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Abstract: Based on the spectral reflection characteristics analysis of the muddy coastline in Jiangsu, an
improved spectral water index (IWI) combined with the Otsu algorithm is proposed to extract muddy
coastlines from Landsat Operational Land Imager (OLI) images. The IWI-extracted coastline results
are compared with those extracted by the modified normalized difference water index (MNDWI),
normalized difference water index (NDWI), enhanced water index (EWI), revised normalized different
water index (RNDWI) and automated water extraction index (AWEI). The results show that the IWI
is not affected by tidal conditions or sand content in the water, can reduce the “salt-and-pepper”
phenomenon in the Otsu algorithm classification, can accurately identify water boundaries and can
extract silty mudflats and marine buildings with high accuracy. It can also significantly increase the
degree of automation of coastline extraction. The IWI combined with the Otsu algorithm demonstrates
high accuracy of over 84% in the extraction muddy coastline data with one-pixel tolerance, which is
twice as accurate as other indices. The accuracy of extraction for all other types of coastlines is over
81%. Therefore, the IWI index combined with the Otsu algorithm is reliable for studies of sea–land
processes and coastline evolutions.

Keywords: coastline extraction; muddy coast; spectral reflectance; spectral index; Otsu algorithm

1. Introduction

A coastline is a geomorphological signature of sea–land interactions, and has been
identified by the International Geographic Information Committee (IGDC) as one of the 27
most important land surface features [1]. Coastline variability is a representation of the evo-
lution of coastal zone resources and environmental ecosystems under climate change, sea
level change and sea–land interactions, and is also an integral reflection of human influence
and modification of the natural environment, as well as adaptation and response to climate
change [2–6]. The methods of coastline extraction include traditional mapping and remote
sensing. With the traditional mapping method it is difficult to obtain large-scale coastline
images in a short period of time, and dynamic monitoring of coastlines is not feasible [7].
Remote sensing image-based coastline extraction is not restricted by the weather, surface,
sea conditions or geographical environment, and has the ability for fast, flexible and con-
tinuous monitoring [8]. With the continuous improvement of the spatial, temporal and
radiometric resolutions of satellite sensors, the image processing techniques for coastline
extraction based on multi-source remote sensing information are becoming more diverse.
The threshold method based on spectral bands is one of the most important methods [1],
which focuses on setting thresholds to separate sea and land areas to extract coastlines by
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enhancing the differences between the target object and background. The spectral index
algorithm is sensitive to waveband information [9–11], and the image processing requires
the selection of a suitable spectral index based on the absorption characteristics of the target
object to the spectrum. McFeeters [12] constructed the NDWI by analyzing the spectral
characteristics of water bodies and vegetation, which can effectively suppress vegetation
information and distinguish water bodies from vegetation and mountain shadows, but
ignored the influence of soil, buildings and shadows. For the extraction of urban water
bodies, Xu et al. [13] constructed the MNDWI by analyzing the spectral features of buildings
and enhancing the contrast between water bodies and buildings. To reduce the influence of
mixed image element factors, vegetation and mountain shadows, Cao et al. [14] constructed
the RNDWI to extract the water surfaces of reservoirs. Yan et al. [15] constructed the EWI to
effectively distinguish semi-dry rivers from background noise. Feyisa et al. [16] constructed
the AWEI to improve the automatic classification of shaded and low-reflectance water
bodies. Other studies also used the above spectral indices to extract coastlines. Sheng
et al. [17] used the NDWI to extract vegetated coastlines in the Strait of Malacca. Sandra [18]
used an improved index to extract bedrock coastlines in the Spanish delta. Du [19] used
the MNDWI to extract different types of coastlines in small areas of lagoons along the coast
of Venice in Italy. To address the uncertainty in extracting water bodies or coastlines from
different regions using the spectral water index, Wu et al. [20] analyzed the extraction ability
levels of various spectral indices for water bodies in silty shores in the Yellow River Delta
and showed that the AWEInsh (one of the formulae of AWEI, the other being AWEIsh) had
the best extraction effect and that the MNDWI had a higher leakage rate for seawater than
other indices. Zhang et al. [21] extracted the muddy coastline of Shandong Peninsula using
a different extraction method from that used to extract silty and bedrock coastlines, and
the results showed that the average error of the extracted muddy coastline was 21%, much
higher than the average error for other coastline types. However, few studies have been
conducted on the extraction methods for muddy coastlines with average tidal differences
greater than 4 m, such as the threshold method and edge detection method [22,23]

