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Abstract: In recent years, Korea has seen abnormal changes in precipitation and temperature driven
by climate change. These changes highlight the increased risks of climate disasters and rainfall
damage. Even with weather forecasts providing quantitative rainfall estimates, it is still difficult
to estimate the damage caused by rainfall. Damaged by rainfalls differently for inch watershed,
but there is a limit to the analysis coherent to the characteristic factors of the inch watershed. It
is time-consuming to analyze rainfall and runoff using hydrological models every time it rains.
Therefore, in fact, many analyses rely on simple rainfall data, and in coastal basins, hydrological
analysis and physical model analysis are often difficult. To address the issue in this study, watershed
characteristic factors such as drainage area (A), mean drainage elevation (H), mean drainage slope (S),
drainage density (D), runoff curve number (CN), watershed parameter (Lp), and form factor (Rs) etc.
and hydrologic factors were collected and calculated as independent variables, and the threshold
rainfall calculated by the Ministry of Land, Infrastructure and Transport (MOLIT) was calculated as a
dependent variable and used in the machine learning technique. As for machine learning techniques,
this study uses the support vector machine method (SVM), the random forest method, and eXtreme
Gradient Boosting (XGBoost). As a result, XGBoost showed good results in performance evaluation
with RMSE 20, MAE 14, and RMSLE 0.28, and the threshold rainfall of the ungauged watersheds
was calculated using the XGBoost technique and verified through past rainfall events and damage
cases. As a result of the verification, it was confirmed that there were cases of damage in the basin
where the threshold rainfall was low. If the application results of this study are used, it is judged that
it is possible to accurately predict flooding-induced rainfall by calculating the threshold rainfall in
the ungauged watersheds where rainfall-outflow analysis is difficult, and through this result, it is
possible to prepare for areas vulnerable to flooding.

Keywords: machine learning; random forest; regression analysis; support vector machine; threshold
rainfall; threshold runoff; XGBoost

1. Introduction

Climate change has increased rainfall in Korea, resulting in various natural disasters
that cause rapidly increasing social and economic loss [1]. However, Korean weather
forecasts only provide rainfall information in absolute terms, and the same heavy rain
warnings and special reports apply to all areas in Korea, which means a failure to reflect
regional differences. For this reason, even with accurate forecasts, the forecast system
fails to provide specific information on how different areas are affected and damaged by
weather events. Forecasts focused on physical aspects of weather events do not provide
sufficient information on how people’s properties and safety are affected by them.

It is for this reason that the World Meteorological Organization (WMO) emphasizes
the need for ‘impact forecasts’ that consider the socioeconomic effects that may be caused
by weather events [2]. In Korea, different organizations provide different definitions of
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impact forecasting. However, they can be summarized as follows: forecast that scientifically
estimates the socioeconomic impact of weather at different times and places and delivers
the estimates along with detailed weather information [3,4]. Outside of Korea, the WMO
defines impact forecast as forecast that provides information on expected risks along with
weather forecasts when disaster-causing high impact weather is expected. According to
the Met Office of the United Kingdom, it is defined as a forecast that estimates the socioeco-
nomic impact of a climate disaster at the time and place of its occurrence by considering
meteorological disasters, level of exposure to disasters, and regional vulnerabilities. The
National Weather Service of the United States defines it as a service aimed at providing the
people with information on the social, economic, and environmental impact of weather,
hydrological, and climate events [5]. Leading countries in the field of meteorology already
provide information on socioeconomic impact of weather events along with high-resolution
weather information. In the United Kingdom, the Flood Forecasting Centre (FFC) provides
Flood Guidance Statements (FGS) that assess the risks of all flood types over five days and
publish the findings daily [6,7]. The FFC uses the information to publish a table of flood
risks which divides flood impact into four stages.

Impact forecasting requires threshold rainfall. Threshold rainfall means the rainfall
amount that causes inundation. Accurate impact assessment requires calculation of the
precise inundation-causing rainfall in each area. However, in Korea, research on threshold
rainfall has been lacking. Most researchers use simplified analysis methods rather than
refined hydraulic and hydrological analyses. Hydrological analyses of coastal areas are too
complex to conduct properly.

