGWR model; spatial non-stationarity; factor correlation;
spatial proximity; hexagonal neighborhoods

1. Introduction

Landslides are one of the most destructive and catastrophic geohazards worldwide
and threaten the safety of humans and property in mountainous areas [1,2]. Located on the
junction of the Asia–Europe plate, the Indian Ocean plate, and the Pacific plate, China has
the characteristics of active and complex geological tectonic activities, numerous climate
types, and frequent human activities, which leads to frequent geohazards. According to
the “Chinese Geological Hazard Bulletin” [3], there were 166,828 geohazards in China from
2008 to 2020, of which 111,621 were landslide hazards, accounting for 66.9%. Landslide
susceptibility refers to the occurrence possibility of a landslide under the combined effect
of Landslide Conditioning Factors (LCFs) and predicts the location and probability of
a landslide in a specific area [4]. Therefore, it is necessary to take measures to assess
landslide susceptibility, and Landslide Susceptibility Mapping (LSM) is a common method
for geohazard prevention.

Previous studies have investigated Landslide Susceptibility Assessment (LSA) in
recent years, primarily relying on Geographic Information Systems (GIS) for qualitative
analysis in the early stage [5–10]. Some methods of sorting and weighting parameters in
qualitative research already pertain to the category of semiquantitative analysis [11,12].
The quantitative analysis method is based on the numerical expression of the relationship
between LCFs and landslide occurrence [13], mainly including physics-based methods [14],
statistical analysis [15,16], and artificial neural networks [17]. The statistical analysis
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includes bivariate and multivariate techniques [18,19]. Multivariate statistical analysis is
mainly expressed in regression models, which consist of global regression models, such
as logistic regression [20], and local regression models, such as Geographically Weighted
Regression (GWR) [21]. The global regression models consider the influence of LCFs on
landslides as stable for a region. The local regression models consider spatial variation in
LCFs and landslides. The problem of spatial autocorrelation and spatial non-stationarity is
well-known in LSA research. For example, Brenning estimates error rates for predicting
“present” and “future” landslides based on a resampling approach that takes into account
spatial autocorrelation [22]. The second law of geography states that there is widespread
spatial heterogeneity in the relationship between given geospatial variables, namely spatial
non-stationarity [23]. Since LSA is based on geospatial data analysis, the relationship
between LCFs and landslides may be spatial non-stationarity [24]. The presence of spatial
non-stationarity demonstrates that the traditional models are only applicable to the case of
stationary spatial relations in the study area and cannot accurately fit the local relations [25].
The models which are widely used in LSA cannot thus express spatial non-stationarity.

The GWR model is a local regression model widely adopted in the research into spatial
non-stationarity, which presumes an optimal spatial average based on a single bandwidth.
Nowadays, GWR is widely used in research fields such as land use [26], housing price
prediction [27], predicting forest-fire kernel density at multiple scales [28], and ecological
environment protection [29]. In terms of geohazard susceptibility assessment, GWR is
gradually becoming a key instrument in LSA. GWR considers the spatial variability of pa-
rameters to focus on the spatial non-stationarity of landslide predisposing factors [24,30–33].
The above studies of LSA are all based on the basic GWR model using a single optimal
average scale to detect spatial non-stationarity, which leads to the fact that the spatial
variation of all parameter estimates manifests the same scale characteristics. The basic
GWR model is based on the assumption of a “best average”, which ignores scale differences
in local variation relationships and may produce unreliable results.

GWR performance depends on the spatial variation of the relationships between
dependent and independent variables. The bandwidth is a constant distance in the fixed
kernel to measure the spatial variation that plays a role in implementing the spatial effect
of the observed points and neighbors [34]. However, the basic GWR model ignores the
multiple spatial data relationships corresponding to spatial scale variations and uses the
“best average” scale (single bandwidth) to reflect the spatial changes of all parameter esti-
mates. Adopting multiple bandwidths could give Multiscale GWR (MGWR) the capability
to potentially differentiate the scale of local, regional, and global processes by comparing
the optimal bandwidths for different independent variables [35]. Researchers do not treat
spatial non-stationarity in detail, and there is still a research gap regarding the study of
the spatial non-stationarity scale effect of LSA. It is increasingly important to explore local,
regional, and global processes in LSA.

Spatial non-stationarity prediction models and spatial relationships are crucial in LSA.
The prediction model affects the accuracy of assessment results, and the spatial relationship
impacts the input conditions of the spatial non-stationarity model. The spatial relation
includes topological relation, metric relation, and azimuth relation. Spatial proximity re-
lates to rhythmic connection to measure the distance between two neighborhoods in space,
which is widely used in spatial data analysis and geographic information extraction [34,36].
The GWR model was established based on the spatial proximity of neighborhoods, with
homogeneity within neighborhoods, and the heterogeneity between neighborhoods. There-
fore, it is essential to choose an appropriate spatial proximity expression for expressing
spatial proximity more precisely. Triangular tessellation uses triangles with two directions
and is unpopular in studying spatial non-stationarity [31]. Administrative-district-based
neighborhoods [37] and rectangle- or square-grid (Moore) boundaries [31] have been com-
monly used as the spatial proximity expressions of the GWR model in previous studies.
Slope-unit-based neighborhoods are segmented to express the spatial proximity in land-
slide susceptibility, which indicates an improvement in prediction accuracy compared
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to grid units [24]. Slope-unit-based neighborhoods are considered to be more consistent
with the topography [34]. Additionally, a hexagonal neighborhood is considered a better
spatial structure for continuously dividing a two-dimensional space with an isotropic
neighborhood and results in a better study of spatial non-stationarity [38,39].

In the previous assessments of landslide susceptibility considering spatial non-stationarity,
there are gaps in the exploration of the spatial non-stationarity scale effect and the comparison
of spatial proximity expressions. In the present study, the importance of assessing landslide
susceptibility is analyzed from the spatial non-stationarity scale effect for the study area.
Qingchuan county was the study area, where ten LCFs were selected. Moore neighborhoods,
slope-unit-based neighborhoods, and hexagonal neighborhoods were established and com-
pared. Factor analysis was then carried out to analyze the factor correction, and Exploratory
Spatial Data Analysis (ESDA) was conducted to measure the spatial autocorrelation visual-
ization. The PCAMGWR model was proposed to study the non-stationarity scale effect of
the spatial relationship between LCFs and landslides, which employs PCA as a dimension
reduction process and MGWR as a multiscale bandwidth acquisition method. The impact
of the spatial non-stationarity effect on the LSA and different spatial scales of LCFs was
obtained. Finally, the Receiver Operating Characteristic (ROC) curve was employed to
verify the proposed model.

2. Study Area and Dataset
2.1. Overview of the Study Area

The southeastern area of China is a region with frequently occurring landslide hazards.
The study area of Qingchuan County is a mountainous region on the northern edge of the
Sichuan basin, in the southeast of China, adjacent to Shanxi province and Gansu province.
The area is located at a latitude of 32◦12′ N to 32◦56′ N and a longitude of 104◦36′ E to
105◦38′ E, with an area of 3216 km2. It has a complex topography mainly composed of
mountains, hills, tablelands, valleys, and small flat dams, and the relative elevation is
between 500 m and 3820 m.

The climate in the study area is a typically subtropical humid monsoonal climate
that is hot and humid in summer and mild and arid in winter. The surface water system
is developed, and the Bailong River and Qingzhu River run through the territory. The
total water storage is above 15.7 billion m3, and the water energy reserves are larger than
1 million kW. The soil types are diverse, including yellow loam, yellow-brown loam, dark
brown loam, and subalpine meadow soil. The dominant lithology is magmatic rocks,
metamorphic rocks, and clastic rocks. Three fault zones are distributed in parallel, from
northeast to southwest.

Qingchuan County is recognized as one of the most landslide-prone areas of China [40],
and the landslide inventory map in Qingchuan is shown in Figure 1. Most landslide events
are induced by natural environmental factors, such as rainfall and earthquakes, while only
a few events are induced by human factors. Landslides are pivotal disturbances to the
social development and socioeconomic growth of the region. LSM considering the spatial
non-stationarity scale effect could significantly prevent the issue.
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Figure 1. Landslide inventory map and location of Qingchuan County.

2.2. Dataset Preparation

In order to conduct the spatial non-stationarity exploration, the investigation of the
spatial dataset was a continuing concern regarding the LSA. The main data included a
vector map of contour lines, a geological map, settlement coordinates, aerial photographs,
precipitation data, and vegetation coverage types, which were obtained from the Ministry
of Land and Resources. After the field survey and aerial photo interpretation, 973 landslides
were counted (Figure 1), and the LCFs played an extraordinary role in modeling the LSA [41].
Since there are no standard criteria for selecting LCFs, this study considered the general
characteristics, working scale, and availability of the proper datasets [42–44]. Ten factors,
namely elevation, slope, aspect, terrain relief, lithology, distance to fault zones, distance to
stream, precipitation, vegetation coverage types, and distance to settlement, were obtained
from GIS (Figure 2).

The digital elevation model (DEM) data at a spatial resolution of 10 m were first
obtained by the vector map of contour lines in the GIS environment. The DEM data were
used to extract the elevation, slope, aspect, terrain relief, and other conditioning factors
describing the topography and geomorphology [45]. Precipitation data and vegetation
coverage types were processed through interpolation, collected from different organizations
and government departments. Distance to fault zones, distance to stream, and distance to
settlement were calculated using a Euclidean distance tool in the GIS environment. In this
study, the original data were used as the input of the model for continuous variables, and
the unclassified variables were numbered according to their categories before being input
into the model.
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Figure 2. Zoning map of (a) elevation, (b) terrain relief, (c) slope, (d) aspect, (e) lithology, (f) distance
to fault zones, (g) distance to stream, (h) distance to settlement, (i) vegetation coverage types, and
(j) precipitation.
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3. Materials and Methods
3.1. Flowchart

The methodological approach in this study was a methodology combining geospa-
tial statistics and geohazard assessment and is shown in Figure 3. The research process
consisted of the following five steps:

1. Three spatial neighborhood expressions were constructed in GIS—Moore neighborhoods,
slope-unit-based neighborhoods, and hexagonal neighborhoods. The segmentation
metric function proposed by Espindola [46] was then used for the prime spatial proximity
expression and the extracted LCF was used as the input of the PCAMGWR model.

2. Based on the geoenvironmental condition of the study area, LCFs were selected, and
thematic layers of LCFs were prepared. Then, the LCFs were analyzed using Pearson
correlation analysis and multicollinearity test.

3. ESDA was used to investigate the validity of global regression, and the residual
obtained by Ordinary Least Squares (OLS) was analyzed based on Moran’s I autocor-
relation.