The muddy coastline areas in the Jiangsu Sea are more complex than other types of
coastlines, since they are influenced by the Yangtze River, the Yellow River, and the Huaihe
River, which carry sand and form silty mudflats. The maximum tidal difference in the
Jiangsu Sea is more than 6 m and the average tidal difference between the north and south
is more than 3 m, while the coastline is particularly influenced by the tides [24]. The silty
mudflats, which “appear and disappear”, are the most tidally influenced areas [25,26], in
which water remains after low tide, with a large number of mixed pixels of water and
mudflats and complex spectral properties. This leads to similarities between the spectral
reflectance values of silty mudflats and water. Therefore, the applicability of the previous
spectral water index is reduced, affecting the subsequent identification and classification.
In addition to the above factors, the high sediment content of water bodies is another
major characteristic that differs from inland water bodies. The coastline types in Jiangsu are
diverse and complex, and there is an urgent need to explore extraction methods for complex
typical coastlines to improve the extraction accuracy, especially for muddy coastlines.

This study attempts to develop a new extraction method for muddy coastlines in
Jiangsu based on improved spectral indices combined with the Otsu algorithm [27] using
Landsat-8 OLI images, and to compare it with the five most commonly used spectral
indices (MNDWI, NDWI, EWI, RNDWI and AWEI) to explore the extraction of complex
coastlines. The results of this study will provide a basis for the long-term monitoring
of complex coastlines and a more improved understanding of sea–land processes and
coastline evolution.

2. Study Area and Data Sources
2.1. Study Area Overview

Jiangsu is located on the shores of the Yellow Sea and the East China Sea (see Figure 1A)
and has the largest muddy coastline in China, which is unique globally. Figure 1a,b,c
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represent northern, central and southern Jiangsu coast respectively. The Jiangsu offshore
area has a regular semi-diurnal tide with the largest tidal range in the central sea, forming
a decreasing trend from the central to the north and south. In the main intertidal tidal
channels, the maximum tidal speeds reach 3 m s−1. Due to the gentle tidal mudflats, the
strongest wave height is less than 1 m in winter, while in other seasons the wave height is
only about 0.5 m [28]. The coastline of Jiangsu is continuously silted by the transported
sediment from the Yangtze and Yellow Rivers, and after the shift of the Yellow River to
the north, the coast shows erosion in the north and siltation in the south. With the lack of
large amounts of sediment, the middle section is subject to the intersection of the South
Yellow Sea’s rotating tidal wave system and the East China Sea’s advancing tidal wave
system, resulting in the formation of the current large-scale underwater radial sandbars.
The coastline types of Jiangsu are complex, with the Lianyungang section dominated by
bedrock and sandy coastlines, the Yancheng section dominated by chalky-silt coastlines
and the Nantong shore section dominated by polder and silt coastlines [29]. Overall, the silt
shore type accounts for about 93% of the province’s coastline length [30]. Since the 1990s,
the coastal silty mudflats resources have been mainly used for aquaculture and industrial
port construction [31], and the coastline has since changed considerably.

Figure 1. Schematic diagram of the study area: (A) study area and image coverage location map
(a) northern Jiangsu coast; (b) central Jiangsu coast; (c) southern Jiangsu coast. All images correspond
to the data in Table 1, while the path and row numbers are 120036, 119037 and 118038.
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2.2. Data Sources

The study is based on the Landsat-8 OLI surface reflectance (SR) data provided by
the Google Earth Engine platform as the base data (see Table 1) [32]. The SR data were
pre-processed with geometric and atmospheric correction and with quality assurance for
the quality assessment bands [33]. The SR data were acquired by a single-pass algorithm
with atmospheric correction, taking into account not only the effect of surface-specific
radiance but also atmospheric radiation. The Landsat-8 OLI multispectral band has a
spatial resolution of 30 m and a re-entry period of 16 days. Since clouds can obscure feature
information and affect the extraction of coastlines, images with low cloud cover were
preferred [34]. The images used in this study all had less than 3% cloud cover.

Table 1. Images used in the study.

Landsat Sensor Path/Row Image Time Tide

OLI p120/r036 2017/02/11 High
OLI p119/r037 2018/02/23 Low
OLI p118/r038 2020/02/22 High

3. IWI Index Construction and Water Extraction Method
3.1. Analysis of Spectral Characteristics of Ground Objects

The core of this study is the distinction between open water (marine) and land and the
extraction of coastlines. The focus is on the different coastal types, which are classified based
on important features, such as low-sediment water far from the coast, high-sediment water
near the coast, silty mudflats and coastal vegetation, while other feature such as arable land,
built-up areas, roads and mountains are classified as land features. The spectral differences
between the different types of coastal features are analyzed to assist in subsequent studies.

Based on the above classifications, pure images of relevant features are selected from
the images described in Table 1. More than 10,000 pixels of each feature are selected and the
average reflectance of each band was calculated, as shown in Figure 2. As can be seen from
Figure 2, the reflectance of water with high and low sediment content varies similarly from
the visible band (0.450–0.680 um) to the near infrared band (0.680–0.885 um), gradually
increasing in the visible band, reaching a maximum in the green band and then decreasing
in the near infrared band, reaching almost zero near the shortwave infrared band. This
is different from the variations in clear water, for which reflectivity is approximately 4%
and may be related to the turbidity of the sand content of the water body [35], in which
the increase in sediment content causes an increase in reflectance. Clear water has a strong
absorption capacity for incident energy and has a low reflectance over most of the sensor’s
wavelength range. There is a tendency for the absorption to increase with increasing
wavelength in clear water. As shown in Figure 2, low-sediment water can be approximated
as a clear body of water with a reflectance of approximately 5% in the visible wavelength
range, dropping to 2.5% in the red band range; beyond the visible range, over 98% of
the energy incident on the clear water is absorbed. In contrast, the reflectance range of
water with a high sediment content near the Jiangsu coast is about 10% to 15% in the near
infrared band, almost four times the reflectance of clear water. The reflectance of the silty
mudflats varies slightly across all wavelengths, with a peak of less than 5%, while the
reflectance fluctuates between 5% and 10% and the trend is highly similar to the water
bodies. Coastal vegetation has low reflectance in the visible band, increases to a maximum
in the near infrared band as the wavelength increases and then decreases in the shortwave
infrared band, with significant differences from other features. The land type contains a
large variety of features indicated by much greater variations in reflectance in different
bands, with images rising and falling steeply.
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Figure 2. Average spectral reflectance of typical features in the study area.

3.2. IWI Index Construction

The ratio method determines the ratio of the strongest reflection band over the weakest
reflection band of the target object. Through the ratio calculation, the difference between
the target object and the background is amplified. The NDVI, NDWI and MNDWI can
be considered as representatives of the ratio index (see Table 2 for formulates). The blue
band has a certain penetration effect on water, which can be used to obtain underwater
information [36]. At the same time, it can be seen from Figure 2 that the blue band still
has relatively high reflectivity of sediment water. Previous studies did not consider the
blue band. For this reason, the IWI proposed in this study uses the four spectral bands
of Landsat-8 OLI to construct a new index (Equation (1)). The new index, IWI, combines
the blue and green bands to form a high-reflectance band combination and combines the
short-wave infrared band to form a low-reflectance band combination. The square of the
ratio of these two combinations is then used to highlight the separability of sediment water
from silty mudflats, as expressed in Equation (1) below:

IWI = [(ρb2 + ρb3 − ρb6 − ρb7)/(ρb2 + ρb3 + ρb6 + ρb7)]2 (1)

where ρ is the reflectance and b2, b3, b6 and b7 are the OLI Blue, Green, SWIR1 and SWIR2
bands, respectively.

The reflectance spectral properties of silty mudflats are more similar to those of
sediment water, which are often difficult to distinguish. Equation (1) can enhance the
differences between silty mudflats and sediment waters (see Table 3), can increase the
variance between classes and to make the thresholds obtained by the Otsu algorithm more
accurate. The IWI is constructed according to the characteristics of high reflectivity of
sediment waters in blue and green bands to eliminate the misclassification caused by
threshold classification when the residual water bodies of silty mudflats are calculated as
positive based on the ratio index. It can increase the difference between sediment water
and other non-water pixels (e.g., silty mudflats) so that the reflectivity of the residual water
bodies of the silty mudflats will be close to the water bodies. The most complex variation in
silty mudflats is found in different tidal scenarios, and this difficulty has been overlooked
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by previous approaches that have chosen high tide images and cannot be applied to
other scenarios.

Table 2. Comparison of various spectral water indices.

Index’s Name Formula

IWI ((ρb2 + ρb3 − ρb6 − ρb7)/(ρb2 + ρb3 + ρb6 + ρb7))2

MNDWI (ρb3 − ρb6)/(ρb3 + ρb6)
AWEInsh 4 × (ρb2 − ρb5) − (0.25 × ρb4 + 2.75 × ρb7)
AWEIsh ρb1 + 2.5 × ρb2 − 1.5 × (ρb4 + ρb5) − 0.25 × ρb7
RNDWI (ρb6 − ρb4)/(ρb4 + ρb6)

EWI (ρb3 − ρb4 − ρb6)/(ρb3 + ρb4 + ρb6)
NDWI (ρb3 − ρb5)/(ρb3 + ρb5)

Here, ρ is the reflectance of each band of the multispectral Landsat8 OLI and bi (i =1...,7) is each band of the
multispectral spectrum.

Table 3. Calculation results of each index are based on Figure 2.

Index’s Name
Low-

Sediment
Water

High-
Sediment

Water
Land Silty

Mudflat
Coastal

Vegetation

IWI 0.664184 0.886677 0.104329 0.116950 0.161128
MNDWI 0.812356 0.929890 −0.315410 0.335666 −0.424360
AWEInsh

1 0.115870 0.218482 −0.980530 −0.259060 −0.772950
AWEIsh

1 0.089382 0.098988 −0.285110 −0.083450 −0.255600
RNDWI −0.624370 −0.91626 0.297899 −0.363640 0.292325

EWI 0.289268 0.070846 −0.495060 −0.219730 −0.585860
NDWI 0.769473 0.533013 −0.405810 −0.048960 −0.415590

1 The calculation is divided by 10,000.

The reflectance of the silty mudflats is close to but lower than that of the sediment
waters in all bands. The values obtained using the MNDWI and NDWI formulae may
be either positive or negative, which can be avoided by using the square operation in
Equation (1). The algorithm no longer discriminates between types based on the calculated
positive and negative values, and the square operation amplifies the difference so that
the reflectance of sediment waters remains high and the reflectance of silty mudflats is
much lower, forming a bimodal distribution. As in Table 3, low-sediment water and high-
sediment water are grouped into one class, and other features are grouped into one class,
so the variance between the two classes needs to be increased. Therefore, using the data
in Table 3 as an example, the silty mudflats of MNDWI, RNDWI, EWI, AWEIsh and NDWI
have similar differences in values to sediment water or land–coastal vegetation, which may
lead to some misclassification, while the silty mudflat of IWI is far from sediment water
and land–coastal vegetation is more likely to provide a better Otsu threshold.

Therefore, the expected results of the IWI equation are as follows: (1) the silty mudflats
‘disappear’ at high tide, enhancing the separability of sediment waters from coastal vegeta-
tion, buildings and other pixels; (2) the silty mudflats ‘appear’ at low tide, enhancing the
separability of sediment waters from silty mudflats. Table 2 compares the IWI with several
other water indices, where the AWEI is a non-ratio index and all others are ratio indices.

3.3. IWI Index Combined with Otsu Algorithm for Water Extraction

The extraction of water bodies based on spectral indices requires a threshold to divide
the image into two classes, land and water bodies. The problem is that the threshold for the
spectral index is not constant but varies with land cover. The Otsu algorithm [25] is based
on an automatic selection of the optimal threshold from the grey-scale image to maximize
the differences between classes. Previous studies have shown that the Otsu algorithm could
be successfully applied to the separation of water bodies from the Landsat imagery [37].
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The optimal threshold t* in the range a~b (−1 ≤ a ≤ b ≤ 1) is determined by the following
algorithm [25]: 

σ2 = Pnw·(Mnw − M)2 + Pw·(Mnw − M)2

M = Pnw·Mnw + Pw·Mw
Pnw + Pw = 1

t∗ = Arg max
a≤t≤b

{
Pnw·(Mnw − M)2 + Pw·(Mnw − M)2

} (2)

where σ is the inter-class variance of non-water and water pixels. Pnw denotes the proba-
bility that a pixel belongs to a non-water pixel and Pw denotes the probability that a pixel
belongs to a water pixel. Mnw and Mw denote the means of all non-water pixels and all
water pixels, respectively, and M is the mean of the whole image. Pixels with values greater
than or equal to the optimal threshold are classified as water and calculated as 1; conversely,
pixels are classified as non-water pixels and calculated as 0. Note that water and non-water
categories are assigned values opposite to those described above in the RNDWI (i.e., 0 for
water and 1 for non-water).

3.4. Coastline Extraction and Accuracy Evaluation

Based on the results of the above water body extraction, the coastline was determined
by the vectorized water–land boundary line, and the estuarine coastline was determined as
the coastline connection at the maximum estuarine widening according to Hou et al. [38],
which occurred after vectorization. The outermost edge vector was taken as the shoreline to
be determined and the estuarine shoreline was truncated at the outermost edge inflection
point, after which the two truncation points were joined to complete the estuarine shoreline
connection. To quantify the accuracy of coastline extraction, the coastline was manually
interpreted using the higher-resolution Sentinel-2 images taken on the same day as the
validation coastline, with a spatial resolution of 10 m in the visible band of Sentinel-2. By
selecting images taken on the same day, the time difference between the two images at the
corresponding locations from different sensors is about 15–20 min, so that the corresponding
image element feature type can be considered unchanged.

4. Analysis and Evaluation of Results
4.1. Comparison of Extraction Results for Open Water Bodies (Marine)

Figure 3 shows the results of the classification of water bodies (marine) and other
features calculated by each index (Table 2) and the Otsu algorithm for different tidal
scenarios. There are areas of overlap between Figure 3a,b and between Figure 3b,c, with
different tidal scenarios and different coastline locations. Figure 3a shows the Otsu results
for each index from Figure 1a, with a few misclassified areas of deep water in the IWI and a
large number of misclassified areas of highly sandy water in the NDWI and AWEIsh. The
IWI, despite the above misclassifications, has better results in removing mountain shadows
and identifying features such as offshore structures. Figure 3b shows the Otsu results for
each index in Figure 1b with radial sandbars ‘visible’ in this image and muddy coastlines as
the dominant coastline type. The indices that are better identified for the silty mudflats are
the IWI, MNDWI and RNDWI. The radial sandbar is not correctly identified in the NDWI
results and a large area of the inshore is misidentified. Therefore, the IWI has a higher
ability to identify open water bodies (marine) for different tidal conditions.

This study differs slightly from the general water body extraction studies in that the
accuracy of the inland water body extraction is not considered, and emphasis is placed
on the extraction of water bodies at the intersection of open water bodies (marine) and
land. Figure 4 shows in more detail the results of IWI and other indices for the extraction
of water bodies at the interface between land and sea. Figure 4a,d,g shows the artificial
shore area, with the results demonstrating that the IWI has the best clarity and continuity
for artificial structures, while the AWEI is not successful in identifying this area. Figure 4b
shows the sandy shore area, where the water contents in sand and gravel cause small
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numbers of classification errors in the MNDWI, EWI, AWEI and RNDWI. Figure 4c–f shows
the results for the silty shore, where the MNDWI, EWI and AWEI have almost zero ability
and the MNDWI and RNDWI also have a large number of missed areas, indicating low
applicability, while the IWI better identifies the silty mudflats. Figure 4g,h shows the
enclosed mariculture shore with a small coast extent of only 1–2 pixels, where the so-called
“salt-and-pepper phenomenon” of misclassification can greatly affect the identification of
the correct location of the coastline. The results, however, show that the IWI index can
avoid this phenomenon very well.

Figure 3. Otsu classification images of each index, whereby the red box in the diagram shows the
misclassified areas of the Otsu classification; (a–c) correspond to the positions in Figure 1a–c.

4.2. Accuracy Analysis of Coastline

The results of the partial shoreline validation in Table 4 show that the IWI has high
accuracy for different shoreline types, and the accuracy is higher than 77% with one pixel as
the evaluation index, while the NDWI has the worst result with an accuracy of 0 in Figure 4c–f.
In general, the differences in accuracy between the indices for the silty mudflats are large,
and the differences in accuracy between the indices for the artificial shoreline are small.

Figure 5 shows a comparison of the coastline results extracted by each index. Parts
(Figure 5a–c) of the figure correspond to the coastline results extracted by each index
based on the images in Figure 1a–c. Figure 5b shows the most significant difference in the
coastline, with the continuity being greatly challenged in the extraction of the coastline.
Figure 5a is similar to Figure 5b,c has the least differences and most consistent extraction
results among the indices. The differences between results are due to the differences in
sensitivity of the silty mudflats and offshore artificial buildings to different combinations of
spectral bands. A comparative analysis of the coastline extraction results in the overlapping
areas (Figure 5A–D) shows that the differences in the extraction of coastlines among the
indices are smaller at high tide than at low tide. There is little difference in the extraction
results of multiple indices in high tide area (Figure 5A,D), and there is great difference in
the extraction results of multiple indices in the low tide area (Figure 5B,C). At low tide, the
silty mudflats are exposed but the muddy coast is not well identified, except by the IWI.
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Figure 4. Diagram of partial results of different coastline types extracted for each index: (a,d,g)
the artificial shore area; (b) the sandy shore area; (c,d,e,f) the silty shore area; (g,h) the enclosed
mariculture shore.

Table 4. Accuracy analysis of the local coastline results (%) for different indices.

Index’s
Name

Validation
Distances (m) Figure 4a Figure 4b Figure 4c Figure 4d Figure 4e Figure 4f Figure 4g Figure 4h

0–30 91.84 82.63 77.79 91.45 83.47 92.86 87.56 99.12
IWI 0–60 96.46 84.46 84.54 94.89 86.45 95.45 91.36 100.00

0–90 98.31 90.46 91.97 98.71 89.92 98.57 100.00 100.00
0–30 89.55 2.44 20.47 1.81 11.21 7.13 1.45 94.63

EWI 0–60 93.46 5.63 24.91 3.45 24.63 9.45 67.32 97.48
0–90 95.73 7.45 30.47 9.47 32.66 11.78 84.56 99.29
0–30 84.69 1.30 21.35 19.54 58.13 52.68 57.41 92.66

MNDWI 0–60 91.79 4.62 26.41 24.23 64.18 57.89 76.79 98.45
0–90 93.41 8.33 32.45 30.22 74.55 61.42 84.63 99.34
0–30 84.77 57.24 0.00 0.00 0.00 0.00 0.47 76.85

NDWI 0–60 91.93 64.15 0.00 0.00 0.00 0.00 64.48 88.48
0–90 96.42 74.31 0.00 0.00 0.00 0.00 81.60 93.45
0–30 33.64 1.48 9.43 2.04 7.43 8.65 1.78 17.63

AWEInsh 0–60 70.49 3.51 15.74 8.47 15.76 9.45 46.96 26.36
0–90 81.33 8.47 24.69 9.45 19.48 10.71 62.01 37.44
0–30 78.38 1.72 18.49 21.46 62.13 57.43 60.47 91.46

RNDWI 0–60 82.46 4.12 23.41 27.63 72.46 63.47 64.79 94.21
0–90 88.63 9.54 26.48 31.01 78.14 71.13 68.47 98.43
0–30 24.95 9.46 21.36 14.32 6.77 0.00 0.58 64.57

AWEIsh 0–60 56.64 30.46 25.46 19.76 10.65 0.00 58.46 74.93
0–90 76.49 50.84 49.78 26.87 11.24 0.00 70.42 82.36
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In order to quantitatively evaluate the accuracy of the coastline extraction by each
index, the validation coastline interpreted by Sentinel-2 was used to calculate the ratio of
the extracted coastline within the validation coastline using the widths of one pixel, two
pixels and three pixels of Landsat-8 OLI as error tolerances. The calculated ratio (in %)
was used as a proxy for the accuracy of the extracted coastline. The validation results are
presented in Table 5. