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Abstract: The efficiency of Cu(II) removal from aqueous solution by two adsorbents, silica SBA-15 and
titanosilicate ETS-10, was investigated. Effects of various experimental parameters such as: contact
time, pH, initial copper concentration, adsorbent dosage, temperature were investigated in order to
determine the maximum adsorption capacity of the adsorbents. The maximum adsorption capacity
of silica SBA-15 was achieved at pH 5.0, and of titanosilicate ETS-10 at pH 6.0. The Freundlich,
Langmuir, and Temkin isotherm models were applied in order to describe the equilibrium adsorption
of Cu(II) by the studied adsorbents. Equilibrium data fitted well to the Langmuir model with a
higher adsorption capacity of ETS-10 (172.53 mg·g−1) towards Cu(II) than SBA-15 (52.71 mg·g−1).
Pseudo-first- and pseudo-second-order, Elovich, and Weber–Morris intraparticle diffusion models
were used for description of the experimental kinetic data. It was found that the pseudo-first-order
and pseudo-second-order kinetic models were the best applicable models to describe the adsorption
kinetic data. Thermodynamic parameters that characterize the process indicated that the adsorption
of Cu(II) onto the two adsorbents is spontaneous and endothermic.

Keywords: mesoporous silica SBA-15; titanosilicate ETS-10; adsorption; copper

1. Introduction

The problem of environment pollution with heavy metal has become one of the serious
problems, particularly in the polluted aquatic system.

The release of different pollutants into the environment has increased noticeably as
a result of industrialization, and thereby lowered the quality of the environment to an
alarming level. Among these pollutants, heavy metals are one of the most dangerous due
to their nonbiodegradability, persistence, and toxicity.

There are many situations when low concentration of heavy metals can accumulate to
toxic levels through the human food chain and the biosphere from the environment, which
can disturb the biochemical processes and human health [1–5]. Heavy metals, such as
lead, cadmium, mercury, copper, chromium, zinc, nickel, are used in the different fields of
industry such as metal plating, electrolysis, mining, metallurgy, industry fertilizer, pesticide
industry, leatherworking, and dyeing industry [2,3,6].

Among the heavy metals, copper is one of the indispensable micronutrients required
by organisms at low concentrations. Copper ions play an important role in the enzyme’s
synthesis, development of tissues and bones for human [7]. At high concentrations, copper
toxicity may be observed by a variety of syndromes and effects including renal dysfunction,
hypertension, hepatic injury, lung damage and teratogenic effects [8,9].
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Due to the mobility and toxicity, the presence of Cu(II) ions in surface water and
groundwater represents a real inorganic contamination problem. This ion is one of the most
poisonous, whose toxicity is attributed in part to its ability to accumulate in tissues. Human
exposure to a high level of copper results in generation of reactive oxygen species (ROS)
and free radicals by Fenton-like reaction. These radical species can alter biomolecules like
DNA, proteins and lipids.

Therefore, it is important to remove copper from effluents, before discharging them
into water bodies. There are various common methods available for the removal of copper
ions from wastewaters such as chemical precipitation [10], absorption [11,12] and biosorp-
tion [13], membrane separation [14], bioelectrochemical systems [15], ion exchange [16],
and electrochemical methods [17]. However, these techniques have limitations such as low
efficiency at low metal concentrations or production of secondary sludge, which furthers
disposal in a costly process [18].

Among the abovementioned methods, adsorption has been regarded as a cost-effective
technology for removal of heavy metals from solutions with low metal concentrations.
The main advantages of the technique are low cost of adsorbents, easy desorption, good
recycling, highly effective and environmental-friendly nature [1,2,5,6].

The World Health Organization (WHO) recommends a safe amount of Cu(II) of
5 mg/L in drinking water [19]. Therefore, more attention is paid to efficient methods of
copper removal from residual waters.

Among the adsorbents used in the literature for the remediation of the wastew-
aters contaminated with copper are: zeolite [20], chitosan [21], clays [22], graphene
nanocomposite [23], carbon nanotubes [24].

One of the adsorbents that is investigated in this study is an ion exchanger belonging
to the Engelhard Titanium Silicate (ETS) family. The ETS-10 phase is an extremely inter-
esting titanosilicate microporous material due to its high thermal stability and wide pores
(pore size close to 0.8 nm). These materials are useful and can be applied in a variety of
fields, such as water purification and heavy metal removal [25,26], gas adsorption [27],
and photo-catalysis [28].