4. PCAMGWR model was established for exploring the influence of spatial non-stationarity
and factor correlation on LSM.

5. The accuracy of the proposed model was verified using statistical measures, and the
spatial non-stationarity scale effect was analyzed and compared.

Water 2022, 14, x FOR PEER REVIEW 6 of 23 
 

 

3. Materials and Methods 

3.1. Flowchart 

The methodological approach in this study was a methodology combining geospatial 

statistics and geohazard assessment and is shown in Figure 3. The research process con-

sisted of the following five steps: 

1. Three spatial neighborhood expressions were constructed in GIS—Moore neighbor-

hoods, slope-unit-based neighborhoods, and hexagonal neighborhoods. The seg-

mentation metric function proposed by Espindola [46] was then used for the prime 

spatial proximity expression and the extracted LCF was used as the input of the 

PCAMGWR model. 

2. Based on the geoenvironmental condition of the study area, LCFs were selected, and 

thematic layers of LCFs were prepared. Then, the LCFs were analyzed using Pearson 

correlation analysis and multicollinearity test. 

3. ESDA was used to investigate the validity of global regression, and the residual ob-

tained by Ordinary Least Squares (OLS) was analyzed based on Moran’s I autocor-

relation. 

4. PCAMGWR model was established for exploring the influence of spatial non-station-

arity and factor correlation on LSM. 

5. The accuracy of the proposed model was verified using statistical measures, and the 

spatial non-stationarity scale effect was analyzed and compared. 

 

Figure 3. Methodology of research applied in this study. 

  

Figure 3. Methodology of research applied in this study.



Water 2022, 14, 881 7 of 22

3.2. Expression of Spatial Proximity Selection Method

In this study, three expressions of spatial proximity, namely Moore neighborhoods,
slope-unit-based neighborhoods, and hexagonal neighborhoods, were established. The
comparison and selection of spatial adjacency expression proceeded in three dimensions,
which were homogeneity within a neighborhood, heterogeneity between neighborhoods,
and RMSE value of neighborhood area. RMSE values were calculated for the area of the
slope-unit-based neighborhoods and hexagonal neighborhoods. The smaller the RMSE
value, the more stable the spatial proximity.

Espindola [46] proposed a function to ensure the expression of the spatial proximity
of the study area. The function measures the quality of spatial adjacency expression by
maximizing homogeneity within and heterogeneity between neighborhoods. The objective
function combines the variance measure and the autocorrelation measure:

F(v, I) = F(v) + F(I) (1)

where v is the intersegment variance within the neighborhood and I is the Moran’s I to
assess the intersegmental heterogeneity between neighborhoods.

3.3. Factor Analysis
3.3.1. Correlation Analysis

Pearson correlation analysis quantifies and interprets the correlation between LCFs [47],
and the Pearson correlation coefficient is (−1, 1). If the coefficient is greater than 0, the
larger the coefficient is, the stronger the positive correlation. If the coefficient is less than 0,
the smaller the coefficient is, the stronger the negative correlation. The Pearson correlation
coefficient is defined as follows [48]:

r =

(
N ∑ LCFiLCFj −∑ LCFi ∑ LCFj

)√
NLCF2

i − (∑ LCFi)
2
√

NLCF2
j −

(
∑ LCFj

)2
(2)

where r is the correlation coefficient between two LCFs and N is the number of observations.

3.3.2. Multicollinearity Test

Multicollinearity refers to the fact that model estimates are distorted or difficult to
estimate accurately due to the existence of accurate or highly correlated relationships
between explanatory variables in a linear regression model. Multicollinearity between LCFs
may reduce the prediction accuracy of linear regression models, such as GAM-style GWR
methods, and the permutation importance of some models, such as (bagged or boosted)
tree-based methods, may be faulty. Therefore, the multicollinearity test must be performed
before GWR-based model prediction [49]. Variance Inflation Factor (VIF) and TOLerance
(TOL) standards were applied for the multicollinearity test [50]. The threshold value of the
TOL ≤ 2 and VIF ≥ 5 indicate the existence of multicollinearity between the LCFs [50]. The
VIF can be obtained using Equation (3) [51]:

VIF =
1

1− R2
i

(3)

where Ri is the negative correlation coefficient for regression analysis of the ith independent
variable to other independent variables.

3.4. ESDA

ESDA denotes whether spatial autocorrelation exists and proves the explicit and quanti-
tative spatial assessment of geographical change [52]. Spatial autocorrelation is a connatural
peculiarity of geospatial datasets [53]. However, previous studies have seldom paid attention
to the frequent occurrence of spatially autocorrelated residuals in regression models, which
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indicate a model misspecification problem and unreliable results [54]. To judge whether the
global regression result was valid, the residual value of global regression was analyzed by the
Moran index. If P ≤ 0.01 and Z ≥ 2.58, the data are positively aggregated.

3.5. Validation Method

The comprehensive performance of the proposed model in LSA was appraised. Several
validation methods were employed for the model fitting degree and accuracy of model
prediction, such as the Akaike Information Criterion (AICc). Area Under the ROC Curve
(AUC) and the ROC curve were used to assess the accuracy of models [55]. The ROC
curve took the false-positive rate specificity as the horizontal coordinate (the proportion
of neighborhoods without landslide hazards that were correctly predicted) and the true-
positive rate sensitivity as the vertical coordinate (the proportion of neighborhoods with
landslide hazards that were correctly predicted). The AUC is the area under the ROC curve,
which can more intuitively express the prediction accuracy of models. Its value range is
(0.5, 1). The closer the value is to 1, the higher the model accuracy will be. It is generally
considered that the prediction accuracy interval (0.5, 0.7) is relatively reasonable, (0.7, 0.8)
is reasonable, and (0.8, 1) is very reasonable. If the AUC is extremely close to 1, the model
reflects higher goodness-of-fit and consummate accuracy [56].

