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Abstract: Drought imposes serious challenges to ecosystems and societies and has plagued mankind
throughout the ages. To understand the long-term trend of drought in China, a series of annual
self-calibrating Palmer drought severity indexes (scPDSI), which is a semi-physical drought index
based on the land surface water balance, were reconstructed during AD 56~2000. Multi-proxy records
of tree-ring width and stalagmite oxygen isotope δ18O were used for this reconstruction, along with
random forest regression. The spatiotemporal characteristics of the reconstruction results were ana-
lyzed, and comparisons were made with previous studies. Results showed that (1) China witnessed a
drought-based state during the past 2000 years (mean value of scPDSI was −0.3151), with an average
annual drought area of 85,000 km2; 4 wetting periods, i.e., the Han Dynasty (AD 56~220), the Tang
Dynasty (AD 618~907), the Ming Dynasty (AD 1368~1644), and the Qing Dynasty (AD 1644~1912);
and 2 drying periods, i.e., the Era of Disunity (AD 221~580) and the Song Dynasty (AD 960~1279).
(2) Three different alternating fluctuation dry-wet modes (i.e., interannual, multidecadal, and cen-
tennial scales) in China were all significantly (p-value < 0.001) correlated with the amplitude and
frequency of temperature in the Northern Hemisphere. (3) According to the spatial models disassem-
bled from the rotated empirical orthogonal function, China was divided into nine dry-wet regions:
northwestern China, Xinjiang, southwestern China, southeastern China, the Loess plateau, central
China, southwestern Tibet, eastern China, and northeastern China. (4) The random forest (RF) was
found to be accurate and stable for the reconstruction of drought variability in China compared with
linear regression.

Keywords: self-calibrating Palmer drought severity index; meteorological drought; reconstruction;
proxy record; multi-scale variation; rotated empirical orthogonal function

1. Introduction

Drought is a recurrent extreme climate phenomenon that has plagued human civi-
lization throughout history [1–3]. It can last for weeks, months, years, or even centuries,
and the spatial extent is usually larger than that of other natural hazards (e.g., floods and
hurricanes) [4,5], usually resulting in devastating impacts on agriculture, water supply,
energy production, ecosystems, and human lives [6]. Understanding the temporal and
spatial characteristics of droughts can help choose the appropriate drought mitigation
strategy and evaluate future drought risk [7,8].

Drought events can be characterized and monitored with a wide range of mea-
sures [7,9]. Among the measures, drought indices, including the standardized precipitation
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index [10], standardized precipitation and evapotranspiration index [11], the normalized
difference vegetation index [12], the Palmer drought severity index (PDSI) [13,14], and the
self-calibrating Palmer drought severity index (scPDSI) [15], are commonly used methods.
Among them, the PDSI is a measure of soil moisture availability that has been extensively
used to study drought, particularly as the primary indicator of the severity and extent of a
recent drought [16,17]. In addition to precipitation, the PDSI also considers the significant
effect of temperature on evapotranspiration [18]. Therefore, it provides a more compre-
hensive way to assess the impact of climate change on drought. The scPDSI, proposed by
Wells et al. [15], is considered as an improved version of the “traditional” PDSI. It calibrates
the behavior of the index automatically at any location by replacing the empirical constants
derived from climatic characteristics and duration factors with dynamically calculated
values [19]. This index has become a popular drought metric in studies that quantify
possible trends in future soil moisture availability [17,20,21].

Long-term instrumental records of climate elements generally provide reliable infor-
mation about drought variability from interannual to decadal scales and beyond. However,
most current studies have focused on individual events and/or instrumental records of
≤100 years [22], due to the limitation of the length of existing instrumental records. Short-
term instrumental records/or individual events do not contain the stable characteristics
and regularity of variability of drought conditions over a long time scale, and are unfa-
vorable to study the characteristics and driving mechanisms of space-time variability [23].
Whether the duration of the current drought pattern is decadal or a century remains un-
clear; however, if the latter holds true, local ecological and economic systems must adapt to
the changing environmental conditions [24]. A better understanding of such changes in
historical time would provide insights into a possible physical mechanism and help predict
the direction of the environmental evolution under an expected global warming scenario.
Therefore, long-term drought variability derived from high resolution and continuous pale-
oclimatic proxy data, such as tree rings, stalagmites, ice cores, and historical documents,
is invaluable [25]. Among these, annually resolved and precisely-dated tree ring and sta-
lagmite data are most commonly used [26–29]. These two types of data have been used to
investigate the paleoclimate throughout the world, including the North American Drought
Atlas [30], the Monsoon Asia Drought Atlas [31], the Old-World Drought Atlas [32], and the
Australian and New Zealand Summer Drought Atlas [33], May-September precipitation in
China over the past 500 years [34], and the six hundred-year annual minimum temperature
history for the central Tibetan Plateau [35].

Most previous studies that analyzed long-term drought variability were based on a
statistical modeling approach that first established an empirical relationship between cli-
matic proxies (e.g., tree-rings and stalagmites) and drought for the instrumental period [36];
then, they carried out a drought reconstruction by feeding the climatic proxies of the pa-
leo period into the established relationship [37,38]. Among the available approaches, the
principal component linear regression (henceforth simply referred to as linear regression)
has often been adopted [39,40] and has been shown to provide reliable reconstruction. The
obvious disadvantage of linear regression is the poor estimation of the amplitude of the
past variations at the lower frequencies. This defect might result in an underestimate (or
overestimate) of an actual drought. In this case, a novel alternative method for overcoming
these deficiencies is much needed.

The random forest (RF), a flexible machine-learning algorithm proposed by Breiman [41],
is a combination regression method, based on statistical learning theory. In the RF, multiple
samples are drawn using the resampling bootstrap method, and regression trees are built
corresponding to each bootstrap sample. Eventually, all regression trees are combined, and
final regression results are obtained by voting. The RF algorithm is a natural, non-linear
modelling tool that provides estimates regarding the hierarchy of variables in a regression;
and thus can be used to estimate each sample’s contribution to the final results [42]. A great
deal of theoretical and empirical studies have turned out to perform very well compared
to linear regression, including deeper mining of potential information, higher regression



Water 2022, 14, 858 3 of 21

accuracy, acceptable tolerance to outliers and noise, and robustness against over-fitting [43].
Based on this, RF should theoretically be a better option to obtain a regional pattern of
drought in conjunction with multi-proxy records with good spatial coverage, allowing one
to fully analyze the dynamic space-time behavior of droughts. However, few applications
in this field have been previously reported.

China, with its complicated climatic conditions, large population, fragile ecosys-
tem, and rapidly developing economy, suffers from frequent severe droughts [44]. Major
droughts, particularly those that have occurred in the past 20 years have caused large
economic losses in China [45]. According to the statistics of the Ministry of Water Re-
sources of China (http://www.mwr.gov.cn/, accessed on 17 January 2022), the annual
average disaster area impacted by drought during 2011–2016 accounted for 70% of the
total area, with an affected population of 16.43 million and economic losses of >12 billion
USD. Hence, in the last decade, a great deal of information about drought variation has
been collected [21,46–48]. However, studies in China have mainly focused on short-term
drought variability with records of <60 years [7,49], due to limited observational data.
The only long-sequence drought studies are confined to some individual regions, e.g.,
arid to semi-arid areas of China [50,51]; the southeastern Tibetan Plateau [52]; southwest
China [53]; central Inner Mongolia, China [28]; northwestern China [54]; the northern
fringe of the Asian summer monsoon region [55]; and the western Qilian Mountains of
northwestern China [54]; the trans-Himalayan region of central Himalaya [29]; and the
central Tibetan Plateau [35], while a the long period of historical drought reconstruction in
all of China is rare. These studies of fragmented regions across China are not conducive to
understanding the drought variability over the long-term on a national scale.

Therefore, the primary objective of this study was to investigate drought variability
in China during the past two millennia with multi-proxy reconstruction using RF regres-
sion. The investigation included: (1) the collection of multi-proxy records of China for
AD 56~2000 and the scPDSI dataset for AD 1951~2000; (2) analysis of the correlation be-
tween the proxy records and the scPDSI dataset during the overlap period (AD 1951~2000)
to demonstrate the feasibility of reconstruction and build a reconstruction model based on
RF regression, and then calibration and verification of the model to ensure the reliability
of the results; (3) reconstruction of the scPDSI during AD 56~2000 and analysis of the
spatiotemporal characteristics based on the reconstruction results. Finally, we compared
previous studies with the linear regression results to prove the rationality of the results.
This reconstruction is an important source of information for documenting climate change
over the interannual to centennial scale, and the proposed method is expected to be a novel
way to analyze drought intensity and the driving mechanism of drought.

2. Study Area and Data
2.1. Study Area

China lies between latitudes 18◦ and 54◦ N and longitudes 73◦ and 135◦ E. Located
in eastern Asia and on the western shore of the Pacific Ocean, China (Figure 1) has many
different types of topography. The terrain is higher in the west and lower in the east, with
roughly a three-ladder-like distribution [56]. A temperate monsoon climate predominates
in the northeast region, and a temperate continental climate dominates the northwest region.
A sub-tropical monsoon climate prevails in Southern China, except for the southernmost
corner, where a tropical monsoon climate is dominant. The Qinghai-Tibet Plateau is
dominated by a plateau alpine climate. Overall, China is located within the East Asian
monsoon region and experiences significant monthly, annual, and inter-annual variability in
precipitation and temperature. A semi-arid or semi-humid climate dominates the northern
parts of eastern China, with annual precipitation of 200~800 mm, and the southern part has
a relatively wetter climate with annual precipitation of 800~2000 mm.

http://www.mwr.gov.cn/
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Figure 1. Geographical position and territory of China and the proxy records distribution map.

2.2. Data
2.2.1. The scPDSI Grid

In this study, the scPDSI was calculated for the period AD 1951~2000 based on the
Climatic Research Unit (CRU) TS 3.10.01 dataset (3725 grid points, 0.5◦ × 0.5◦ resolution).
The dataset was created using the highly quality-controlled station records, which were
checked for inconsistencies and adjusted where necessary, but edits caused by a change
in observation practices were avoided. Gridded precipitation, temperature, cloud cover,
wind speed, and vapor-pressure data were selected from the annually dataset compiled
by the CRU (http://www.badc.rl.ac.uk/, accessed on 17 January 2022). This dataset was
selected because it offers three advantages [17]. First, the scPDSI has a similar range of
variability in diverse climates, which makes it an appropriate metric for comparing the
relative availability of moisture in different regions. Second, the more physical Penman-
Monteith parameterization was used to calculate potential evapotranspiration. Finally,
the seasonal snowpack dynamics considered in the water balance model provided a more
accurate measure of the availability of moisture for snowy regions when the snowpack
melted. A more complete review of the scPDSI dataset is presented by Schrier et al. [17].
The scPDSI values and drought categories are shown in Table 1.

Table 1. Classification of the scPDSI Values.

scPDSI Value scPDSI Category scPDSI Value scPDSI Category

Above 4.00 Extreme wet Below −4.00 Extreme drought
3.00 to 3.99 Severe wet −3.00 to −3.99 Severe drought
2.00 to 2.99 Moderate wet −2.00 to −2.99 Moderate drought
1.00 to 1.99 Mid wet −1.00 to −1.99 Mid drought
0.50 to 0.99 Incipient wet −0.50 to −0.99 Incipient drought

0.49 to −0.49 Normal

http://www.badc.rl.ac.uk/


Water 2022, 14, 858 5 of 21

2.2.2. Selected Proxy Data and Pre-Processing

In total, we assembled 234 proxy records (data resolution is 1 year) that included
231 tree-ring width chronologies and 3-stalagmite oxygen isotope δ18O datasets. With the
purpose of identifying long-timescale climate (drought) signals, 231 tree ring chronologies
were obtained from the NOAA Paleoclimatology Program’s International Tree Ring Data
Bank (ITRDB) [57], and three stalagmite oxygen isotope δ18O datasets were acquired from
the website [57]. The tree ring chronology data were contributed by ITRDB, and the stalag-
mite oxygen isotope δ18O data were contributed by Wang et al. [58] and Tan et al. [59]. The
reliability of the data was guaranteed as follows: (1) standard techniques of crossdating and
detrending were used to process these proxy records by the data contributor; (2) these proxy
data were used in related studies [31,34]. The length of these proxy data ranges between
400 and 1944 years. We synthesized 234 proxy records from China and surrounding areas,
as shown in Figure 1. Each proxy record was guaranteed to be significantly correlated with
one or more scPDSI records at the 90% confidence level (|r| > 0.2329, n = 50, p-value < 0.1)
during the overlap period. Basic information of the five longest proxy records is shown in
Table 2.

Table 2. Basic information table of the five longest proxy records.

NO Country Area Site Lat (◦ N) Long (◦ E) Archive
Type

Proxy Mea-
surement Reference

1 Japan (JP) Asia2k YKS 30.33 130.5
Tree ring Total ring

width
[57]2 Mongolia

(MG) LDEO SODAPS 48.3 98.93

3 China (CH) CHIN070 HYGJU 38.57 99.33
4 China (CH) Dongge

Cave DGC 25.28 108.08 Speleothem d18O
[58]

5 China (CH) Shihua Cave SHC 39.78 115.93 [59]

The time span of these five records is all AD 57~2000.

3. Methodology
3.1. Random Forest

Classification and regression Trees (CART) is a decision tree algorithm for both classi-
fication and regression. It was first described by Breiman [41]. It is a recursive algorithm,
which partitions the training dataset by doing binary splits. It is a conceptual simple
decision tree algorithm, and performs acceptably in practice. CART is probably the closest
to having the desired combination of features. It handles high-dimensional data well; has
the ability to ignore irrelevant descriptors; handles multiple mechanisms of action; and is
amenable to model interpretation. The major drawback, however, is that CART usually has
relatively low prediction accuracy. This drawback may impede its use in applications such
as the virtual screening of compound libraries. Because of the great appeal of CART, there
have been many efforts to improve its prediction accuracy. These attempts resulted in a
large number of various tree-based algorithms. It has recently been discovered that one
of the best ways to improve the performance of decision tree-based algorithms is to use
ensembles of trees. In this paper, we present one such ensemble method, random forest.

RF, proposed by Breiman [41], is an improved classification and regression tree method
that has gained popularity for its robustness and flexibility when modeling the input-output
functional relationship. Random forests are a combination of tree predictors such that
each tree depends on the values of a random vector sampled independently and with
the same distribution for all trees in the forest. Such a method consists of a collection
of regression trees trained using different bootstrap samples of the training data [42,60].
The generalization error for forests converges as to a limit as the number of trees in the
forest becomes large. The generalization error of a forest of tree classifiers depends on the
strength of the individual trees in the forest and the correlation between them. Significant
improvements in classification accuracy have resulted from growing an ensemble of trees
and letting them vote for the most popular class. In order to grow these ensembles, often
random vectors are generated that govern the growth of each tree in the ensemble. Each
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tree acts as a regression function on its own, and the final output is taken as the average of
the individual tree outputs. Moreover, due to the RF’s built-in cross-validation capability,
carried out with the help of out-of-bag samples, it provides realistic prediction error esti-
mates during the training process. After a large number of trees are generated, they vote
for the most popular class. We call these procedures random forests.

Random forest regression is a function of randomForest (version 4.6-14), while the
randomForest is a package that enables one to carry out classification and regression based
on a forest of trees using random inputs in R language (open-source compiler).

3.2. Reconstruction Model

Previous studies have repeatedly verified a significant relationship between tree-ring,
stalagmite and drought reconstructions [61]. The time stability of the model was tested
by using calibration and verification methods [36,62]. To reconstruct the scPDSI, we used
a calculated annual scPDSI gridded dataset, which the proxy records were significantly
related to scPDSI in the domain studied.

According to the number of candidate proxy records for the different periods, the
entire research period was divided into five parts (Figure 2): the calibration/verification
period (C./V., AD 1951~2000), reconstruction period I (AD 1600~1950), reconstruction
Period II (AD 996~1599), reconstruction period III (AD 476~995), and reconstruction Period
IV (AD 56~475). The reconstruction procedure was adopted as follows:

Water 2022, 14, x FOR PEER REVIEW 6 of 21 
 

 

with the same distribution for all trees in the forest. Such a method consists of a collection 

of regression trees trained using different bootstrap samples of the training data [42,60]. 

The generalization error for forests converges as to a limit as the number of trees in the 

forest becomes large. The generalization error of a forest of tree classifiers depends on the 

strength of the individual trees in the forest and the correlation between them. Significant 

improvements in classification accuracy have resulted from growing an ensemble of trees 

and letting them vote for the most popular class. In order to grow these ensembles, often 

random vectors are generated that govern the growth of each tree in the ensemble. Each 

tree acts as a regression function on its own, and the final output is taken as the average 

of the individual tree outputs. Moreover, due to the RF’s built-in cross-validation capabil-

ity, carried out with the help of out-of-bag samples, it provides realistic prediction error 

esti-mates during the training process. After a large number of trees are generated, they 

vote for the most popular class. We call these procedures random forests. 

Random forest regression is a function of randomForest (version 4.6-14), while the 

randomForest is a package that enables one to carry out classification and regression 

based on a forest of trees using random inputs in R language (open-source compiler). 

3.2. Reconstruction Model 

Previous studies have repeatedly verified a significant relationship between tree-

ring, stalagmite and drought reconstructions [61]. The time stability of the model was 

tested by using calibration and verification methods [36,62]. To reconstruct the scPDSI, 

we used a calculated annual scPDSI gridded dataset, which the proxy records were sig-

nificantly related to scPDSI in the domain studied. 

According to the number of candidate proxy records for the different periods, the 

entire research period was divided into five parts (Figure 2): the calibration/verification 

period (C./V., AD 1951~2000), reconstruction period I (AD 1600~1950), reconstruction Pe-

riod II (AD 996~1599), reconstruction period III (AD 476~995), and reconstruction Period 

IV (AD 56~475). The reconstruction procedure was adopted as follows: 

 

Figure 2. Diagram of the candidate proxy records for each year, and five study periods. 

Step 1: Correlation analysis. We selected the corresponding proxy records of the 4 

reconstruction periods during 1951~2000 to carry out Pearson’s correlation analysis with 

3725 annual scPDSI, respectively. This was used to illustrate the feasibility of reconstruc-

tion. 
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Step 1: Correlation analysis. We selected the corresponding proxy records of the
4 reconstruction periods during 1951~2000 to carry out Pearson’s correlation analysis with
3725 annual scPDSI, respectively. This was used to illustrate the feasibility of reconstruction.

Step 2: Modeling and calibration. The proxy records of the 4 reconstruction periods
during 1951–2000 were selected as the independent variable, while the scPDSI was selected
as the dependent variable. These independent and dependent variables make up the four
model datasets. Then, the scPDSI reconstruction model was constructed by sampling three-
quarters of the modeling data (37 years) without random replacement, and input into the
RF (mtry = 78, ntree = 15,000) [42,43]. The prediction results from modeling were correlated
with the dependent variables in the three-quarters of the modeling data to calibrate the
training accuracy of the model.

Step 3: Model validation. The independent variables in the remaining one-quarter
of the modeling data (13 years) were inputted into the reconstruction model. The testing
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accuracy of the model was verified by correlation analysis of the model prediction results
with the dependent variables in one-quarter of the modeling data. The traditional accuracy
and skill parameters, including reduction of error (RE) and the coefficient of efficiency (CE)
during the verification period [63], were used to evaluate the reliability of reconstructions.
The uncertainty of the model was calculated using the standard deviation of the residual be-
tween the reconstructed and dependent variables during the verification period. To ensure
the accuracy of reconstruction results, we selected the grid points with qualified training
accuracy (n = 37, r > 0.2709, p-value < 0.1) and qualified testing accuracy (n = 13, r > 0.4575,
p-value < 0.1), also called qualified points, to carry out the next scPDSI reconstruction.

Step 4: scPDSI reconstruction. The different proxy records of all qualified points were
inputted into the four corresponding scPDSI reconstructions to reconstruct the annual
scPDSI. To match the length of all reconstructed data for the 3725 grid points, the Kriging
interpolation method was used to calculate the estimated scPDSI for all unqualified points,
based on the reconstructed scPDSI values. Finally, the reconstructed and interpolation
results were combined to obtain the complete reconstructed scPDSI sequence (AD 56~2000).
The detailed flowchart is shown in Figure 3.
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3.3. Empirical Mode Decomposition (EMD)

To fully understand the multi-scale variability of reconstructed scPDSI series, the
EMD [64] was used to analyze the reconstructed scPDSI series and four group temperature
anomaly sequences. The EMD is based on the direct extraction of the energy associated with
various intrinsic time scales. It is a very efficient method to fully analyze and understand a
long sequence multi-scale change feature. The advantage is that the signal components of
different scales can be preserved and extracted, which helps better understand the multi-
scale change characteristics and the general trend in the target sequence. EMD essentially
decomposes the fluctuation or trend of different scales (frequencies) from the original signal
according to the natural signal oscillation.

A series of intrinsic mode function (IMF) components with different scales was ob-
tained, and all components can be reverted to the original signal. Each IMF corresponded to
an scPDSI fluctuation of one band, reflecting the distribution and variability of the main pe-
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riod and amplitude in the time domain at different scales. The lowest frequency component
(residual IMF) represents the original trend signal term. The trend term represents a linear
term in the signal or a slowly changing component with a period greater than the length
of the signal data. Each IMF component change law agrees with the non-linear change
characteristics of the natural signal, and the fluctuation has a relatively stable quasi-period
called the main period. The influence of different scale signals on the overall characteristics
of the original data was all different. The square of the amplitude of each component
reflected the signal strength and energy of the component in the original data.

3.4. Rotated Empirical Orthogonal Function (REOF)

The empirical orthogonal function (EOF) analysis introduced by Lorenz [65] is a
convenient and effective method extensively used in atmospheric, oceanic, and climatic
research. The empirical orthogonal function analysis identifies and extracts spatiotemporal
modes that are ordered by considering their representations of data variance. EOF analysis
output includes spatial patterns (EOFs), temporal coefficients (principal components, PCs),
and eigenvalues. As an effective eigen method for phenomenon identification and space
reduction, EOF analysis is widely used in climate research. However, because of its
orthorgonality constraint, EOF analysis has a tendency to produce unphysical modes.
Previous studies have shown that the drawbacks of EOF analysis could be partly alleviated
by rotated EOF (REOF) analysis. REOF analysis was introduced by Richman to simplify
physical mechanisms underlying characteristic patterns or to seek “physical” modes [66].
REOF supplies a new set of modes by rotating the vector space of the initial empirical
orthogonal function, and improves physical interpretation of the original field. As one
of the most popular types of REOF schemes, varimax rotation linearly transforms spatial
patterns derived by empirical orthogonal function analysis into a rotated basis (REOF) and
relaxes the orthogonality of the spatial patterns based on certain criteria [67].

4. Results
4.1. Model Feasibility
4.1.1. Data Correlation

The numbers of candidate proxy records for the 4 reconstruction periods were 234
(Period I), 36 (Period II), 15 (Period III), and 5 (Period IV), respectively. According to step 1
in Section 3.2, the R language was used to perform Pearson’s correlation analysis of the
proxy records and scPDSI during AD 1951~2000. To ensure that at least 1 proxy record was
significantly correlated (|r| > 0.2329, n = 50, p-value < 0.1) with one grid point, we selected
the maximum correlation coefficient of the grid point and all proxy records as this point’s
correlation analysis results (Figure 4). During the 4 periods, 3725 (100%), 3665 (98.39%),
3423 (91.89%), and 2463 (66.12%) grid point correlation coefficients met the reconstruction
requirements (|r| > 0.2329, n = 50, p-value < 0.1), respectively. With a reduction in the
number of proxy records, the qualified grid points were gradually reduced. These qualified
grid points were evenly distributed even in period IV, indicating that these points had good
spatial representation.

4.1.2. Calibration and Verification

According to steps 2 and 3 in Section 3.2, the reconstruction models of the four periods
were constructed, calibrated, and verified. Among them, there were 1211, 622, 451, and,
441 grid points with qualified training accuracy and qualified testing accuracy during the
four reconstruction periods, respectively (black dots in Figure 5). These points were evenly
distributed and had a particular geographical representation of the regional climate.
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Figure 4. Results of Pearson correlation analysis of four reconstruction periods between proxy records
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while the inverted triangle represents a significant negative correlation.

Figure 5 presents a summary of the reconstruction skills. It shows that the similarity
in the patterns among the RE and the CE maps during different periods. The western
China and northeastern China were characterized by a better quality of reconstruction
than the central China and southeastern China. It is natural that the Western China has a
better quality of reconstruction because of the wide distribution of proxy records. Although
the Northeast China (mainly Changbai Mountain and Daxinganling) lacks proxy records,
the results of model validation in this area are statistically reliable. This may be some
teleconnection [68], which needs further study, between this region and adjacent proxy
records. Positive RE and CE values suggested a robust verification, as CE is generally
considered a particularly rigorous indicator of model skill [31]. During the 4 periods, the
RE and CE values showed a gradual decreasing trend, but the overall proportion of grid
points greater than 0 was above 80%. The trend of uncertainty in the four periods was
basically consistent, showing that the model was stable during the different reconstruction
periods. At the same time, the high level of uncertainty was mostly concentrated in the
region where the proxy records were relatively scarce. In summary, the reconstruction
model of this study was reasonable and reliable.
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Figure 5. Skills of the reconstructed scPDSI in China for the calibration/verification period. The
black dots represent grid points with qualified training accuracy (n = 37, r > 0.2709, p-value < 0.1) and
qualified testing accuracy (n = 13, r > 0.4575, p-value < 0.1). The RE and CE are the reduction of error
and the coefficient of efficiency, and the uncertainty is characterized by the standard deviation of the
residual between the reconstructed and calculated scPDSI during the verification period.

4.2. Results of the scPDSI Reconstruction

To visualize the regularity of the dry-wet change on an interannual scale, we calculated
the average value of annual reconstructed scPDSI (Figure 6a), constituting the mean scPDSI
interannual variability curve for China during the past two millennia. Based on the long-
term mean value of the reconstructed scPDSI (Figure 6a, the mean value is −0.3151), the
present state of China is wetter than the past two millennia. We counted the number
of grid points that had severe droughts (scPDSI ≤ −3) every year, and then calculated
their proportions as a percentage of the total grid to characterize annual drought severity
in all of China (Figure 6b). Among them, the mean value of the proportion of severe
drought accounted for 0.89% (35/3725), which converted into an area of about 85,000 km2

(resolution of the grid was 0.5◦ × 0.5◦).
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Figure 6. (a) The mean scPDSI interannual variation curve of China during the past two millennia
(AD 56–2000). The gray line represents the annual mean value of the reconstructed scPDSI of
whole of China. The orange line represents the 10-year moving average value of the reconstructed
scPDSI of the whole of China. The black dashed line represents the perennial average value of the
reconstructed scPDSI of the whole of China. The vertical pink dashed lines are dynasty dividing
lines. (b) Proportion diagram of severe drought events (scPDSI ≤ −3, Table 1).

We define a period for which the scPDSI is below (above) the mean value for more than
10 consecutive years as a significant dry (wet) period. Based on the relationship between
the reconstructed scPDSI and its mean value, we extracted 19 significant dry periods and
18 significant wet periods during the past 2000 years (Table 3). As shown in Table 2, there
were 13 significant humid periods before AD 1000, and only 5 after AD 1000. There were
9 significant dry periods before AD 1000, and 10 after AD 1000. Combined with the trend
of change shown in Figure 6a, the millennium before AD 1000 was more humid than the
millennium after AD 1000.

4.3. Spatiotemporal Variations of the Reconstructed scPDSI
4.3.1. Multi-Scale Variation

We analyzed the reliability of our reconstructed scPDSI series by correlation analysis
with the average annual (MJ2003, Mann and Jones [69]; ECS2002, Esper et al. [70], recali-
brated by Cook et al. [71]; DWJ2006, D’Arrigo et al. [72]) or summer (B2000, Briffa, [73]) tem-
perature anomalies in the northern hemisphere (Figure 7a). Significant positive correlations
were detected between our reconstructed scPDSI series and these 4 groups of temperature
anomalous sequences (Figure 7a, rMJ2003 = 0.289, n = 1780, p-value < 0.001; rB2000 = 0.139,
n = 1934, p-value < 0.001; rDWJ2006 = 0.288, n = 1283, p-value < 0.001; rECS2002 = 0.431,
n = 1162, p-value < 0.001), and the maximum correlation coefficient was 0.431. Analysis
showed that the history of dry-wet conditions in China was consistent with the temperature
change in the northern hemisphere.
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Table 3. Statistics of the significant drought/humid periods.

Drought Periods Humid Periods

Number Start & End Year (AD) Duration (Year) Number Start & End Year (AD) Duration (Year)

1 60–74 15 1 77–87 11
2 122–131 10 2 93–120 28
3 350–381 32 3 133–146 14
4 463–494 32 4 154–238 85
5 524–546 23 5 276–302 27
6 623–650 28 6 335–348 14
7 684–716 33 7 548–584 37
8 744–761 18 8 602–621 20
9 798–807 10 9 765–785 21

10 1007–1031 25 10 809–818 10
11 1096–1151 56 11 828–900 73
12 1169–1247 79 12 910–940 31
13 1254–1302 49 13 958–1002 45
14 1377–1403 27 14 1153–1166 14
15 1433–1508 76 15 1570–1599 30
16 1624–1666 43 16 1794–1807 14
17 1697–1715 19 17 1882–1910 29
18 1812–1823 12 18 1925–1958 34
19 1912–1921 10
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Four different IMF components (i.e., interannual scale (<10 years), multidecadal scale
(10~100 years), centennial scale (100~1000 years), and long-term trends (>1000 years))
were extracted and are shown in Figure 7. Based on the redfit function (which is part
of Schulz’s REDFIT (version 3.8e) program and estimates the red-noise spectra of a time
series in dplR, while the dplR (the Dendrochronology Program Library in R) is a package
that enables dendrochronologists to handle data processing and analysis) in the package
of “dplR” in R, red-noise spectral analysis was used to assess the oscillatory domains in
these components. The dominant interannual variation was 5~10 years (Figure 7b), which
was the strongest signal component in the original sequence. The correlation coefficient
between this component and the reconstructed scPDSI series was 0.353, which reflected
the main high-frequency oscillation of the reconstructed sequence. Namely, there was a
5~10 years dry-wet cycle in China. Moreover, as shown in Figure 7b, the amplitude during
the periods AD 56~400, AD 1000~1400, and AD 1900~2000 was greater, indicating that
these 3 periods of dry-wet change were more intense. The dominant multidecadal variation
was 30~50 years (Figure 7c). The amplitude was greater than other periods during AD
800~1300. We analyzed the correlation between M-scPDSI (multidecadal component of
our reconstructed scPDSI) and B2000 (the multidecadal component of B2000), considering
lags of different lengths of time (0~50 years, Figure 8). The calculation found that when
the M-scPDSI and B2000 have a time lag of 15~40 years, the correlation is better (r > 0.1,
p-value < 0.01). The positive correlation coefficient indicates that the dry-wet change of
China has a 15~40 years lag response to the temperature change in the northern hemisphere
on the multidecadal scale.
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Figure 8. The histogram of correlation between M-scPDSI and B2000 with different lags lengths of
time, M-scPDSI is short for the multidecadal component of our reconstructed scPDSI, and M-B2000 is
short for the multidecadal component of B2000.

The centennial components of our reconstructed scPDSI were positively correlated
with the centennial components of B2000 and DWJ2006, with correlation coefficients of
0.232 (n = 50, p-value < 0.001) and 0.579 (n = 1283, p-value < 0.001), respectively (Figure 7d).
The frequency and amplitude of dry-wet change in China were basically consistent with the
change of temperature in the northern hemisphere on the century scale, particularly during
the MWP. The residual IMF was the remainder of our sequence from high frequency to low
frequency, which reflected the long-term trend of our reconstructed sequence (Figure 7e).
The long-term trend was broadly divided into two periods: a drying trend during the first



Water 2022, 14, 858 14 of 21

phase before the early 14th century, and then conditions gradually became wetter after a
significant cold period in the Little Ice Age (LIA) until the beginning of the 20th century.
This was consistent with the 4 groups of anomalous temperature sequences in the northern
hemisphere (i.e., MJ2003, B2000, ECS2002, and DWJ2006), with correlation coefficients
of 0.862, 0.469, 0.962, and 0.875, respectively. Moreover, during the MWP and LIA, the
amplitude of the two significant warm and cold periods was greater than the other periods,
indicating that the signal was stronger during these periods.

Overall, there were three different alternating fluctuation modes of dry-wet in China,
which were all positively correlated with the amplitude and frequency of temperature in
the northern hemisphere (in addition to the one-quarter-cycle delayed response over the
multidecadal scale). Through comparison, it was found that the change characteristics of
the reconstruction results of this study are basically the same as those of other research
results. Therefore, we believe that the change characteristics of the reconstructed scPDSI in
this study are credible.

4.3.2. Spatial Characteristics

To explore the spatial distribution characteristics of the dry-wet change in China, our
reconstructed scPDSI series (AD 56~2000) was decomposed by the REOF. The variance
explained by the nine modes accounted for 15.2%, 13.1%, 11.6%, 9.2%, 7.8%, 7.2%, 6.8%,
5.2%, and 4.1% of the total variance, respectively. The cumulative explained variance
contribution accounted for 80.2% of the total variance.

Figure 9 shows the spatial distribution characteristics of the first nine rotated loading
vector (RLV) of the reconstructed scPDSI series, respectively. The first REOF (REOF1)
leading mode of the reconstructed scPDSI series (Figure 9a) displayed the main loading
in northwestern China (NWC), demonstrating an east-west anomalous dipole pattern
(increased area covering southwestern China and a decreased area over northeastern
China). The maximum RLV value of the load center was 0.852. The second REOF (REOF2)
leading mode (Figure 9b) displayed main loading in Xinjiang (XJ). The maximum RLV
value of the load center was 0.869. The third REOF (REOF3) leading mode (Figure 9c)
displayed the main loading in southwestern China (SWC). The minimum RLV value of the
load center was −0.875. The fourth REOF (REOF4) leading mode (Figure 9d) displayed
the main loading in southeastern China (SEC). The minimum RLV value of the load center
was −0.758. The fifth REOF (REOF5) leading mode (Figure 9e) displayed the main loading
in the Loess Plateau (LP). The minimum RLV value of the load center was −0.654. The
sixth REOF (REOF6) leading mode (Figure 9f) displayed the main loading in central China
(CC). The maximum RLV value of the load center was 0.710. The seventh REOF (REOF7)
leading mode (Figure 9g) displayed the main loading in southwestern Tibet (SWT). The
maximum RLV value of the load center was 0.764. The eighth REOF (REOF8) leading mode
(Figure 9h) displayed the main loading in eastern China (EC), illustrating a “sandwich”
tri-pole pattern with an increased area covering the middle reaches of the Yellow River and
Yangtze River, but decreasing over Tibet and eastern China. The minimum RLV value of
the load center was −0.572. The ninth REOF (REOF9) leading mode (Figure 9i) displayed
the main loading in northeastern China (NEC). The minimum RLV value of the load center
was −0.301.
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Figure 9. Spatial distribution characteristics of the rotated empirical orthogonal function of the
reconstructed scPDSI series over the past two millennia (AD 56–2000).

To further analyze the history (AD 56~2000) of the dry-wet change in each characteris-
tic region, we averaged the reconstructed scPDSI of the grid points contained in each area
and then smoothed with the 10-year moving average (Figure 10). From the perspective of
the mean value (AD 56~2000) of the reconstructed scPDSI of each sub-region, all regions
were negative except EC (Figure 10h, mean value = 0.5030). This finding indicates that the
whole country, except EC, is partially arid, and the arid situation of NWC (Figure 10a, mean
value = −1.9138) was the most serious. Comparing the mean value of each sub-region with
the mean value of all of China (Figure 6a, mean value = −0.3152), the mean value of SEC,
EC, and NEC was higher than all of China. These three regions are China’s humid zone,
where the annual precipitation of EC and SEC was >800 mm, and the annual precipitation
of NEC was >400 mm [34]. In addition, the mean value of CC and LP was almost equal
to the mean value for all of China, indicating that the dry-wet change characteristics in
CC and LP reflect the situation in all of China. NWC and XJ had the lowest mean value,
indicating that all of NWC was the most severe drought region. This feature agrees with the
actual situation in China. Therefore, our reconstructed scPDSI results were reasonable and
reliable from the perspective of the characteristics of dry-wet change in each sub-region.
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Figure 10. The dry-wet change of the reconstructed scPDSI of nine sub-regions. The green line
represents the perennial average value of each sub-region, and the blue line represents the perennial
average value of the whole of China.

5. Discussion

China has undergone 4 wet periods in 2000 years of history and 2 drying peri-ods.
The wet periods tended to be times to establish unity and a stable period for the ruling
dynasty, while the drought period was a time of national turmoil and constant wars.
We do not think this is a coincidence. As shown in the nine green areas in Figure 6a, a
rapid droughts occurred during dynasty changes. This shows that climate change is an
important precondition for the stability of the country. An agricultural society is particularly
affected by the climate. Drought leads to a reduction in food production, but landlords
and official taxes do not decrease, leaving many farmers without enough food to eat. The
farmers em-barked on a path of uprising, thus, pushing for change in the dynasty. The
reconstruction results of this study were basically in accordance with historical facts based
on identifying the significant drought/humid events, characterizing the wet and dry trends,
and describing the turning points [74]. The results indicated that the reconstruction method
was reasonable and that the results can be used as a reference for related research.

To estimate the effects of RF as applied to reconstruct the scPDSI, linear regression
(LR) [75] was used to reconstruct the same scPDSI (3725 grid points, 0.5◦ × 0.5◦ resolution)
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for the period of AD 1951~2000 and compare it with the actual calculated value (mentioned
in Section 2.1, hereinafter referred to as AC), respectively. Figure 11a shows the variations
in the average annual values between RF, LR, and AC, and Figure 11b shows the density
distribution across different scPDSI categories. Several types of statistical factors were
employed to evaluate the stability of different methods, including the mean, range, Pear-
son’s correlation coefficient (r), Nash-Sutcliffe efficiency (NSE) [76], and the percent bias
(PBIAS, %) [77] (Table 4). Higher r and NES values and lower PBIAS values indicate good
performance of each reconstruction model. Namely, the closer the r and NES values are to
1, the more accurate the model is. The closer the PBIAS value is to 0, the more accurate the
model is.
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Table 4. Several types of statistical factors of RF and LR.

Mean Max Min r NSE PBIAS

Actual calculated −0.35 8.37 −6.98 / / /
Random forest −0.37 7.55 −6.66 0.97 0.89 6.32%

Linear regression −0.51 6.89 −5.98 0.60 0.07 44.79%

RF and LR were significantly positively correlated with AC (Table 4, n = 50, p-value < 0.01);
that is, both RF and LR can be used for scPDSI reconstruction. However, it is clear from
Figure 11a that the variations in RF and AC were basically the same, while LR fluctuated
less, and the RF reconstruction results were more reliable and accurate than LR (Table 4).
At the same time, the mean LR value was smaller, indicating that the LR reconstruction
result was smaller (dryer) than RF. As shown in Figure 11b, the density curve of different
scPDSI categories of LR was the “lanky type”, while RF and AC were the “chunky type”,
which shows that LR is less effective for characterizing extreme drought and flood events
than RF. RF has significant advantages both in accuracy and stability compared to LR.

The RF has great application potential in data processing as an effective method for
reconstructing drought variability because of advantages in computational accuracy and
stability compared to the traditional method (LR). However, applying the algorithm to
reconstruct scPDSI has crucial limitations in application. The reconstruction results of this
study mainly show the two-dimensional spatial distribution of historical drought (more
precisely, it is actually a simple collection of individual one-dimensional time series of
regional averages of the drought index), but we failed to consider droughts as a (three-
dimensional) space-time phenomenon [22]. Therefore, in future research, we plan to enrich
the proxy data to improve the accuracy of the reconstruction model. At the same time, it
will be necessary to detect atmospheric drought events that fully account for the dynamic
space-time behavior of droughts more comprehensively and realistically.
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6. Conclusions

The annual scPDSI of China during AD 56~2000 was reconstructed using multi-
proxy records (tree-ring width data and stalagmite oxygen isotope δ18O data) based on RF.
The temporal and spatial characteristics of the reconstruction results were analyzed and
compared to previous studies. The data used in this study are reliable, the reconstruction
method is accurate and feasible, and the reconstruction results are reasonable and credible.
The four main conclusions of this study are as follows:

(1) Based on the mean value of the reconstructed scPDSI (the mean value = −0.3151),
China has been in a drought-biased state for almost 2000 years.

(2) There are three different alternating fluctuation modes (interannual scale, multi-
decadal scale, and centennial scale) of dry-wet change, which were all positively
correlated with the amplitude and frequency of the temperature in the northern
hemisphere (in addition to the one-quarter-cycle delayed response over the multi-
decadal scale).

(3) China was divided into nine dry-wet change characteristic regions according to the
characteristics of the different REOF leading mode distributions: northwestern China,
Xinjiang, southwestern China, southeastern China, the Loess plateau, central China,
southwestern Tibet, eastern China, and northeastern China. The dry-wet change
characteristics in central China and the Loess plateau reflected the situation in all of
China. Northwestern China was the most severe drought region.

(4) The RF was highly accurate and stable for reconstructing drought variability in China
compared with linear regression.
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