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Abstract: Drought is a severe natural hazard all over the world, resulting in enormous losses in many
aspects, especially in agriculture. It is essential to analyze the spatio-temporal variation of drought
and its relationships with the El Niño-Southern Oscillation under a background of global climate
change for better drought prevention. The Songhua River Basin (SHRB), which is an important food
base in northeastern China that suffered a severe drought in 2020, was chosen as the research site.
The standardized precipitation evapotranspiration index (SPEI) was chosen as the drought index
to analyze the spatio-temporal variation of droughts in the SHRB by linear regression analysis and
T-test using the meteorological data from 1960 to 2019. The cross-wavelet analysis was adopted
to reveal the relationship between the SPEI and El Niño-Southern Oscillation indexes (the Niño
1+2 SST Index (SST1), Niño 3 SST Index (SST2), Niño 3.4 SST Index (SST3), Niño 4 SST Index (SST4),
and Southern Oscillation Index (SOI)). The results reveal that the changing trends of yearly, spring,
summer, autumn, and winter precipitation were 0.56, 1.47 (p < 0.05), 0.13, 0.04, and 0.16 (p < 0.05)
mm/a, respectively; the precipitations were higher in the southeastern regions and lower in the
western regions, with extreme values of 831.62 mm and 381.69 mm, respectively. The SPEI was
significantly increased (p < 0.05) with a gradient of 0.01/a on a yearly scale and were increased in all
seasons (significant in winter (p < 0.05)). The drought probability on a yearly scale was dominated
by summer and autumn. The SPEI was positively correlated with SST1, SST2, SST3, and SST4 in a
different period with a different resonant period and was negatively correlated with the SOI with a
short-term period for 3–4 years from 1986 to 1990 and a long-term period for 9–12 years from 1992 to
2010. These results could provide a scientific guide for drought prevention in the SHRB.

Keywords: drought; SPEI; ENSO; cross-wavelet analysis; the Songhua River basin

1. Introduction

Droughts are natural catastrophes that occur as a result of a long-term deficit of water [1,2].
They vary from floods and other natural disasters in that they normally develop slowly,
which could affect local ecology, agriculture, and economic development [3–5]. In general,
droughts can be separated into four categories by the formation stage of the drought:
meteorological drought, hydrological drought, agricultural drought, and socioeconomic
drought [6]. A long-term meteorological drought would result in a hydrological drought, a
hydrological drought would result in a reduction of agricultural water consumption, lead
to an agricultural drought, and finally result in the reduction in crop yields, further forming
a socioeconomic drought [7–9].

In recent years, droughts have become a research hotspot all over the world, giving
rise to many types of research about drought. The main tool to describe drought is the
drought index, and the most used drought indexes are the standardized precipitation
index (SPI) [10], the standardized precipitation evapotranspiration index (SPEI) [11], the
Palmer drought index (PDSI) [12], and some other integrated indexes [13,14]. Compared
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to the SPI, the SPEI considers both the precipitation and potential evapotranspiration,
which could describe drought by more characteristics. The SPEI has been widely used in
previous studies. Tan et al. [15] used the SPEI to explore the drought variation in Ningxia
province, China, and found that the annual SPEI decreased by 0.37/10a from 1972 to 2011.
Bae et al. [16] calculated the SPEI for eight stations in South Korea and found that the SPEI
increased significantly from 1981–1995 to 1996–2010. Jin et al. [17] used the SPEI as a tool to
analyze the spatio-temporal variation of droughts in the Zoige Wetland, Southwest China,
and found that the SPEI was decreased by 0.142/10a from 1961 to 2016. Many scholars
investigated the variation of SPEI, and most of them obtained a decreased trend of SPEI,
which indicated that the drought events mainly exhibited an increasing trend in most
regions, which was also pronounced by Chen et al. [18]. It is important to evaluate the SPEI
variation for better drought prevention, especially in agricultural regions.