4. PCAMGWR Modeling
4.1. Principal Component Analysis (PCA)

PCA is an effective method for dimensionality reduction and the feature combination
analysis of multivariate factors, which describes multivariate samples to identify spatial
patterns [31]. PCA employs an orthogonal transformation to transform correlated variables
into linearly unrelated variables, namely independent Principal Components (PCs) [57–59].
The first PC had the most significant contribution and contained as much information about
the LCFs as possible, followed by the second PC and the third PC. The steps for eliminating
factor correlation were as follows: (1) standardized processing of the original LCFs; (2) cal-
culating the correlation coefficient matrix of the standardized matrix; (3) calculating the
eigenvalues and eigenvectors of the coefficient matrix to determine the PCs; (4) computing
the variance contribution rate and determining the number of PCs; (5) comprehensively
evaluating the PCs.

4.2. MGWR

GWR is a linear regression but differs from traditional linear regressions in that GWR
considers the influence of spatial relations on the model, namely spatial heterogeneity.
GWR is one of the methods used in the exploration of spatial non-stationarity [60], and
the regression coefficients change with the spatial location. However, there are limitations to
this method, namely that it is useless for spatial multicollinearity [61] and neglects changes in
the spatial scope of geographical units [62–64]. The MGWR model can solve these issues [65].
Consequently, the PCAMGWR model considering the spatial non-stationarity scale effect
based on hexagonal neighborhoods was employed to assess landslide susceptibility.

Assuming that there are n observations, for the observation i ∈ {1, 2, . . . , n} at location
(ui, vi) with m independent variables, where j ∈ {1, 2, . . . , m} at the j-th independent
variable, the GWR model formulation is described as follows:

yi = ∑m
j=0 β j(ui, vi)xij + εi (4)

where xij is the j-th independent variable; β j(ui, vi) is the j-th coefficient; εi is the error term;
and yi is the i-th dependent variable.

The MGWR model is mathematically expressed as follows [34,66]:

yi = ∑m
j=0 βbwj(ui, vi)xij + εi (5)
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where bwj in βbwj
indicates the bandwidth used for calibration of the j-th spatial relation-

ship. The selection of the bandwidth was relatively ordinary due to a single bandwidth
required. By the trial selection of an initial bandwidth, the AICc was optimized to select the
bandwidth, which is defined as:

AICc = 2nln
(

RSS
n

)
+ nln2π + n

{
n + tr(S)

n− 2− tr(S)

}
(6)

where RSS is the sum of the error terms’ square residual, and tr(S) is the trace of the hat
matrix S and the Effective Number of Parameters (ENP) of the model. The bandwidth
with the smallest AICc value was optimal. The Gaussian kernel data-borrowing scheme
parameterized via AICc optimization was utilized throughout. However, the AICc cannot
select bandwidths in MGWR on account of the great number of potential combinations of
bandwidths, which may generate a different procedure required.

Model calibration for a Gaussian MGWR can be conducted by resorting to weighted
least squares. The coefficient at the location (ui, vi) is estimated in Equation (7), where X is
the design matrix and W(ui ,vi)

is the spatial weighting matrix for location (ui, vi). W(ui ,vi)
is

homogeneous for each relationship, with the identical bandwidth being adopted for all the
relationships in the model.

βbwj(ui, vi) =
[(

XTWijX
)]−1

XTWijy (7)

The fixed Gaussian kernel function was used to calculate the spatial weights in MGWR
on a par with GWR, which can be written as [48]:

Wij = exp

(
−dij

2

bwj
2

)
(8)

where Wij is the weight value of observation j for estimating the coefficient of observation
i; dij is the straight-line distance between observations i and j; and bwj is a constant
bandwidth.

The back-fitting algorithm was adopted to calibrate the MGWR model, which maxi-
mizes the expected log-likelihood and is generally used to calibrate generalized additive
models (GAMs) [67]. The logic of GAM, βbwj

xj in MGWR is defined as the j-th additive
term f j resulting in the GAM-style MGWR:

y =
m

∑
j=0

f j + ε (9)

The back-fitting algorithm was a smoother method for calibrating the model, and
the specific process was as follows [65]. Firstly, all additive terms were initialized, the
dependent variables set, and the errors calculated. These errors, plus the “current” value
of the first term f0, were then regressed on x0 using GWR, which produced an optimal
bandwidth bw0 for the relationship between y and x0, as well as a new set of local estimates
for the relationship between y and x0 that was used to update the value of the first term
f0. The second variable x1 followed the same procedure as x0 above, and the process was
repeated until the first iteration was completed. The iteration continued until the change of
all terms in successive iterations was less than the score of change (SOC).

Two decisions from the user are involved in the algorithm. The first concern is
initializing the local coefficient estimates, which might affect the number of iterations
needed to reach convergence instead of the selection of the optimal bandwidth. The GWR
was thus used to estimate the initial MGWR. The second decision is the choice of the
termination criterion—the value of the differential between successive iterations, namely
the SOC by which the process is converged. SOC-f focuses on the relative changes of the
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additive terms rather than on overall model fitting. The calculation formula of SOC-f is as
follows:

SOC f =

√√√√√√√∑
p
j=1

∑n
i=1

(
f̂ new
ij − f̂ old

ij

)2

n

∑n
i=1

(
∑

p
i=1 f̂ new

ij

)2 (10)

5. Results
5.1. Expression of Spatial Proximity

The spatial proximity of the study region was expressed in the GIS environment,
which incorporated Moore neighborhoods (Figure 4a), slope-unit-based neighborhoods
(Figure 4b), and hexagonal neighborhoods (Figure 4c).
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The present research primarily explored the homogeneity within the neighborhood
and the heterogeneity between the neighborhoods, as shown in Figure 5. The hexagonal
neighborhoods are shown in orange, the Moore neighborhoods in green, and the slope-unit-
based neighborhoods in purple. The solid lattice of diamonds on the left represents the
distribution of the F values in each type of neighborhood. On the right is a box plot to figure
out the distribution characteristics of the F value. The black horizontal line is the middle
line of the F value, and the box represents the range of 1/4 to 3/4. The F value ranges of
the hexagonal neighborhoods, Moore neighborhoods, and slope-unit-based neighborhoods
were, respectively, (0.47, 1.92), (0, 5), and (0.1, 2). The F value distribution in the hexagonal
neighborhoods was relatively concentrated and the spectrum was small. The medians were
ordered as follows: slope-unit-based neighborhoods, hexagonal neighborhoods, Moore
neighborhoods. From the distribution of the F value, slope units and hexagons performed
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better. To further select the most suitable expression of spatial proximity, the RMSE values
of the slope elements and hexagons were calculated, and the hexagonal neighborhoods
expressed the spatial proximity of the study area with a greater RMSE.
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5.2. Correlation Analysis and Multicollinearity Test

Pearson correlation analysis of the LCFs was conducted as a preliminary analysis, as
shown in Figure 6. The darker the red is, the stronger the positive correlation; the darker the
blue is, the stronger the negative correlation. The maximum correlation coefficient was 0.72
for the distance to settlement and elevation, revealing that the higher the elevation is, the
fewer the settlements. The correlation coefficients between the distance to the fault zones
and distance to settlement, the terrain relief and slope, the elevation and distance to the
settlement, and the elevation and distance to fault zones were between 0.5 and 0.8, showing
a moderate positive correlation. The other factors were weakly correlated or irrelevant.
The symbol × in Figure 6 indicates no statistically significant correlation between factors.
There were no highly correlated factors among the LCFs selected in this study.

Water 2022, 14, x FOR PEER REVIEW 11 of 23 
 

 

hexagons performed better. To further select the most suitable expression of spatial prox-

imity, the RMSE values of the slope elements and hexagons were calculated, and the hex-

agonal neighborhoods expressed the spatial proximity of the study area with a greater 

RMSE. 

  

Figure 5. Boxplot of F value distribution of spatial proximity expressions. 

5.2. Correlation Analysis and Multicollinearity Test 

Pearson correlation analysis of the LCFs was conducted as a preliminary analysis, as 

shown in Figure 6. The darker the red is, the stronger the positive correlation; the darker 

the blue is, the stronger the negative correlation. The maximum correlation coefficient was 

0.72 for the distance to settlement and elevation, revealing that the higher the elevation is, 

the fewer the settlements. The correlation coefficients between the distance to the fault 

zones and distance to settlement, the terrain relief and slope, the elevation and distance to 

the settlement, and the elevation and distance to fault zones were between 0.5 and 0.8, 

showing a moderate positive correlation. The other factors were weakly correlated or ir-

relevant. The symbol × in Figure 6 indicates no statistically significant correlation between 

factors. There were no highly correlated factors among the LCFs selected in this study. 

 

Figure 6. Elliptical diagram of Pearson correlation of LCFs. L—lithology; DSt—distance to stream;
DSe—distance to settlement; DFZ—distance to fault zones; A—aspect; S—slope; TR—terrain relief;
VCT—vegetation cover type; Pre—precipitation; E—elevation.
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Regression analysis is prone to producing high multicollinearity between independent
variables. To test the global multicollinearity, the VIFs of various LCFs were calculated,
as shown in Table 1. A VIF value greater than 10 denotes the existence of global multi-
collinearity. In this study, the maximum VIF value was 2.861, lower than 5, indicating that
all LCFs passed the global multicollinearity test.

Table 1. Multicollinearity test of LCFs.

LCFs VIF TOL

Lithology 1.328 0.753
Distance to stream 1.109 0.901

Distance to settlement 2.255 0.443
Distance to fault zones 2.195 0.456

Aspect 1.025 0.975
Slope 1.540 0.650

Terrain relief 1.719 0.582
Vegetation cover type 1.019 0.981

Precipitation 1.052 0.950
Elevation 2.861 0.350

5.3. ESDA

ESDA is an essential method that was used to examine the spatial associations among
the LCFs and aid with the model development. A classic spatial autocorrelation index,
namely the Moran’s I, was computed using the residual of global regression and was
implemented to explore the spatial non-stationarity effects [68].