As for previous literature on threshold rainfall calculation, ref [8] developed a flash
food monitoring and prediction (F2MAP) model to calculate the flash flood-threshold runoff
from rainfall. Ref [9] analyzed the relationship between flash flood index and runoff number
characteristics to develop an equation between the two. Ref [10] proposed a threshold
runoff calculation method using the flash flood guidance (FFG) model, which is more
suitable for Korea rather than those used in the United States. The researchers presented
the method as a way to acquire basic data for a flash flood forecast system. Ref [11]
analyzed runoff in Jeju using the SWAT-K model that combines DEM, landcover, soil
map methods, and developed a threshold runoff simulation method (TRSM) specifically
for the island. Ref [12] used ArcGIS and HEC-GEOHMS to divide the Nakdonggang
River watershed into 2268 sectors, drew rainfall-peak flow curves for different initial
loss scenarios and antecedent moisture conditions, and calculated the threshold rainfalls.
Ref [13] estimated threshold rainfalls for different durations using events with damage
caused by past rainfall in urban areas and others without such damage. Ref [14] stressed the
need for impact forecast and estimated threshold rainfalls using the SWMM model. Ref [7]
also linked the grid base inundation analysis model (GIAM) for grid-based inundation
analysis. Using the Huff distribution [14], the researcher converted the data into time-series
rainfall data to simulate inundation depths, and inversely estimated the threshold rainfall
based on the inundation depths. Ref [15] collected data on rainfall and typhoon damage
over the last five years where inundation was caused, analyzed the relationship between
rainfall and the damages, and developed an equation for threshold rainfall (y = axb). As
can be seen from the literature cited above, Korean studies on threshold rainfall mostly
used hydrological models. Few researchers studied threshold rainfall by considering
hydrological characteristics.

More recently, a number of researchers used machine learning to improve the accuracy
of threshold rainfall analysis [16–18]. Additionally growing is the body of literature that
study rainfall-runoff, rainfall damage, and flood estimation with machine learning and deep
learning rather than hydrological models [19–23]. However, few studies were identified
in Korea that used machine learning to calculate threshold rainfall. Ref [19] sought to
predict river water levels using observation data and deep learning algorithms. To that
end, the researchers used tensor flow to predict water levels at the Okcheon Observatory
location along the upper stream sectionof the Daecheong Dam within the Geumgang
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watershed and used TensorFlow to develop a multiple regression model and a long short-
term memory (LSTM) artificial neural network model. Ref [24] used three machine learning
techniques (support vector machine, decision-making tree, and random forest) to develop
a function for predicting rainfall damage in the Seoul Metropolitan Area (SMA) and found
that support vector machine analysis using meteorological observation data from two
days before yields the highest prediction performance. Ref [25] used the machine learning
method on Gyeonggi-do, the province that suffers the worst rainfall damage each year. Choi
used the data on rainfall damage of public facilities from the 2006–2015 Disaster Yearbooks
published by the Ministry of the Interior and Safety (MIST) as the dependent variable.
Ref [26] used machine learning methods such as ESN and DeepESN to predict rainfall using
rainfall, pressure, and humidity from 2004 to 2014 as mediating variables. The correlation
factors calculated using DeepESN yielded better results. Ref [27] performed hydrological
rainfall adjustment using Light GBM and XGBoost. They found clear adjustment effects
across all rainfall events after Light GBM and XGBoost learning, despite the fact that rainfall
is adjusted 5 to 20 mm less.

Much of the literature cited above only used a single hydrological model. However, in
this study, two models were coupled and used to calculate the marginal rainfall [8] and it is
considered an advantage of this paper to apply the results to machine learning. Figure 1
shows the flow chart of this study. It was analyzed through machine learning using
threshold rainfall and topographic factors of standard watershed units. The threshold
rainfall was used as a dependent variable, and the topographic factor of the standard
watershed unit was designated as an independent variable. In addition, the model with
the smallest error was selected using error performance analysis to calculate the threshold
rainfall in the ungauged basin where hydrological analysis was difficult. The ungauged
basin means a coastal area where it is difficult to calculate the threshold rainfall.
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2. Theoretical Background
2.1. Definition of Threshold Rainfall

In this study, threshold rainfall is calculated using the method used by the MOLIT in
2007, according to which threshold rainfall means the three-hour rainfall causing inundation
depth at which the flow overflows the river embankment [8]. Threshold rainfall can be
calculated by determining the rainfall of the rainfall-runoff curve corresponding to the
threshold rainfall. In general, the runoff calculation equation for a rainfall-runoff model
can be expressed as follows [15,28].

Rt = Ri + Rp (1)

where Rt is the total runoff, Ri is the runoff at the impermeable layer, and Rp is the flow at
the permeable area.

Rt = FFG× I + f (FFG)× (I − 1) (2)

In a rainfall-runoff model, rainfall and soil moisture constitute the inputs. However,
the opposite is true with the flash flood threshold; calculation of flash flood threshold
requires current soil moisture and required flow as inputs. As such, the equation on upper
stream water and small-sized rivers is converted for FFG using the repetitive calculation
method, as shown in Figure 2, to calculate the rainfall that causes threshold runoff. The
FFG is the rainfall corresponding to the threshold runoff in the relationship of the rainfall
and runoff curve. If there is no impervious area, the relationship between R and FFG can
be expressed in Figure 2 and Equation (2). R means the threshold runoff (mm), FFG means
the flash flow guidance (mm), and f () means the fall-runoff process. Moreover, I means
rainfall intensity.

Water 2022, 14, x FOR PEER REVIEW 4 of 16 
 

 

Figure 1. Flowchart of study. 

2. Theoretical Background 
2.1. Definition of Threshold Rainfall 

In this study, threshold rainfall is calculated using the method used by the MOLIT in 
2007, according to which threshold rainfall means the three-hour rainfall causing 
inundation depth at which the flow overflows the river embankment [8]. Threshold 
rainfall can be calculated by determining the rainfall of the rainfall-runoff curve 
corresponding to the threshold rainfall. In general, the runoff calculation equation for a 
rainfall-runoff model can be expressed as follows [15,28].  𝑅 =  𝑅 + 𝑅  (1)

where 𝑅  is the total runoff, 𝑅  is the runoff at the impermeable layer, and 𝑅  is the flow 
at the permeable area.  𝑅 =  FFG × 𝐼 + 𝑓(FFG) × (𝐼 − 1)  (2)

In a rainfall-runoff model, rainfall and soil moisture constitute the inputs. However, 
the opposite is true with the flash flood threshold; calculation of flash flood threshold 
requires current soil moisture and required flow as inputs. As such, the equation on upper 
stream water and small-sized rivers is converted for FFG using the repetitive calculation 
method, as shown in Figure 2, to calculate the rainfall that causes threshold runoff. The 
FFG is the rainfall corresponding to the threshold runoff in the relationship of the rainfall 
and runoff curve. If there is no impervious area, the relationship between R and FFG can 
be expressed in Figure 2 and Equation (2). 𝑅  means the threshold runoff (mm), FFG 
means the flash flow guidance (mm), and 𝑓() means the fall-runoff process. Moreover, 𝐼 
means rainfall intensity. 

 
Figure 2. Concept of flash flood concept. 

2.2. Machine Learning Method 
Machine learning is an area of artificial intelligence where numerical models, 

algorithms, and programs are used to have a machine learn from given data as humans 
do, and new information is derived, or decisions are made based on what it learns [29]. In 
other words, machine learning means a system that uses accumulated empirical data to 
build models and improve performance. The amount of data matters in machine learning, 
and higher-quality data leads to higher-performing results. As for machine learning 
methods, this study used random forest, support vector machine, and XGBoost. 

(1) Random Forest 

Figure 2. Concept of flash flood concept.

2.2. Machine Learning Method

Machine learning is an area of artificial intelligence where numerical models, algo-
rithms, and programs are used to have a machine learn from given data as humans do, and
new information is derived, or decisions are made based on what it learns [29]. In other
words, machine learning means a system that uses accumulated empirical data to build
models and improve performance. The amount of data matters in machine learning, and
higher-quality data leads to higher-performing results. As for machine learning methods,
this study used random forest, support vector machine, and XGBoost.

(1) Random Forest
The random forest method uses bootstraps to create several samples and applies them

to a decision tree model to compile the results [30]. A decision-making trees produces
estimates by creating and learning one-time training data from a given dataset. On the other
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hand, a random forest creates multiple training data from a given data set and creates and
combines multiple decision-making threes for improved prediction [31]. The observations
not used by individual decision-making trees are out-of-bagging (OOB) data and are used
for estimating prediction probability and identifying variables. The prediction probability
of OOB observations for each observation k within the xi category (0 or 10) [32].

This study used Python and the random forest method to calculate threshold rainfalls.
Figure 3 shows the conceptual diagram of a random forest.

p̂k(xi) =
∑j∈OOBi

Iŷ
(
xi, tj

)
= k

|OOBi|
, for k = 0, 1 (3)
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(2) Support Vector Machine
Support vector machine (SVM) is a supervised learning algorithm used for both

linear and non-linear classification issues. The purpose of SVM algorithms is to determine
the lines or boundaries dividing an n-dimensional space into separate groups, so that
they can be classified as their proper categories when new data are given. There may be
multiple lines or boundaries for dividing an n-dimensional space into classes. However, the
optimal boundary should be identified to determine categories. This optimal determination
boundary is called the hyperplane. A support vector is the vector closest to the hyperplane
and affects its position. The support vector machine is an algorithm that determines
the optimal hyperplane that maximizes the margin, which means the distance between
different data points.

The support vector regression (SVR) model has a small number of support vectors, and
thus is known to be less sensitive to outliers. Ref [33] developed support vector regression
that adopts a ε-insensitive loss function into the support vector machine. Support vector
regression is estimated using the function shown in Equation (4) [32].

f (x) = ωtx + b (4)

Equation (5) shows the constraints for calculating the optimal hyperplane function
while calculating the error that minimizes Equation (4). 1

2‖ω‖
2 describes the degree of

flattening of the function. If the data cannot be completely linearly separated, a slack
variable ξ(i = 1, . . . I) is introduced to process it. ξ means the distance between the margin
and the data outside the boundary between the margins. The main superparameters of the
support vector regression are C (cost) and γ, and C adjusts the complexity of the estimation
model and the degree of error tolerance. An increase in C means imposing a high penalty
on errors within the margin. ε is not considered in the calculation process if the error is less
than ε due to the maximum deviation between the actual value and the estimated value.



Water 2022, 14, 859 6 of 16

In this study, SVM was converted into SVR to predict arbitrary real values and used,
and a Gaussian kernel (RBF) known for its excellent performance was applied. Figure 4
shows the conceptual diagram of the support vector machine.

Minimuze : 1
2 ‖ w ‖2 +C ∑I

i=1(ξi + ξ∗i )
Subject to : yi − wxi − b ≤ ε + ξi

wxi + b− yi ≤ ε + ξ∗i
ξiξ
∗
i ≥ 0

(5)
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(3) eXtreme Gradient Boosting
Similarly to random forests, XGBoost is an ensemble algorithm that addresses the

errors of multiple decision trees [35]. It offers improved prediction performance over
gradient boosting machine (GBM) through distribution and parallel processing. In general,
it is ten times faster than GBM. The efficiency and scalability of this method has been
validated in multiple previous studies [36,37]. This boosting method lowers errors by
grouping multiple classification and regression trees (CARTs).

ŷi = ∑k
k=1 fk(xi), fk ∈ F (6)

Equation (6) shows an ensemble model of trees, where K is the number of trees and F
represents the set of CARTs. fk corresponds to the weight of each independent tree and
leaf. The scores of the leaves are summed up and compared for final prediction.

Obj = ∑n
i = l(yi, ŷi) + ∑K

k=1 Ω( fk) (7)

Equation (7) represents an XGBoost model. The first l(yi, ŷi) is a loss function that
represents the difference between a prediction and an actual observation. The second Ω( fk)
is the normalization term that controls the complexity of the model to prevent overfitting.

2.3. Performance Assessment Using K-Fold Cross Validation

This study uses MAE, RMSE, and RMSLE to compare the performance of different
models. Most studies use the above three indicators a lot for data comparison [38–40]. They
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are widely used to objectively assess the accuracy of a regression equation by analyzing
differences between observations and estimates. MAE and RMSE are statistical indicators
for confirming the degree of errors included in an estimate calculated using an equation,
when compared with an observation. A value closer to 0 represents better fit. RMSLE
represents the average ratio of observations to predictions.

MAE =
1
N ∑N

i=1 |yi − ŷi| (8)

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (9)

RMSLE =

√
1
n ∑n

i=1(log(yi + 1)− log(ŷi + 1))2 (10)

Ideally, these errors need to be tested by applying them to actual ungauged watersheds.
However, due to data and time constraint, the prediction models were validated using
five-fold cross validation. K-fold cross validation is a model assessment method that uses a
part of the overall data as a validation set. It ensures that all data are used as dataset at least
once. Figure 5 shows dividing the data into five datasets and validating the models with
a different dataset each time. An average cross-validation uses five datasets. This study
selects the optimal parameters following cross validation to calculate threshold rainfalls.
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3. Selection of Target Watersheds and Variables
3.1. Selection of Target Watersheds

This study chose the Han River watershed as its target, as the area includes the
highest number of standard watersheds according to the water resource unit map. 290 of
Korea’s 850 standard watersheds are included in the Han River watershed. 237 of the
290 watersheds are inland, and the other 53 are coastal watersheds, as shown in Figure 6.

The (a) section of Figure 7 shows the learning watersheds; 80% of the learning wa-
tersheds were used for machine learning, and the other 20% were used for validation.
High-performing models were selected with (a), and predictions were performed for the
watersheds highlighted yellow in (b). The data set of the basin used for machine learning
was randomly selected and proceeded.
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3.2. Dependent and Independent Variables

This study used the threshold rainfalls calculated using the MOLIT method [8,15,41]
as dependent variables. Figure 8 shows the calculated threshold rainfalls on the map.

Characteristic factors of the watersheds were used as independent variables. The anal-
ysis only considered topographical factors and hydrological factors. The watershed charac-
teristic factors used in were collected from the Water Resources Management Information
System (www.wamis.go.kr, accessed on 31 December 2011) and the geographic information
system (GIS). Data on 15 characteristic factors were collected, including: drainage area
(km2), mean drainage elevation (m), mean drainage slope (%), highest drainage elevation
(m), drainage density, runoff curve number, river length (km), drainage perimeter (km),
form factor, circularity ratio, stream frequency, channel maintenance constant, relative
relief, number of reliefs, and river length ratio.

www.wamis.go.kr
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The drain area refers to the area on the plane of the basin and refers to the plane area
within the closed curve, which is usually made up of a watershed. The basin average
elevation is calculated by arithmetically averaging the elevation values corresponding
to each cell of the DEM (Digital Elevation Model). The mean drain slope is calculated
by arithmetically averaging the slope corresponding to each cell of the DEM in degrees.
Highest drain evaluation means the highest elevation in the basin, and drain density means
the length of rivers per unit area. It means that the degree of outflow of the basin is
quantified by the Soil Conservation Service (SCS) using the runoff curve number land use
and soil map. River length is the total length of all rivers in a given drainage basin. The
drain perimeter is defined as the length measured along the boundary of the watershed of
a given order projected on the horizontal plane of the map, and the form factor is defined
as the ratio of the main river length of the watershed to the diameter of the circle having
the same area as the watershed area. The circularity ratio is a dimensionless parameter
defined as the ratio of the basin area to the area of a circle with the same length as the basin
circumference. Stream frequency is defined as the ratio of river water in the basin to the
basin area, and the channel maintenance constant is the reciprocal of the aqueous density.
Relative relief is defined as the ratio of watershed undulations to watershed circumference,
number of reliefs is defined as the product of watershed undulations and water density,
and river length ratio is defined as the ratio of river length w to average river length w − 1.
Table 1 shows a summary of the watershed characteristics factor.

Table 1. Summary of independent variables.

A H S Em H CN Lw Lp Rs Rc Cf C Rp Rn RL

Count 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290

mean 144.6 324.0 35.4 253.3 1.7 58.7 12.9 67.3 1.0 0.4 2.4 0.7 13.3 1376 1.8

Max 571.6 930.3 65.1 302.7 4.0 87.9 63.3 262.3 3.6 0.7 12.6 9.5 36.8 3921.4 4.4

min 39.0 4.9 4.0 103.7 0.1 33.7 0.0 32.7 0.0 0.0 0.1 0.3 0.9 32.8 0.7

A correlation analysis was performed to select statistically correlated independent
variables, as independent variables not correlated to dependent variables may lower the
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prediction performance. The correlation analysis was performed as shown in Figure 9.
Given the fact that the threshold runoffs required for calculating threshold rainfalls were
calculated from peak flood volumes and overflowing runoffs, the following variables were
determined to be significantly correlated: drainage area, river length, drainage perimeter,
relative relief, and river length ratio. Among those factors, river length, river length ratio,
relative relief, and drainage perimeter were determined to be more highly correlated with
the independent variables. The correlation coefficient was 0.65 for threshold rainfall and
drainage area, 0.64 for drainage perimeter, and 0.31 for river length. As such, drainage
area, drainage perimeter, and river length were finally selected as independent variables.
In most data analyses, principal component analysis (PCA) should be used to reduce initial
independent variables [42], but in this study, a principal component analysis was omitted
because the amount of data for each independent variable was not large.
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4. Machine Learning Application and Results

This study used SVM, random forest, and XGBoost. Excel 2010 and Python ver. 3.6
were used to record and statistically analyze the collected data and generate graphs. This
study also used the model packages provided by Python-based Scikit-learn.

Effective machine learning requires pre-processing of the data to be used. The indepen-
dent variable data went through data scaling and missing values were removed. As data
scales vary depending on the variable, the data were standardized to render them more
suitable for machine learning. Independent variables were analyzed using RobustScaler,
which is less affected by outliers. A higher accuracy can be expected by removing outliers.
However, the small number of inputs in this study means possible overfitting. Therefore,
this study addressed outliers through pre-processing rather than outlier removal.
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4.1. Validation of Prediction Models

The optimal parameters for each model were selected through K-fold cross-validation.
An error closer to 0 indicates a better result. Table 2 shows the MAE, RMSLE, and RMSLE
values of each of the five datasets created by dividing the datasets through the k-fold
cross-validation. All three performance assessments found that XGBoost produces the
results closest to actual observations compared with the other models.

Table 2. Comparison of model performance evaluation.

Model MAE RMSE RMSLE

Support Vector

Fold 1 15 19 0.26

Fold 2 23 38 0.4

Fold 3 19 26 0.29

Fold 4 21 26 0.47

Fold 5 28 38 0.34

Random Forest

Fold 1 12 19 0.28

Fold 2 20 32 0.46

Fold 3 16 20 0.34

Fold 4 22 27 0.47

Fold 5 21 26 0.45

XGBoost

Fold 1 14 20 0.28

Fold 2 20 33 0.38

Fold 3 16 20 0.29

Fold 4 21 27 0.46

Fold 5 25 37 0.35

Parameters were applied to increase the accuracy of machine learning, and n_estimator
represents variables that adjust the number of trees to generate. max_depth means the
number of tree depths. min_samples_split represents the minimum number of sample
data to split nodes, and min_samples_leaf means the minimum number of sample data
required for a leaf node. learning_rate means a parameter that, in machine learning and
statistics, moves toward the min loss function and determines the size of each stage of
repetition. The calculated parameter values area n_estimators: 100, learning_rate = 0.04,
min_samples_leaf = 3, min_samples_split = 2, max_depth = 4.

Figure 10 compares the existing threshold rainfalls with those calculated using XG-
Boost. Most threshold rainfalls are distributed between 40 and 60 mm and between 60 and
80 mm and are close to actual observations.

Figure 11 is a map representing threshold rainfall values. The watersheds with low
threshold rainfalls in (a) are reflected in (b) as well.

4.2. Calculation of Threshold Rainfalls in Ungauged Watersheds

This study used XGBoost, which produced good results in error performance as-
sessment, to calculate the threshold rainfalls of ungauged watersheds. Figure 12 shows
the distribution of the threshold rainfalls calculated for the ungauged basins. The ma-
jority of watersheds show threshold rainfalls between 40 mm and 80 mm. Figure 13 is a
map showing the threshold rainfalls of the ungauged basins other than the those in the
inland areas.
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4.3. Validation Using Real World Cases and Assessment

As shown in Figure 14, based on the rainfall events in 2017, 2020, and 2021 of each affected
watershed, among the ungauged watersheds outside the purple lines around the inland part
of the Han River, Yongin, Cheonan, Samcheok, Gangneung, and Sokcho watersheds were
found to be vulnerable against heavy rain. An application to actual rainfall events showed that
damage was caused when the rainfall exceeds the specified rainfall in the legends. However,
the researchers’ ability to verify damages in other areas was restricted by the fact that damage
was verified from news articles and social network posts.
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5. Conclusions

Damage caused by localized heavy rain continues to increase in Korea. However,
research on inundation-causing threshold rainfall is still largely absent in the country. More
researchers need to study technologies for predicting and responding to inundation in
advance. This study can be summarized as follows.

The purpose of this study was to identify threshold rainfalls in areas not readily avail-
able for hydrological analysis, using the calculation method and characteristic factors used
by the MOLIT. Three machine learning methods (SVM, random forest, and XGBoost) were
compared in terms of accuracy using MAE, RMSE, and RMSLE, and XGBoost was selected
as the best-performing method. Watershed characteristics, hydrological factors, and XG-
Boost were used to calculate the threshold rainfalls of the ungauged coastal watersheds. In
this study, it is judged that what can reflect actual topographic and hydrological factors can
be differentiated from other machine learning and marginal rainfall papers. In addition,
distinct from conventional simple data, data using physical models were used in machine
learning techniques, so high accuracy could be secured through a small number of data,
and anyone could use it by using widely known machine learning techniques.

However, this study has its limitations. First, outliers were found while calculating the
threshold runoffs of the hydrological models. More sophisticated hydrological models and
more accurate data may be needed for analysis. In addition, threshold rainfall calculation
based on the runoff-rainfall curve simply used polynomials. However, higher accuracy may
be achieved by applying a machine learning method to threshold runoff and runoff-rainfall
curve calculation.

This study compared the calculated threshold rainfalls with real world cases identified
from news reports and social network posts, which was found to pose limitations to
quantitative assessment.

The researcher plans to conduct a similar study nation-wide. Watershed data with
more diverse hydrological models and outliers will improve the accuracy of the findings.
Although not included in this study, quantitative validation using real world events will
yield meaningful results. The current water forecast system provides only quantitative
figures without considering the damage caused, which some regard as insufficient for
supporting effective decision-making to prevent and prepare for damage caused by natural
disasters. Threshold rainfall prediction suggested in this study may, if implemented on
a continued basis, provide accurate information on rainfall damage in advance and help
decisionmakers make better decisions on disaster control.
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