The second adsorbent that is used in this research is SBA-type silicas (Santa Barbara
Amorphous) that exhibit interesting textural properties, such as large specific surface areas
and uniform-sized pores. The advantage of the use of SBA-15 material includes its high
surface-to-volume ratio, flexible framework compositions and high thermal stability [29].

An essential condition for an advantageous sorption is an adequately selective sorbent
with a high sorption capacity and high level of reusability.

The objectives of the present study were: (i) the investigation of the influence of pH,
sorbent dose, copper concentration and temperature on the sorption capacity and removal
efficiency in non-competitive conditions; (ii) to model the kinetic and equilibrium of copper
adsorption in order to evaluate the kinetic and isotherm parameters; (iii) to establish the
level of reusability of the sorbents during consecutive sorption/desorption cycles.

The influence of initial pH of Cu(II) ions solution, contact time, adsorbent dosage and
initial concentrations on the Cu(II) ions uptake was studied. The non-linear Langmuir,
Freundlich and Temkin isotherm models were used to fit the equilibrium adsorption data.
The adsorption rates were determined quantitatively and compared by the pseudo-first-
order, pseudo-second-order, Elovich and Weber–Morris intraparticle diffusion models.

2. Materials and Methods

The sorbents have been synthesized by a sol–gel method as described in our pre-
vious work [30]. Mesoporous silica SBA-15 was synthesized in acidic conditions using
amphiphilic triblock copolymer poly(ethylene glycol)-block-poly(propyleneglycol)-block-
poly(ethylene glycol) (Pluronic P123—EO20PO70EO20; Sigma-Aldrich, St. Louis, MO,
USA) as a surfactant template and TEOS (tetraethyl orthosilicate, Sigma-Aldrich) as silica
source. Titanosilicate ETS-10 with the composition 3.4Na2O:1.5K2O:TiO2:5.5SiO2:150H2O



Water 2022, 14, 857 3 of 15

has been prepared from sodium silicate (Sigma-Aldrich) as Si precursor and commercial
TiO2 (Degusa-P25, Sigma-Aldrich) as Ti source.

Sorption Experiments

All chemicals were of analytical reagent grade and no further purification was carried out.
The adsorption experiments were performed in a batch system by stirring at 200 rpm a

suspension that contained Cu(II) ions solution and corresponding amounts of the adsorbent.
The stock solution containing Cu(II) was prepared from CuSO4·5H2O (Sigma-Aldrich) and
diluted to obtain the appropriate concentrations. The pH varied between 2 and 6, the initial
concentration of copper in the solution ranged from 10 to 200 mg·L−1, at a temperature
between 20 ◦C and 50 ◦C. The pH of the solution was adjusted with NaOH or HNO3
0.1 M solution and measured with a HANNA pH/temperature meter HI 991001. About
0.02 g of adsorbent was added into the solution containing Cu(II) ions and was left stirring
for a certain period of time. At the end of adsorption experiment, the adsorbents were
separated from the solutions using cellulose nitrate membrane filters (0.45 µm pore). The
concentrations of Cu(II) ions in the filtrate (before and after adsorption of Cu(II)) were
determined using ICP-AES (Analytik Jena, Jena, Germany).

The Cu(II) adsorption q was calculated using the following equation:

q =
(C0 − Ce)·V

m
(1)

and adsorption removal efficiency, R (%) from the equation:

RE =
C0 − Ce

C0
·100 (2)

where q is the amount of copper ions adsorbed on the adsorbent, mg/g; V is the volume
of solution, L; C0 is the initial concentration of copper in mg/L, Ce is the final copper
concentration in the solution, mg/L, and m is the mass of adsorbent, g.

The adsorption capacities of the two adsorbents were analyzed through the use of the
Langmuir, Freundlich and Temkin isotherm models. The kinetics of copper adsorption
on the ETS-10 and SBA-15 were analyzed using pseudo-first-order, pseudo-second-order,
Elovich and Weber–Morris intra-particle diffusion kinetic models.

All batch adsorption experiments were carried out in duplicate and results are pre-
sented as arithmetic mean values.

3. Results and Discussion

The adsorbents were characterized by DRX, FT-IR, thermal analysis and SEM-EDX,
as we have reported in our previous work [30]. The obtained results indicated that the
adsorbents are mesoporous material with a BET surface area of 802.493 s/g for silica
SBA-15, and microporous material with a surface area of 31.473 s/g for titanosilicate
ETS-10, respectively.

3.1. pH Effect on the Adsorption Process

The adsorption of Cu(II) ions onto the adsorbents varies depending on initial pH,
because this parameter causes changes in the charge of adsorbent, the degree of ionization
and speciation of the adsorbate.

In this study, the range of initial pH for Cu(II) ions adsorption study was 2.0–6.0. At
pH values higher than 7, precipitation of Cu(II) ions as Cu(OH)2 occurs and could lead to
the wrong interpretation of adsorption data. On Figure 1 is shown the removal efficiency of
the SBA-15 and ETS-10 for Cu(II) ions. As can be seen from Figure 1, the sorption capacity
of Cu(II) ions onto the adsorbents increased with an increase in the initial pH value of the
solution. The maximum sorption of Cu(II) ions onto adsorbents occurred at pH 6 for ETS-10
and pH 5 for SBA-15, respectively. It was observed that a sharp increase in the copper
removal from 8.6% to 99.61% (SBA-15) and from 10% to 99.79% (ETS-10) occurred when
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the pH values of the solutions changed from 2.0 to 6.0. The low removal efficiency at low
pH is apparently due to the presence of a higher concentration of [H3O]+ in the solution
which competes strongly with the Cu(II) ions for the adsorption sites of the SBA-15 and
ETS-10 surfaces. With the pH increase, the [H3O]+ concentration decreases leading to an
increase of Cu(II) uptake.
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3.2. Effect of Adsorbent Dosage

An important parameter that affects the efficiency of adsorption from an economic
point of view is the mass of the sorbent. The adsorption process is not effective if it requires
a large amount of adsorbent. The influence of the adsorbent mass used on the adsorption of
Cu(II) ions was investigated, and the results are shown in Figure 2. The doses of adsorbents
varied from 0.010 g to 0.050 g, while the other parameters such as pH, temperature, initial
concentration of Cu(II) ions, contact time were kept constant. Based on Figure 2, it is seen
that an increase of the adsorbent dose can lead to an increase in the percentage of Cu(II)
ions removal from the solution. This is anticipated because, by increasing the adsorbent’s
dose, the number of adsorption sites available for adsorbent–adsorbate interaction will
increase as well. Both adsorbents showed no further increase in the adsorption capacity
after a certain amount of adsorbent was added.

3.3. Equilibrium Isotherm, Kinetics and Thermodynamic Studies
3.3.1. Adsorption Equilibrium Isotherm

Adsorption isotherms are fundamental for understanding the mechanism of adsorp-
tion and the interaction between sorbent and sorbate. To study the adsorption of Cu(II)
onto the sorbent, three of the most commonly used isotherm models were used in this
work: Langmuir, Freundlich and Temkin. The Langmuir [31] (Equation (3)) isotherm model
characterizes an adsorption monolayer on a surface with a finite number of identical centers
that are homogeneously distributed on the surface of sorbent. This model assumes that the
binding sites are homogeneously distributed over the adsorbent surface and the binding
sites have the same affinity for adsorption of a single molecular layer. The bonding to the
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adsorption sites can be either chemical or physical in nature, but must be strong enough to
avoid displacement of the adsorbed Cu(II) ions.

qe =
qm·KL·Ce

1 + KLCe
(3)

where qe is the amount of Cu(II) adsorbed per mass unit of sorbent at equilibrium (mg·g−1),
Ce is the equilibrium concentration of remaining Cu(II) ions in the solution (mg·L−1), qm is
a parameter that gives the maximum adsorption capacity of the sorbent (mg·g−1), KL is a
constant that refers to the energy of adsorption/desorption (L·mg−1).
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The Freundlich [32] (Equation (4)) isotherm is the second mathematical model used
to describe the adsorption metal present in solution on solid surface. This model assumes
that the adsorbent has an energetically heterogeneous surface and has a different affinity
for adsorption.

qe = KF·C1/n
e (4)

where qe is the amount of Cu(II) adsorbed at equilibrium (mg·g−1); Ce is the concen-
tration of Cu(II) ion in solution at equilibrium (mg·L−1); KF (L·mg−1) and 1/n are the
Freundlich constants.

The Temkin isotherm model [33] (Equation (5)) assumes that the adsorption heat of
molecules decreases linearly with the increase in coverage of the adsorbent surface, and
that adsorption is characterized by a uniform distribution of binding energies.

qe =
RT
bT

· ln(aT·Ce) (5)

where 1/bT represents the sorption potential of the sorbent, aT is the Temkin constant, R is
the universal gas constant (8.314 J K−1·mol−1) and T is the temperature (K).

The interaction of metal ions and adsorbents was further evaluated by the separation
factor (RL). RL is a dimensionless constant separation factor, an equilibrium parameter
derived from the Langmuir isotherm model. The RL was defined by Hall et al. [34], and is
expressed as Equation (6).

RL =
1

1 + KL·C0
(6)

KL is the Langmuir constant and C0 is the initial concentration of Cu(II) ions. For
a favorable adsorption, the RL value must be between 0 and 1. In this respect, if RL > 1
adsorption is unfavorable, and if RL = 0 adsorption is irreversible. In the present studies,
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the obtained RL values were less than one (Table 1), which indicated that the adsorption
processes were favorable.

Table 1. Langmuir, Freundlich and Temkin isotherm parameters for the sorption of Cu(II) on silica
SBA-15 and titanosilicate ETS-10 adsorbents.

Model Parameters Silica SBA-15 Titanosilicate ETS-10

Langmuir

qm, mg/g 52.71 172.53

KL, L/mg 2.04 8.73

RL 0.002–0.046 0.0005–0.011

R2 0.984 0.999

Freundlich

KF, mg/g 0.197 0.460

1/n 0.95 0.86

R2 0.977 0.985

Temkin

aT, L/g 0.066 0.65

bT, kJ/mol 0.0118 0.089

R2 0.735 0.833

The graphical representation of used models among with experimental data is pre-
sented in Figure 3, and the obtained values for Langmuir, Freundlich and Temkin isotherm
constants and correlation coefficients are listed in Table 1.
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The RL values, greater than zero and lower than unit, indicate that the sorption of
Cu(II) ions on both adsorbents was favorable and reversible. Sorption of Cu(II) onto SBA-15
and ETS-10 was better described by the Langmuir and Freundlich models according to the
high values of R2 for both adsorbents.

In addition, between two tested adsorbents, in terms of adsorption capacity, the best
candidate seems to be ETS-10. The maximum adsorption capacity given by the Langmuir
isotherm was 52.71 mg/g for SBA-15 and 172.53 mg/g for ETS-10, respectively.

Monolayer coverage of the surface by the metal ions can be used for the calculation of
the specific surface area S according to the following equation [3,35]:

S =
qmax·N·A

M
(7)

where S is the specific surface area, m2/g adsorbent; qmax the monolayer sorption capacity,
g Cu/g adsorbent; N the Avogadro number, 6.023·1023; A the cross-sectional area of metal
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ion, m2; M the molecular weight of metal. The molecular weight and the cross-sectional
area of Cu(II) are 63.5 and 1.58 Å2 in a close packed monolayer (Cu(II) radius is 0.71 Å),
respectively [35,36]. The maximum specific surface area calculated from Equation (7) for
Cu(II) adsorption is 7.89 m2/g for SBA-15, and 25.86 m2/g for ETS-10, respectively. Com-
parison of the maximum specific surface area of the adsorbents for Cu(II) adsorption shows
that SBA-15 and ETS-10 have a larger specific surface area than other adsorbents [35–37].

The efficiency of the two investigated adsorbents, ETS-10 and SBA-15, for removal of
Cu(II) was highlighted by comparison with the values of maximum adsorption capacity
presented in the literature for other adsorbents along with testing conditions (Table 2).

Table 2. The comparison of maximum sorption capacity of Cu(II) ions onto different adsorbents.

Adsorbent Conditions q, mg/g Reference

Mesoporous silica SBA-15 pH = 5, t = 23 ◦C 52.71 Present study

Titanosilicate ETS-10 pH = 5, t = 23 ◦C 172.53 Present study

Rape straw powders pH = 4.77, t = 20 ◦C 34.29 [38]

Sunflower hulls pH = 5, t = 20 ◦C 49.74 [39]

Chitosan based ion-imprinted
cryo-composites pH = 4.5 260 [40]

Chemical modified Moringa
oleifera leaves powder pH = 6, t = 50 ◦C 167.9 [41]

Coconut tree sawdust pH = 6 3.89 [42]

Eggshell pH = 6 34.48 [43]

Sugarcane bagasse pH = 6 3.65 [42]

N-HAP/Chitosan pH = 7.5, t = 25 ◦C 113.66 [43]

Chitosan crosslinked with
epichlorohydrin-triphosphate pH = 6, t = 25 ◦C 130.38 [44]

As can be seen, the highest sorption capacities were reported for some adsorbents,
such as: chitosan-based ion-imprinted cryo-composites [40], ETS-10 (present study), chemi-
cally modified moringa oleifera [41], natural hydroxyapatite/chitosan composite [43], and
chitosan crosslinked with epichlorohydrin-triphosphate [44], respectively.

3.3.2. Adsorption Kinetics

In order to investigate the mechanism of adsorption, the pseudo-first-order (PFO),
pseudo-second-order (PSO), Elovich and Weber–Morris models were used to study the
experimental data obtained.

The pseudo-first-order model of Lagergren [45] is commonly used for the adsorption
of liquid/solid systems and assumes that the rate of variation of surface site concentration
is proportional to the amount of surface sites remaining unoccupied.

qt = qe(1 − e−k1t) (8)

where qe and qt are the amounts of Cu(II) ions adsorbed onto sorbents (mg·g−1) at equilib-
rium and at time t, respectively, and k1 is the rate constant of first-order adsorption (min−1).

The pseudo-second-order model can be expressed as [46]:

qt =
k2·q2

e·t
1 + qe·k2t

(9)

where k2 is the rate constant of second-order adsorption (g·mg−1·min−1). This model is
more likely to predict the adsorption behavior over the whole range of adsorption. The
pseudo-second-order equation assumes that the adsorption behavior was controlled by the
rate-controlling step, which can be chemical sorption involving an electronic exchange or
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distribution between adsorbent and adsorbate. The adsorbate can be transferred from the
solution phase to the surface of the adsorbent in several steps. The steps may include film or
external diffusion (transfer of adsorbate), pore diffusion, surface diffusion and adsorption
on the pore surface. The overall adsorption can occur through one or more steps. The
Weber–Morris intraparticle diffusion equation is given by the following equation [47]:

q = kdiff·t0.5 + Ci (10)

where kdiff is a rate parameter (mg/g·min1/2), and Ci is the intercept, which relates to the
thickness of the boundary layer

The Elovich kinetic model helps to predict the mass and surface diffusion, activation
and deactivation energy of a system [48].

qt =
1
β

ln(1 + α·β·t) (11)

where qt is the sorption capacity at time t (mg/g), α is the initial sorption rate (mg·g−1·min−1),
β is the desorption constant (g·mg−1).

The graphical representation of kinetic models is presented in Figure 4, and the kinetic
model constants, along with the correlation coefficient, are given in Table 3.
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ETS-10 adsorbents.

Kinetic profiles indicated that the Cu(II) adsorption process was fast for both ad-
sorbents. The adsorbents showed the same behavior regarding the removal of Cu (II),
increasing up to 10 min and then were kept almost constant. In other words, the copper
adsorption process occurred in two stages: an initial fast stage up to 10 min followed by a
second stage in which no significant variation on the adsorption capacity was observed.
This observation is due probably to the fact that more adsorption sites are available at
the beginning of the experiments, followed by a saturation of the metal on the surface of
the adsorbent.

The agreement between experimental data and the model predicted values was ex-
pressed by the correlation coefficients (R2). A relatively high correlation coefficients value
indicates that the model successfully describes the kinetics of copper adsorption. The
values of R2, both for PFO and PSO kinetic modes, are comparable, and for both models
the theoretically calculated and experimentally obtained values of adsorption capacity
were in good agreement. Similar results were found for other adsorbents [5,11,23]. The
pseudo-second-order model assumes that the adsorption of adsorbate onto adsorbent
supports second-order chemisorptions. The adsorption of copper onto SBA-15 and ETS-10
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probably occurred by surface complexation reactions between copper and the sorption sites
on the adsorbents.
Table 3. Parameters of the applied kinetic models for the adsorption of Cu(II) on SBA-15 and ETS-10.

Parameter Silica SBA-15 Titanosilicate ETS-10

qexp, mg/g 3.13 3.16

PFO

qe,cal, mg/g 3.08 3.13

k1, min−1 1.463 194.67

R2 0.997 0.999

PSO

qe, cal, mg/g 3.081 3.135

k2, g/mg·min 2.87·1044 7.321

R2 0.997 0.999

Elovich

α, mg/g·min 6.29·1026 7.08·1034

β, g/min 22.133 27.81

R2 0.994 0.998

Weber–Morris

kdiff 0.204 0.208

Ci 1.565 1.577

R2 0.284 0.295

3.3.3. Thermodynamic Parameters

The thermodynamic parameters could be used to conclude whether the sorption
process was spontaneous or not in the behavior of SBA-15 and ETS-10 sorbents for removal
of Cu(II).

As reported by Guo et al. [49] and Kumar et al. [50], the values of the distribution
coefficient (Kd), calculated using Equation (12) at different temperatures of 20 ◦C, 30 ◦C, 40
◦C and 50 ◦C, were used to evaluate the thermodynamic parameters (∆G◦, ∆H◦, and ∆S◦).

Kd =
qe
Ce

·Madsorbate (12)

where qe is the amount of Cu(II) retained at equilibrium, mg·g−1, Ce is the concentration of
Cu(II) at equilibrium, in the aqueous phase, mg·L−1, and Madsorbate is the mass of Cu(II).

In order to solve the problem of the dimensionless of Kd, the values were multiplied
with 55.5 mol·L−1 [51], the obtained value being symbolized with K◦.

Equation van’t Hoff (13) was used for calculation of enthalpy and entropy from the
slope and intercept of plot lnK◦ vs. 1/T (Figure 5).

ln K0 =
∆S0

R
− ∆H0

RT
(13)

where R is the universal gas constant (8.314 J·mol−1·K−1), T is the absolute temperature (K).
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The standard Gibbs free energy change can be calculated by the following equation:

∆G0 = −RT ln K0 (14)

The obtained results are presented in Table 4.

Table 4. Thermodynamic parameters of the sorption process.

Sorbent ∆H0, kJ/mol ∆S0, kJ/mol·K
∆G0, kJ/mol

293 303 313 323

SBA-15 30.09 0.172 −20.31 −22.03 −23.75 −25.47

ETS-10 34.86 0.185 −19.35 −21.19 −23.05 −24.89

The positive values of ∆H0 (ETS-10 = 34.86 kJ/mol, SBA-15 = 30.09 kJ/mol) de-
noted that the sorption process was of endothermic nature. The positive values of ∆S0

(ETS-10 = 0.185 kJ/mol·K, SBA-15 = 0.172 kJ/mol·K) indicate increasing in randomness at
the solid–liquid interface or changing the original internal structure of absorbent during
the sorption process in Cu(II) aqueous solution. The increase of the negative value of ∆G0

with the increase of temperature supports the increase of the degree of spontaneity for the
sorption of Cu(II) onto both adsorbents.

Thermodynamic parameters revealed that sorption behavior was spontaneous and
chemical in nature (almost all values of ∆G0 > −20 kJ·mol−1) in the process of adsorption
of Cu(II) using ETS-10 and SBA-15 as sorbents.

The activation energy of the sorption process (Ea) was obtained from the slope of
plotting ln(1 − θ) vs. 1/T, where sorbent surface coverage (θ) was calculated using
Equation (15) [52]:

θ =

(
1 − Ce

C0

)
(15)

Ce, C0 are equilibrium and initial concentration of Cu(II) in aqueous solution (mg/L).
According to the modified Arrhenius equation, plotting ln(1 − θ) vs. 1/T (Figure 6)

gives a straight line with the slope Ea/R.
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Activation energy values are calculated from the slope of plot and were found to be
43.54 kJ·mol−1 and 18.18 kJ·mol−1 for ETS-10 and SBA 15, respectively. The positive values
of Ea were consistent with the obtained positive values of ∆H◦ and confirm once more the
endothermic nature of the sorption process.
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3.4. Modelling of the Interactions

The interactions between the structures of mesoporous silicas SBA-15 and microporous
titanosilicate ETS-10 with CuSO4·5H2O were simulated using the theoretical chemistry
methods. The adsorbent macrostructures were represented, in gaseous medium, by a small
fragment that respects the atomic arrangement according to the crystalline structures from
the Crystallography Open Database (COD). For the sulfate molecule was used a structure
with an octahedral configuration for the Cu atom, illustrated in Figure 7a, similar with the
one representation in COD.
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The spatial structure of CuSO4·5H2O in interactions with the porous surface can
be found, also, in a structure with the Cu atom in the tetrahedral configuration and
with hydrogen-bonding interactions type with two water molecules (Figure 7b). In the
octahedral configuration of the crystalline structure, the distance Cu-O is 1.83 Å. This
value increases slightly for Cu-O-S to about 1.9 Å and just over 2 Å for Cu-O (H2O) in the
tetrahedral structure. When the cupric structure approaches the surface, an edge or a peak
of the porous structure, the water of crystallization will be gradually removed and may
leave the area of interest or may still be found around the active center by establishing
hydrogen bonds. A direct interaction, a covalent bond, is thus formed between the Cu
atom and an oxygen in the adsorbent medium, Si-O-Cu (Figure 8a), or Ti-O-Cu (Figure 8b).
The distance between Cu atom and oxygen atom from the adsorbent decreases from 2 Å in
crystalline structure to 1.9 Å.
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The removal of some crystallization water molecules and interactions with adsorbent
structure determine the square plan hybridization (Figure 9a) or a pyramidal configuration
(Figure 9b) for Cu atom, and formation of two covalent bonds with oxygen atom from the
porous structures.
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In an acid environment, the sulfate fragment can form H2SO4, which is found in the
system under investigation (Figure 8a).

4. Regeneration and Reusability of Sorbents

The applicability of potential sorbents depends on their regeneration under convenient
conditions and the possibility of their re-use in successive sorption/desorption cycles. From
practical motives, an ideal adsorbent must be reused in successive sorption/desorption
cycles with as less as possible loss of the initial adsorption capacity. Therefore, desorption
of Cu(II) ions was carried out in batch system by using the adsorbents loaded with copper
immediately after the adsorption experiments. As eluent, 0.01 M solution of HCl in
five successive sorption/desorption cycles was used and the obtained results are shown
in Figure 10.
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Figure 10. Reusability of the adsorbents under consecutive cycles sorption/desorption.

As can be seen, the removal efficiency slowly decreased during the sorption/desorption
cycles, being about 91.75% for ETS-10, and 83.27% for SBA-15, respectively. These val-
ues recommend these materials as potential sorbents for efficient removal of Cu(II) from
residual waters.
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5. Conclusions

The sorption of Cu(II) ions from synthetic wastewaters onto titanosilicate ETS-10
and silica SBA-15 has been studied as a function of contact time, the initial metal ion
concentration, adsorbent mass, pH, sorbent dose and temperature. Equilibrium, kinetic
and thermodynamic data were applied in order to evaluate the efficiency of the investigated
adsorbents for the removal of Cu(II) ions from aqueous solutions. The adsorption of Cu(II)
on analyzed adsorbents obeyed the pseudo-second-order kinetics, supporting that the
chemisorption would be the rate-determining step. The equilibrium data obtained for the
adsorption of copper ions onto investigated adsorbents well fitted the Langmuir model
with a maximum theoretical adsorption capacity of 52.71 mg Cu(II)/g for mesoporous
silica SBA-15, and 172.53 mg Cu(II)/g for titanosilicate ETS-10, respectively. The adsorption
process is endothermic (∆H◦ > 20 kJ/mol) and spontaneous (the increase of the negative
values of ∆G◦ with the increase of temperature). The adsorption of Cu(II) on the analyzed
sorbents is a reversible process and the adsorbents can be used in five desorption/sorption
cycles without significant loss in their adsorption capacities.

Experimental results showed that mesoporous silica SBA-15 and titanosilicate ETS-10
are promising adsorbents for the removal of copper ions from aqueous solutions.
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