Under the trend of global climate change, it is reported that a series of measures
should be conducted to control the mean surface warming below 1.5 ◦C [19]. Under this
condition, the occurrence and frequency of extreme rainfall events would be increased in
the future [20]. However, drought is affected by many factors besides rainfall, and it is
still unclear whether drought events would be more frequent and severe in the future [21].
Large-scale atmospheric circulation was the previous change index for climate change,
and many climatic factors were affected by the large-scale atmospheric circulation [22–24].
Hence, many researchers investigate the relationships between these large-scale atmosphere
circulations and drought. The El Niño-Southern Oscillation is one of the factors that most
concerned previous researchers of drought. Mo and Schemm [25] used the meteorological
data from 1915 to 2006 to reveal the relationship between the ENSO event and drought
events, and the results showed that the cold ENSO events are more likely to initiate
droughts. Wang and Kumar [26] assessed the relationship between precipitation, drought,
and ENSO in the southwestern US, and the results revealed that the changes in ENSO could
affect the characteristics of precipitation and further change the frequency and intensity of
drought in these regions. Zhou et al. [27] evaluated the relationships between ENSO and
droughts for 48 ecogeographical regions in China, and found that drought was strongly
correlated with ENSO in most regions The correlation was highest in Jiangnan regions, and
these correlations between agricultural drought and ENSO exist with a lag time. These
previous studies all indicated that a correlation exists between ENSO and drought.

The Songhua River Basin (SHRB) is located in northeastern China, an important food
production base of China. About 37% of the total area in the SHRB was agricultural land,
and, as reported by the China Flood and Drought Disaster Prevention Bulletin [28], the
agricultural land affected by drought within northeastern China was up to 4.3 × 104 km2

in 2020. Though the previous study carried out by Faiz et al. [29] has already analyzed the
future SPEI changes under different emissions scenarios in the SHRB, it did not discuss
the historical change trend in detail, nor discussed the correlation with ENSO. Under the
background of global climate change, the change of drought in the SHRB is unclear. It is
of significant importance to investigate the spatio-temporal variations of drought in the
SHRB, for better agricultural drought prevention.

The aims of this study are: (1) analyze the spatio-temporal change trend of the pre-
cipitation in the SHRB on multiple time scales from 1960 to 2019; (2) analyze the temporal
variation on multiple time scales from 1960 to 2019; (3) analyze the frequency changes of
the drought events on multiple time scales from 1960 to 2019; (4) discuss the correlation
between the SPEI and El Niño-Southern Oscillation indexes; (5) discuss the relationship
between precipitation and SPEI; and (6) discuss the effect of drought on agriculture.

2. Study Area

The Songhua River Basin (SHRB) is located in northeastern China (Figure 1), with a
range between 119◦52”–132◦31” E and 41◦42”–51◦38” N and an area of 5.55 × 105 km2.
The elevation of the SHRB ranges from 5–2617 m, and the northwestern and southeastern
SHRB are dominated by mountainous topography, while the plain is concentrated in the
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middle SHRB. The SHRB is located in the north temperate monsoon climate zone, the
average annual temperature is 3–5 ◦C, which obviously varies within the year, the annual
average precipitation is about 500 mm, and about 60–80% of the total annual precipitation
is concentrated in the flood season (June–September). The spatio-temporal differences
of precipitation and temperature in the SHRB are significant, which would result in the
extreme climatic event.
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Figure 1. Location and elevation distribution of the SHRB and the distribution of the weather stations
used for this study.

The main land use within the SHRB is agricultural land and forest, with proportions
of 37% and 39%, respectively, in 2015. The main crops within the SHRB are soybeans, corn,
sorghum, and wheat. Its fertile soil makes it be an important crop base of China. During
2020, the agricultural land affected by drought within northeastern China measured up to
4.3 × 104 km2 [28]. With the prospect of significant climate change, the historical drought
characteristic and its relationship with large-scale climatic indexes should be understood
for better agriculture production and sustainability.
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3. Data and Methods
3.1. Data

The daily weather data (including precipitation, temperature, solar radiation, sunshine
duration, and wind speed) were obtained from the National Meteorological Science Data
Center (https://data.cma.cn/, accessed on 4 March 2022), and the period for these data
was 1960–2019. Weather data from 61 weather stations were used in this research, which
were located within the SHRB or near the boundary of the SHRB. The distribution of these
weather stations is shown in Figure 1. The El Niño-Southern Oscillation was represented
by the Niño 1+2 SST Index (SST1), Niño 3 SST Index (SST2), Niño 3.4 SST Index (SST3),
Niño 4 SST Index (SST4), and Southern Oscillation Index (SOI), which was released by the
NOAA ESRL Physical Sciences Laboratory. The first four indexes are associated with El
Niño, and the last one is associated with the Southern Oscillation. Series from 1960 to 2019
of these five indexes were obtained from the website (https://psl.noaa.gov/gcos_wgsp/,
accessed on 4 March 2022) For a more detailed description of these indexes, refer to that
website. The MEI index was obtained from https://psl.noaa.gov/enso/mei/ (accessed on
4 March 2022).