The landslide susceptibility prediction based on OLS was carried out, and the residual
distribution is shown in Figure 7a. The red area is highly consistent with the location
of the landslides. The Moran’s index analysis based on OLS residual values judges the
effectiveness of global regression results. If P ≤ 0.01 and Z ≥ 2.58, it is a positive
aggregation. The Moran’s index analysis gave a result of P ≤ 0.0001 and the Z value
was 18.292, indicating that the global regression was invalid. The residual was spatially
autocorrelated to a level of statistical significance, which was brought about by a non-
stationary spatial process (Figure 7b). Therefore, a model with an interpretation of spatial
non-stationarity relationships is necessary for LSA.
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5.4. LSMs Based on PCAMGWR Model

Six principal components were obtained by principal component analysis and are
shown in Table 2. The overall contribution rate was 82.704% to represent the entirety
elementarily. PC1 was interpreted as a comprehensive factor, since it has a high favorable
loading of elevation, distance to fault zones, distance to settlement, and terrain relief. PC2
has a high favorable loading of the slope. PC3 has a high positive loading of precipitation.
PC4 has high favorable loading of vegetation cover type. PC5 has a high negative loading
of aspect. PC5 has a high negative loading of distance to stream.

Table 2. Component matrix of LCFs.

LCFs PC1 PC2 PC3 PC4 PC5 PC6

Lithology 0.500 −0.448 −0.160 0.109 −0.211 0.176
Distance to stream 0.272 0.322 0.542 0.156 0.071 −0.621

Distance to settlement 0.782 −0.267 0.120 −0.018 −0.012 −0.065
Distance to fault zones 0.803 −0.291 0.097 0.003 −0.084 0.163

Aspect 0.058 0.396 0.031 0.509 −0.740 0.088
Slope 0.483 0.630 −0.337 0.027 0.182 0.171

Terrain relief 0.604 0.528 −0.286 −0.042 0.227 0.075
Vegetation cover type −0.034 −0.277 −0.190 0.819 0.450 −0.058

Precipitation −0.012 0.164 0.740 0.109 0.232 0.592
Elevation 0.865 −0.086 0.112 −0.084 0.000 −0.147

Normal distribution and axle-whiskers were employed to analyze the differences
between the PCs and LCFs, respectively, as shown in Figure 8. Although the original LCFs
obeyed normal distribution, there was a significant difference between the factors, and the
data were more discrete. The distribution of the principal components was more uniform
and closer to the standard normal distribution using the principal component analysis.
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The LSMs of the study area were independently obtained using the PCAMGWR,
MGWR, PCAGWR, and GWR models, as show in Figure 9. The LSMs were divided
into four levels using the quantile method, namely low, moderate, high, and very high
susceptibility. Figure 10 shows the area percentage of very high, high, moderate, and
low susceptibility.
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Figure 9. LSMs generated by models: (a) PCAMGWR, (b) MGWR, (c) PCAGWR, and (d) GWR.
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Figure 10. Area percentage of various landslide susceptibility levels produced in LSMs.
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The PCAMGWR and MGWR models exhibited more veracious and reasonable predic-
tions. The high and very high susceptibility areas were more consistent with investigated
landslide locations due to the consideration of the scale difference effect of spatial non-
stationarity. Apart from the significant variances in the land area composition with the
various landslide susceptibility levels, the landslide susceptibility zoning results of the two
models considering the spatial non-stationarity scale differences were better combined with
topographic factors. The PCAMGWR and MGWR models comprehensively considered
topography, streams, and settlements. Especially in the western mountainous area, the
landslide susceptibility was low in the area with very high altitude but far from the river
and with rare human activities, while the landslide susceptibility was medium in the area
with high altitude and close to the river and human activities. It can be seen that the
PCAMGWR model proposed in this study can reflect the non-stationarity scale difference
in the spatial relationship between LCFs and landslides. Moreover, the LSMs based on the
PCAMGWR model and MGWR model were similar, indicating that MGWR can deal with
factor correlation and multicollinearity. There was a large gap between the LSMs based
on the MGWR-based models and GWR-based models, which can be seen considering the
spatial non-stationarity scale difference, making the zoning results tend towards the actual
situation. In addition, there were many similarities between the four models. There were
southwest–northeast spatial distributions along fault zones in the LSMs obtained using
the four models, which may be attributed to the fault zones’ influences on slope and rock
mass stability.

5.5. Analysis and Comparison of Spatial Non-Stationarity Scale Effect

Compared with the GWR model, the MGWR model showed an improvement in the re-
search of spatial non-stationarity. MGWR allowed the parameter estimates to vary spatially
and generated a single optimal scale (bandwidth) for the non-stationary spatial relation-
ship between landslides and each independent variable. The spatial variation of different
processes was modeled at different spatial scales. The optimal bandwidths deduced by the
GWR, PCAGWR, MGWR, and PCAMGWR models were direct indicators of spatial scale,
indicating the individual spatial relationship between landslide and independent variables.
Figure 11 indicates the bandwidth search process for each independent variable generated
by the MGWR model (Figure 11a) and PCAMGWR model (Figure 11b), a process that was
observed to operate at different spatial scales.

A variable with a large bandwidth affects the dependent variable at a large scale, so
the standard deviation of the parameter estimates is slight. In contrast, a variable with a
small bandwidth affects the dependent variable at a local scale, so the standard deviation
of the local parameter estimates is significant. The optimal bandwidth of terrain relief and
interpolation was 9018.89 and 784.84 in the MGWR model, with the number of iterations
being 59. Additionally, the variable affected landslide susceptibility at the local scale, and
its parameter estimate had significant variances over space. The relationships between the
other nine LCFs and landslides exhibited spatial non-stationarity, but the processes varied
at regional spatial scales. In the PCAMGWR model, PC2 and interpolation demonstrated
solid locally spatial non-stationarity scale effects, and the optimal bandwidth was 8962.5
and 784.32. The number of iterations of the PCAMGWR model was 40. The spatial non-
stationarity scale effects between the other principal components and landslides were at
the regional scale. Bandwidth selection for different parameters may stop at different steps
depending on the properties of the spatial non-stationarity scale effect.

However, the optimal bandwidths generated using the GWR model and PCAGWR
model were 4127.02 and 2868.55, which implies that all variables affected landslides with the
same spatial non-stationarity scale effect of extreme restriction. The bandwidth produced
by GWR or PCAGWR was the weighted average of the independent spatial processes of
each factor and landslides, with varying degrees of spatial non-stationarity, as shown in
Figure 12. The convergence rate of the two models was similar under the same scale effect,
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and there was no continuous decline in AICc values. The weighting is a function of the
explanatory ability of each relationship in the local model.
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5.6. Validation and Accuracy Assessment

The whole dataset was input into the ROC calculation tool of origin software to obtain
the ROC curve and AUC value. The accuracy of the model prediction was validated
by the AUC and other statistical indicators, shown in Table 3. The bandwidth selection
criterion of the basic GWR model was the minimum AICc value, and the bandwidth
selection criterion of the MGWR and PCAMGWR models was SOC-f dissimilarity, but
the AICc value could still be enumerated. Therefore, The AICc value served as a valid
indicator of the model prediction. The PCAMGWR model had the minimum AICc value
of 78,291.042 and indicated the maximum accuracy of bandwidth selection and model
prediction, with the AIC value also being the minimum, while the BIC value was inferior
to GWR. The ROC curves of various models are drawn in Figure 13, and the AUCs of
Global Linear Regression (GLR), Logistic Regression (LR), GWR, PCAGWR, MGWR, and
PCAMGWR were, respectively, 0.69263, 0.7458, 0.82128, 0.83707, 0.90352, and 0.90355. The
MGWR model considering multiscale bandwidth showed a significant improvement in
the accuracy of prediction results compared with the GWR model. Consequently, spatial
non-stationarity scale variances were subsistent between LCFs in the study area, and it is
significant to identify spatial non-stationarity scale effects in LSA.

Table 3. Accuracy statistics of models.

Model AIC AICc BIC AUC

PCAMGWR 78,228.039 78,291.042 85,829.127 0.89773
MGWR 78,232.004 78,295.213 85,845.297 0.89771

PCAGWR 78,682.364 78,696.459 82,307.355 0.83198
GWR 78,785.304 78,794.218 81,672.072 0.81701
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Figure 13. Area under the ROC for different models. Figure 14a shows the convergence of SOC-f
during the fitting of the back-fitting algorithm for the MGWR model and PCAMGWR model. The
speedy convergence rate means that bandwidth was not chosen at each iteration step, and the
optimization stopped at convergence inversely. It can be seen from Figure 14b that the optimal
bandwidth was selected based on AICc at a slow convergence, and the AICc value did not continue to
decline. It is hard to differentiate the SOC-f of PCAMGWR and MGWR models in detail, and the
PCAGWR model represented by the black dot plot was better than the GWR model regarding the
convergence of AICc values.



Water 2022, 14, 881 18 of 22

Water 2022, 14, x FOR PEER REVIEW 18 of 23 
 

 

Table 3. Accuracy statistics of models. 

Model AIC AICc BIC AUC 

PCAMGWR 78,228.039 78,291.042 85,829.127 0.89773 

MGWR 78,232.004 78,295.213 85,845.297 0.89771 

PCAGWR 78,682.364 78,696.459 82,307.355 0.83198 

GWR 78,785.304 78,794.218 81,672.072 0.81701 

 

Figure 13. Area under the ROC for different models. Figure 14a shows the convergence of SOC-f 

during the fitting of the back-fitting algorithm for the MGWR model and PCAMGWR model. The 

speedy convergence rate means that bandwidth was not chosen at each iteration step, and the opti-

mization stopped at convergence inversely. It can be seen from Figure 14b that the optimal band-

width was selected based on AICc at a slow convergence, and the AICc value did not continue to 

decline. It is hard to differentiate the SOC-f of PCAMGWR and MGWR models in detail, and the 

PCAGWR model represented by the black dot plot was better than the GWR model regarding the 

convergence of AICc values. 

  

Figure 14. Parameter variation diagram of bandwidth judgment criterion: (a) SOC-f for MGWR and 

PCAMGWR, (b) AICc for GWR and PCAGWR. 

6. Discussion 

Landslides are a major geohazard, causing casualties and economic losses. Therefore, 

it is necessary to establish a suitable model to assess landslide susceptibility and make a 

landslide zoning map. The assessment methods and models of landslide susceptibility 

have been discussed in many studies. For example, a comparative study of WOE, AHP, 

ANN, and GLR procedures for landslide susceptibility zonation is presented in [69].WOE 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 PCAGWR      AUC=0.83707

 GWR             AUC=0.82128

 MGWR          AUC=0.90352

 PCAMGWR  AUC=0.90355

 LR                 AUC=0.7458

 GLR              AUC=0.69263

 

 

S
e
n

s
it
iv

it
y

1-Specificity

Figure 14. Parameter variation diagram of bandwidth judgment criterion: (a) SOC-f for MGWR and
PCAMGWR, (b) AICc for GWR and PCAGWR.

Meanwhile, the assessment results of the PCAGWR compared with GWR provided
a significant priority ranking. The assessment results of the PCAGWR model were more
accurate than those of GWR regarding the elimination of local collinearity. The AUC of
PCAMGWR increased less than that of MGWR, and the PCA had a minor role in collinearity
elimination for the PCAMGWR model, which is reflective of the fact that the MGWR model
could eliminate most of the local collinearity of LCFs to improve the prediction accuracy of
landslide susceptibility.

6. Discussion

Landslides are a major geohazard, causing casualties and economic losses. Therefore,
it is necessary to establish a suitable model to assess landslide susceptibility and make a
landslide zoning map. The assessment methods and models of landslide susceptibility
have been discussed in many studies. For example, a comparative study of WOE, AHP,
ANN, and GLR procedures for landslide susceptibility zonation is presented in [69]. WOE
can assess the impact of different classes of each LCF, but neglects the correlation between
LCFs. The logistic regression (LR) method is a static susceptibility model that has limited
application for predicting future landslide probability under potential rainfall events [70].
Moreover, LR is capable of analyzing the relationship among the LCFs, but it is not able to
evaluate the impact of different classes [71]. A support vector machine (SVM) is a machine
learning algorithm that uses a small number of samples, but a high-quality informative
database is essential to improve model performance [72].

Compared with the assessment method of LSA, the study of the essential attribute,
namely the spatial non-stationarity, of the landslide as a geospatial phenomenon is insuffi-
cient. At present, a small number of scholars have carried out studies on the consideration
of spatial non-stationarity and the application of the GWR idea in LSA, and have proved
that the GWR model is superior to some traditional models, such as global linear regression
(GLR) [21,33], ANN and OLS [73], SVM [74], and SR [30]. However, there is a research
gap in the study of the non-stationarity scale of the spatial relationship between landslides
and LCFs.

This study mainly discusses the influence of spatial non-stationarity on LSA results
and the difference of spatial non-stationarity scale among different factor combinations. In
addition, spatiotemporal non-stationarity is rarely considered in the study of geospatial
data, especially in the field of geological hazard assessment. In this study, only spatial
non-stationarity was considered. Therefore, time may be introduced into non-stationarity
in geospatial data studies. The analysis of the impact of scale variance on model prediction
accuracy is a main area of focus. The impact of such variance is more directly reflected in
the spatial differentiation of regression coefficients, which is a shortcoming in the present
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study. In addition, the studies regarding GWR and MGWR models take full datasets as
the model input without considering the division of training set and testing set [21,75,76].
The indicators which are generated during the model run, such as AICc, are generally
used for model performance testing, and the present study also verified the assessment
accuracy using these indicators. However, most LSA studies divide the training set and
testing sets, and future studies can thus focus on the comparison between analysis with
and without division methods. On the other hand, the present study analyzed the spatial
non-stationarity scale of landslide susceptibility using GAM-style MGWR. Thus, future
studies can explore the interaction effects and nonlinear relationships. Moreover, the LSMs
were related to zoning methods, and the quantile method was selected for the zoning of
the landslide susceptibility map, which may have reduced the accuracy. All data used
for model input were normalized, and the influence of the normalization process on a
non-stationarity scale is uncertain, which affects the explanatory power of the model. The
degree of elimination of local collinearity by the MGWR model may have been related to
the composition of LCFs, which needs to be further studied. These limitations may further
give rise to uncertainties in LSA.

7. Conclusions

Geospatial data may lead to the spatial non-stationarity process, and the scale at
which each independent variable affects a dependent variable may vary according to the
independent variables. The present study thus considered spatial non-stationarity and scale
variations in LSA using a PCAMGWR model. The results indicated that the PCAMGWR
model provides more reliable information for LSA than other GWR models and achieves a
higher accuracy in LSM by performing better at alleviating residual autocorrelation.

The present study determined the respective bandwidths for each independent vari-
able and revealed the association between the independent variables and landslide suscep-
tibility using the PCAMGWR model. The model relaxes the single-bandwidth assumption
of the basic GWR model and allows independent variable-specific bandwidths to be opti-
mized. The results demonstrated that there are scale variations in LSA. For example, PC2
affected the landslide susceptibility at a local scale, namely the local parameters associ-
ated with the variable varied across space. The basic GWR model was outperformed at
differentiating such scale variations and can be substituted by PCAMGWR.

Moreover, according to the AUCs, compared to GLR and LR, the PCAMGWR and
MGWR models can better analyze the impacts of non-stationarity scale variation and factor
correlation on LSM than GWR and PCAGWR. The four models with and without the
elimination of factor correlations were compared, and it was indicated that the PCAGWR
and PCAMGWR models benefited from the elimination of factor correlations by PCA,
and the PCAMGWR model was preferred to PCAGWR because the scale variation of
spatial non-stationarity had a greater impact than factor correlation. Meanwhile, the
MGWR and PCAMGWR models benefited from the consideration of the scale variation,
and PCAMGWR was preferred to MGWR. Spatial statistical models are useful for analyzing
the determinants of landslide susceptibility by considering spatial dependency and spatial
heterogeneity. The present study reveals the superiority of a new approach, namely the
PCAMGWR model, to consider the spatial characteristics, non-stationarity scale variations,
and factor correlations.
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