3.2. The Standardized Precipitation Evapotranspiration Index

The standardized precipitation evapotranspiration index (SPEI) is calculated using
the precipitation and potential evapotranspiration (PET) [12]. Potential evapotranspiration
(PET) is the amount of evaporation and transpiration that would occur if a sufficient water
source were available. The calculation methods of the SPEI are as follows:

1. First, the PET was calculated using the Penman–Monteith model as shown below:

ET0 =
0.408∆(Rn − G) + γ 900

T+273 U2(es − ea)

∆ + γ(1 + 0.34U2)

where ET0 is the reference crop evapotranspiration, mm/d; Rn is the net radiation
on the canopy surface, MJ/(m2·d); G is the soil heat flux, MJ/(m2·d); T is the aver-
age temperature, ◦C; es is the saturation vapor pressure, kPa; ea is the actual vapor
pressure, kPa; ∆ is the slope of the tangent line of the saturation vapor pressure—
air temperature relationship curve at the temperature, kPa/◦C; γ is the hygrometer
constant, kPa/◦C; and U2 is the wind speed above the ground, m/s.

2. Then, the difference between the monthly precipitation and PET was calculated using
the following equation:

Di = Pi − PETi (2)

where Di is the difference between the precipitation and PET at the time i and Pi and
PETi are the monthly precipitation and PET at the i time.

3. Next, the difference of the precipitation and evapotranspiration at different time scales
was calculated using the equation mentioned below:

Dk
n =

k−1

∑
i=0

(Pn−i − PETn−i) , n ≥ k (3)

where k is the time scale (1 month, 3 months, and 12 months) and n is the
calculation frequency.

4. Next, the three-parameter log-logistic probability distribution was used to normalize
the D series and to further calculate the SPEI. For each D value, the normalized value
was calculated as follows:

F(x) = [1 + (
α

x− γ
)

β
]
−1

(4)

https://data.cma.cn/
https://psl.noaa.gov/gcos_wgsp/
https://psl.noaa.gov/enso/mei/
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The parameters mentioned before were calculated with the following equations:

α =
(ω0 − 2ω1)β

Γ(1 + 1/β)Γ(1− 1/β)
(5)

β =
2ω1 −ω0

6ω1 −ω0 − 6ω2
(6)

γ = ω0 − αΓ(1 + 1/β)Γ(1− 1/β) (7)

where Γ is a factorial function and ω0, ω1, ω2 is the probability-weighted moment of
D data series:

ωs =
1
N

N

∑
i=1

(1− Fi)
sDi (8)

Fi =
i− 0.35

N
(9)

where N is the number of months in the calculation.
5. Finally, the cumulative probability density was standardized as follows:

P = 1− F(x) (10)

When the cumulative probability P ≤ 0.5:

ω =
√
−2 ln(P) (11)

SPEI = ω− c0 + c1ω + c2ω2

1 + d1ω + d2ω2 + d3ω3 (12)

where the constants c0, c1, c2, d1, d2, d3 were assigned the values of 2.515517, 0.802853,
0.010328, 1.432788, 0.189269, and 0.001308, respectively [30].

According to the previous studies [30,31], the standard of the ranges of the SPEI for
each state of drought and wet is shown in Table 1.

Table 1. The index standard of the state of drought and wet and the range of the SPEI.

The State of Drought and Wet Range of the SPEI

Wet 0.5 < SPEI
Normal −0.5 < SPEI ≤ 0.5

Slight drought −1.0 < SPEI ≤ −0.5
Middle drought −2.0 < SPEI ≤ −1.0
Extreme drought SPEI ≤ −2.0

3.3. Analysis Methods

In this study, the precipitation and SPEI were calculated on different time scales and
interpolated within space by the inverse distance-weighted (IDW) method [32]. The trend
analysis was performed on a basin scale. The linear regression analysis [33] was adopted
to analyze the historical trend of precipitation and SPEI and the correlation between
precipitation and SPEI in the SHRB, and the F-test [34] was adopted to test the significance
of these trends and correlation. Besides, the modified Mann–Kendall test [35] was used to
validate the trends of these variables, and the Z-value of the variable showed a significant
trend (p < 0.05). The cross-wavelet analysis is widely used in identifying the historical
correlation between different factors, especially the meteorological factors in hydrological
fields [36–38]. In this study, it was adopted to analyze the relationships between the
different El Niño-Southern Oscillation indexes and SPEI. A more detailed basic description
of the cross-wavelet analysis can be referred in a previous study [39]. The cross-wavelet
analysis in this paper was carried out in the Matlab 2019 software.
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4. Results
4.1. Spatio-Temporal Distribution of Precipitation

Figures 2a and 3a–d show the annual and seasonal precipitation variation in the SHRB.
The average annual, spring, summer, autumn, and winter precipitation were 527 mm,
76 mm, 348 mm, 87 mm, and 14 mm, respectively. The average seasonal precipitation
was ranked as summer > autumn > spring > winter, with about 66% of the total annual
precipitation concentrated in summer. The changing trends of yearly, spring, summer,
autumn, and winter precipitation were 0.56, 1.47 (p < 0.05), 0.13, 0.04, 0.16 (p < 0.05) mm/a,
respectively, which indicates that the precipitation increased in these time scales. Their
trend could also be validated by the results from Table 2. The Z-values of the spring
and winter precipitation were 1.9 and 1.86, respectively, both significant at a confidence
interval of 95% (Table 3) As shown in Table 4, the highest average monthly precipitation
appeared in July, with a value of 146.08 mm, and the lowest average monthly precipitation
appeared in January, with a value of 3.45 mm. The temporal variation was significant in
different months. The monthly precipitation increased in all months except August and
September, and the increase in precipitation was significant (p < 0.05) in February, March,
May, November, and December. As to the results shown in Table 2, the July precipitation
also showed a decreasing trend, and the increase in precipitation was significant (p < 0.05)
only in June and December due to differences in the two methods. In summary, the
precipitation increased in the SHRB at almost all temporal scales.
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Table 2. Statistics of the Z-value of the MMK test for precipitation and SPEI on yearly and seasonal scales.

Time Period
Z-Value

Precipitation SPEI

Spring 1.9 * 2.04 *
Summer 0.1 1.82 *
Autumn −0.47 0.56 *
Winter 1.86 * 2.09 *
Annual 0.82 1.65 *

The symbol of * indicates a trend that has passed the 95% significance test.

Figure 4 shows the spatial distribution of the yearly and seasonal precipitation. We
can find that the spatial distribution characteristic of precipitation on a yearly scale and a
monthly scale were similar. The precipitation in the SHRB was higher in the southeastern
regions, with the highest value of 831.62 mm, and lower in the western regions, with the
lowest value of 381.69 mm. The highest precipitations were 162.55, 502.07, 155.11, and
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39.08 mm in spring, summer, autumn, and winter, respectively; and the lowest precipi-
tations were 47.29, 273.39, 51.19, and 4.57 mm in spring, summer, autumn, and winter,
respectively. The spatial difference was almost consistent during all seasons.
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Figure 3. Seasonal precipitation and SPEI series within the SHRB from 1960 to 2019. (a–d) show the
precipitation series within the SHRB in spring, summer, autumn, and winter, respectively. (e–h) show
the SPEI series within the SHRB in spring, summer, autumn, and winter, respectively.

Table 3. Z-values of the MMK test for precipitation and SPEI on a monthly scale.

Time Period
Z-Value

Time Period
Z-Value

Precipitation SPEI Precipitation SPEI

January 0.88 1.98 * July −0.99 1.15
February 0.79 2.44 * August −0.6 0.08

March 1.53 −0.45 September −1.03 −0.38
April 0.67 0.89 October 1.24 1.75 *
May 1.09 1.74 * November 1.31 0.86
June 2.15 * 2.65 * December 1.88 * 1.68 *

The symbol of * indicates a trend that has passed the 95% significance test.
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Table 4. Monthly average precipitation and the trend of precipitation and SPEI within the SHRB.

Month
Precipitation SPEI

Month
Precipitation SPEI

Mean Value Trend Trend Mean Value Trend Trend

January 3.45 0.02/a 0.02/a ** July 146.08 0.3/a 0.004/a
February 4.14 0.04/a * 0.009/a August 115.96 −0.07/a 0.002/a

March 8.91 0.08/a * −0.0009/a September 53.63 −0.12/a 0.0009/a
April 21.98 0.02/a 0.003/a October 23.70 0.02/a 0.006/a
May 45.74 0.31/a * 0.009/a November 10.19 0.09/a * 0.005/a
June 87.58 0.38/a 0.009/a December 6.07 0.09/a * 0.01/a

The symbol of * and ** indicates a trend that has passed the 95% and 99% significance test, respectively.
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4.2. Temporal Variation of the SPEI

As shown in Figure 2, the trend of the annual SPEI significantly increased (p < 0.05)
with a gradient of 0.01/a. From 1960 to 2019, there were 14a with a drought state. Among
these drought years, about 29% were at a middle drought, and about 71% were at a slight
drought. The most severe drought year was 1975, and the wettest year was 2013. For a
seasonal scale (Figure 3e–h), the SPEI in the SHRB were increased in all seasons, with a
significant increase in winter (p < 0.05). The changing trend of the SPEI in spring, summer,
autumn, and winter was 0.009/a, 0.009/a, 0.003/a, and 0.001/a, respectively. As shown in
Table 2, the trend of the SPEI was also significant on a yearly and seasonal scale when using
the MMK method. The number of years that suffered a drought state in spring, summer,
autumn, and winter was 12, 15, 15, and 17, respectively. The drought on a season scale was
a little more frequent than on a yearly scale in summer, autumn, and winter. This indicated
that the SHRB was more likely to suffer a drought in these three seasons, especially in
winter. As shown in Table 2, the monthly SPEI increased in almost all months except
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March, with a gradient of −0.0009/a and was significantly increased (p < 0.01) in January,
with a gradient of 0.02/a. However, in Table 3 the monthly SPEI significantly increased
(p < 0.05) in January, February, May, June, October, and December, with Z-values of 1.98,
2.44, 1.74, 2.65, 1.75, and 1.68, respectively. The highest change trend in monthly SPEI was
in December, with a value of 0.01/a. In summary, the SPEI increased in the SHRB on almost
all temporal scales except in March. This indicated the SHRB had a wetting trend from
1960 to 2019.

4.3. Frequency of Drought Events with Different Time Scales

Figure 5 shows the statistic of the amount of drought months for each year. Severe
drought occurred in 1966, 1967, 1982, 1989, and 2019, when six months of drought were
experienced. The years without drought were 1986, 2013, and 2018. It is noteworthy that
there was no drought in 2018, but drought occurred for six months in 2019. The overall
trend of the drought months decreased, as shown in the slip 10a drought month line in
Figure 5. The average drought months in a year before 1980 was about 3–4 months, but
from 1980 to 2019, the average drought months in a year was about 2–3 months. Compared
to the drought months in these two periods, the drought months in a year from 1980 to
2019 was less than that from 1960 to 1979.
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Figure 6 shows the frequency of different states for each period from 1960 to 2019.
The frequencies of drought, normal, and wet for all periods were 20–31%, 39–58%, and
20–32%, respectively. The frequency range of the drought and wet states were close in this
period. The highest and lowest drought frequency happened in February (31%) and spring
(20%), respectively. February was the only period that suffered extreme drought. The
drought in each period were mainly classified into slight drought and middle drought, with
frequencies of 10–25% and 3–14%, respectively. The highest and lowest wet frequencies
happened in autumn (32%) and October (20%), respectively.

Figure 7 shows the spatial distribution of the drought probability. The drought proba-
bility varied from 25 to 39.99% within the SHRB on a yearly scale, and ranged from 27.12 to
40.68%, 23.73 to 40.68%, 27.12 to 38.98%, and 25.42 to 44.07% in spring, summer, autumn,
and winter, respectively. The drought probability distribution on a yearly scale was similar
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to that in summer and autumn. The drought probability during these three periods was
higher in the southern and mideastern regions and lower in the western regions. The
drought probability in spring was higher in the midwestern regions and lower in the
eastern and southern regions. As to winter, the drought probability was higher in the
southwestern regions. These results may indicate that the drought probability on a yearly
scale was dominated by summer and autumn.
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4.4. Correlation between the SPEI and El Niño-Southern Oscillation Indexes

The XWT describes the link between the climate indexes and SPEI from time-frequency
space by varying the power spectrum and phase structure (Figure 8). The colored stripes in
these graphs depict the wavelet power spectrum, and a thick black contour represents the
resonant period that passed a 95 percent significance test. The relative phase relationship is
represented by arrows: “→” indicates that the variation of the climatic indexes and SPEI
are positively correlated; “←” indicates that both of the factors are negatively correlated;
“↓” indicates that the variation of SPEI lags behind that of the climatic indexes with one-
fourth of the resonant period; and “↑” indicates that the variation of SPEI is ahead of the
climatic index with one-fifth of the resonant period [40,41]. Only the resonant period inside
the COI was examined in XWT, which was influenced by the edge effect.

As shown in Figure 8, the relationship between SPEI and SST1 and between SPEI
and SST2 was similar. Two significant resonant periods exist between them: a short-term
period for 2–4 years and 5–6 years occurred from 1982 to 1990 and from 1994 to 2002,
respectively. From 1982 to 1990, the SPEI was positively correlated with SST1 and SST2
with a lead time, while from 1994 to 2002, the SPEI was positively correlated with SST1
and SST2 synchronously. There were two significant resonant periods between SPEI and
SST3: a short-term period for 2–4 years from 1984 to 1992 and a long-term period for
9–10 years from 2000 to 2008. From 1984 to 1992, the SPEI was positively correlated with
SST3 with a lead time, while from 2000 to 2008, the SPEI was positively correlated with
SST3 synchronously. There were three significant resonant periods between SPEI and SST4:
a short-term period for 2–4 years from 1982 to 1992 and long-term periods for 9–12 years
and 13 years from 1994 to 2010 and from 1978 to 1986, respectively. From 1982 to 1992 and
from 1982 to 1992, the SPEI was positively correlated with SST4 with a lead time, while
from 1994 to 2010, the SPEI was positively correlated with SST4 synchronously. All in all,
on the 95% confidence interval, the SPEI was positively correlated with the SST1, SST2, and
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SST3 from 1960 to 2019, while the relationship between the SPEI and the SST4 was negative
before 1988 and positive after 1988.
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There were two significant resonant periods between SPEI and SOI: a short-term period
for 3–4 years from 1986 to 1990 and a long-term period for 9–12 years from 1992 to 2010.
From 1986 to 1990, the SPEI was negatively correlated with SOI with a lag time, while
from 1992–2010, the SPEI was negatively correlated with SOI synchronously. On the
95% confidence interval, the SPEI was negatively correlated with the SOI index, which is
opposite to the correlation between SPEI and SST.

5. Discussion
5.1. Relationship between Precipitation and SPEI

A lack of precipitation is one of the most important driving factors in the formation
of drought [42], which is easier to estimate compared to other driving factors, such as
evapotranspiration, soil moisture content, etc. Drought mainly formed due to water
deficit; among all driving factors, precipitation is the only water input source, and other
factors are all consumed water resources. It is important to investigate the relationship
between precipitation and SPEI for a better understanding of the effect of precipitation
on drought [43,44].

In our research site, a linear regression analysis of the precipitation and SPEI was
carried out on multiple time scales, including annual, seasonal, and monthly scales, using
the data from 1960 to 2019. The results are shown in Figure 9 and Table 5. The precipitation
was positively correlated with SPEI on all time scales. On a yearly scale, the precipitation
was correlated with SPEI with an R-value of 0.31, which passed the confidence level of 99%.
On a seasonal scale, the precipitation was correlated (p < 0.01) with SPEI with a R-values
of 0.44, 0.79, and 0.66 in spring, summer, and autumn, respectively. As to winter, the
precipitation had no correlation with SPEI, with a confidence level of 95%. However,
among these yearly and seasonal scales, the changing trend of the SPEI response to the
change of precipitation was largest, with a value of 0.022. As to the relationship in summer,
the correlation between precipitation and SPEI was obvious, but the changing trend was
the lowest, with a value of 0.008. The SPEI was calculated by the precipitation and potential
evapotranspiration. This difference in change trend may be caused by the differences in
the total precipitation and potential evapotranspiration value in each period. The higher
value of precipitation in summer results in a high correlation and the higher value of
potential evapotranspiration in summer results in a lower change trend in the response of
SPEI to precipitation. This was also reflected in the relationship on a monthly scale; the
precipitation and SPEI were correlated with SPEI (p < 0.01) on a monthly scale except for
January, February, November, and December. The precipitation was correlated with SPEI
in December (p < 0.05).

The water resource replenishment in a region is mainly from precipitation. The water
is consumed for plant growth and human activities, mainly from surface runoff, reservoir,
and soil moisture [45,46]. During spring, summer, and autumn, the precipitation was much
higher than that during winter. The largest amount of water consumed in winter was
mainly from the previous water storage in some low-precipitation periods [47], which
resulted in the low correlation between precipitation and SPEI in winter. Besides this, the
propagation time between precipitation to water use may also lead to an uncorrelation
between precipitation and SPEI in some periods [8,48].

Table 5. Correlation coefficient between precipitation and SPEI on a monthly scale.

Month R Month R

January 0.008 July 0.71 **
February 0.04 August 0.86 **

March 0.44 ** September 0.76 **
April 0.59 ** October 0.39 **
May 0.67 ** November 0.05
June 0.82 ** December 0.32 *

The symbols of * and ** indicate the trend that has passed the 95% and 99% significance tests, respectively.
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5.2. Effect of the El Niño-Southern Oscillation on Drought

In this study, the relationship between SPEI and some climatic indexes (SST1, SST2,
SST3, SST4, and SOI) related to the El Niño-Southern Oscillation have been revealed. In our
results, the SPEI was positively correlated with SST1, SST2, SST3, and SST4, in a different
period with a different resonant period. Moreover, the SPEI was negatively correlated with
the SOI for a short-term period of 3–4 years from 1986 to 1990 and a long-term period for
9–12 years from 1992 to 2010. In general, SST1, SST2, SST3, and SST4 almost all have a
short-term period of 2–4 years with SPEI during the 1980s and a lead time exists in these
correlations. The difference is mainly in the long-term resonant periods. These results
reveal that if the El Niño index increased in the future, the SPEI would increase with some
probability; while if the Southern Oscillation index increased in the future, the SPEI would
decrease with some probability. A decrease in the El Niño index or an increase in the
Southern Oscillation index could result in a drought event.

In other regions, researchers also investigated the relationship between ENSO and
SPEI. Islam et al. [49] found that the SPEI was negatively correlated with ENSO from
1980 to 2017 in Bangladesh, but the correlation was not significant. Sun et al. [50] found
that the SPEI was positively correlated with SSTA of the Nino3.4 region from 1961 to 2014 in
Anhui province, China. Aryal and Zhu [51] investigated the relationship between drought
and ENSO events in the US and found that drought was more likely to happen during the
negative phase of the ENSO. Besides, there is also much literature about the relationship
between the SPEI and ENSO [52–54]. They also obtain different conclusions about this topic
in different regions. This shows that the effect of the El Niño-Southern Oscillation on SPEI
is varied in different regions. Understanding the correlation between the El Niño-Southern
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Oscillation indexes and SPEI could promote drought prediction under a background of
global climate change [54–56].

El Niño and La Niña are the two main results brought by the El Niño-Southern
Oscillation, the temporal SPEI, and El Niño and La Niña years from 1979 to 2019 within the
SHRB, as shown in Figure 10. It is obvious that the SPEI was higher during the El Niño years
and lower during the La Niña years. This phenomenon was more significant before 2000,
and less significant after 2000. During the La Niña years (2008, 2010, and 2011) there with a
wet state and the values of SPEI were higher than 0. These results further proved that the El
Niño-Southern Oscillation was an influencing factor for drought monitoring. Such research
has also been conducted in other regions. Gao et al. [57] reported that the severe drought
event in northern China in winter 2008–2009 was mainly influenced by La Niña and the
Tibetan Plateau, Rodrigues et al. [58] revealed the reasons why the 2011–2012 La Niña
caused a severe drought in the Brazilian northeast, and You et al. [59] found that La Niña
could reduce the runoff and further increase the probability of drought events. These all
have consistent results with our research that La Niña could increase the risk of drought.
On the contrary, some research also has converse results that El Niño could also cause
drought events in some regions [60,61]. The influence of the El Niño-Southern Oscillation
on climate is complicated and varies in different regions, which need more investigation.

Water 2022, 14, x FOR PEER REVIEW  15  of  19 
 

 

 

Figure 10. The annual SPEI and El Niño and La Niña years from 1979 to 2019 within the SHRB. 

5.3. Effect of the Drought on Agriculture 

Drought has resulted in much loss in the local economy, especially in agriculture [51]. 

Meteorological drought would propagate into hydrological drought and further propa‐

gated into agricultural drought, and finally, lead to a reduction in crops [9,62]. In China, 

many researchers have investigated crop reduction in drought. Li et al. [63] found that the 

SPEI on a different scale could affect the crop yields of wheat, maize, and cotton in Xin‐

jiang, China. Zhang et al. [64] found that extreme drought could reduce maize yields with 

a high probability. Guo, Liu, Zhang, Wang, Wang, Wang, and Li [4] evaluated crop re‐

duction under a background of different RCP scenarios and found that the maize yields 

would be decreased in northeast China. Jia et al. [65] and Wu et al. [66] found that the 

drought events would decrease the maize production in southwestern China, especially 

in the West Mountain area of Guizhou Province. 

As reported by the China Flood and Drought Disaster Prevention Bulletin [28], the 

agricultural land affected by drought within northeastern China measured up to 4.3 × 104 

km2  in 2020, which was almost all caused by  the  lack of precipitation. The SHRB  is an 

important crop base of China. Though the historical trend of the precipitation and SPEI 

increased, the drought monitoring should also be concerned under a background of global 

warming. In this research, the relationship between the SPEI and El Niño‐Southern Oscil‐

lation  indexes was revealed. It would help  in drought prevention  in the SHRB, further 

reducing the loss in agriculture when drought occurs. 

6. Conclusions 

This paper analyzed the spatio‐temporal variation of the precipitation and SPEI in 

the SHRB and the relationships between the SPEI and El Niño‐Southern Oscillation  in‐

dexes were revealed. The main conclusions were as follows: 

1. The average annual, spring, summer, autumn, and winter precipitations were 527 

mm, 76 mm, 348 mm, 87 mm, and 14 mm, respectively. About 66% of the total annual 

Figure 10. The annual SPEI and El Niño and La Niña years from 1979 to 2019 within the SHRB.

5.3. Effect of the Drought on Agriculture

Drought has resulted in much loss in the local economy, especially in agriculture [51].
Meteorological drought would propagate into hydrological drought and further propagated
into agricultural drought, and finally, lead to a reduction in crops [9,62]. In China, many
researchers have investigated crop reduction in drought. Li et al. [63] found that the SPEI
on a different scale could affect the crop yields of wheat, maize, and cotton in Xinjiang,
China. Zhang et al. [64] found that extreme drought could reduce maize yields with a high
probability. Guo, Liu, Zhang, Wang, Wang, Wang, and Li [4] evaluated crop reduction
under a background of different RCP scenarios and found that the maize yields would
be decreased in northeast China. Jia et al. [65] and Wu et al. [66] found that the drought
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events would decrease the maize production in southwestern China, especially in the West
Mountain area of Guizhou Province.

As reported by the China Flood and Drought Disaster Prevention Bulletin [28],
the agricultural land affected by drought within northeastern China measured up to
4.3 × 104 km2 in 2020, which was almost all caused by the lack of precipitation. The SHRB
is an important crop base of China. Though the historical trend of the precipitation and
SPEI increased, the drought monitoring should also be concerned under a background of
global warming. In this research, the relationship between the SPEI and El Niño-Southern
Oscillation indexes was revealed. It would help in drought prevention in the SHRB, further
reducing the loss in agriculture when drought occurs.

6. Conclusions

This paper analyzed the spatio-temporal variation of the precipitation and SPEI in the
SHRB and the relationships between the SPEI and El Niño-Southern Oscillation indexes
were revealed. The main conclusions were as follows:

1. The average annual, spring, summer, autumn, and winter precipitations were 527 mm,
76 mm, 348 mm, 87 mm, and 14 mm, respectively. About 66% of the total annual
precipitation was concentrated in summer. The change trends of yearly, spring, sum-
mer, autumn, and winter precipitation were 0.56, 1.47 (p < 0.05), 0.13, 0.04, and 0.16
(p < 0.05) mm/a, respectively. The monthly precipitation increased in all months ex-
cept August and September, and the increase in precipitation was significant (p < 0.05)
in February, March, May, November, and December. The precipitation in the SHRB
was higher in the southeastern regions, with the highest value of 831.62 mm, and was
lower in the western regions, with the lowest value of 381.69 mm.

2. The trend of annual SPEI significantly increased (p < 0.05), with a gradient of 0.01/a.
The SPEI in the SHRB increased in all seasons and were significant in winter (p < 0.05).
The monthly SPEI increased in almost all months except March, with a gradient of
−0.0009/a, and was significantly increased (p < 0.01) in January, with a gradient of
0.02/a. The SHRB had a wetting trend from 1960 to 2019.

3. Severe drought occurred in 1966, 1967, 1982, 1989, and 2019, when six months of
draught were experienced. The years without drought were 1986, 2013, and 2018. The
drought months in a year from 1980 to 2019 were less than those from 1960 to 1979.
The frequencies of drought, normal, and wet for all periods ranged from 20 to 31%,
39 to 58%, and 20 to 32%, respectively. The drought probability distribution on the
yearly scale was similar to that in summer and autumn, and the drought probability
on a yearly scale was dominated by summer and autumn.

4. The SPEI was positively correlated with SST1, SST2, SST3, and SST4, in a different
period with a different resonant period. Moreover, the SPEI was negatively correlated
with the SOI for a short-term period of 3–4 years from 1986 to 1990 and for a long-term
period of 9–12 years from 1992 to 2010. A decrease in the El Niño index or an increase
in the Southern Oscillation index could result in a drought event.
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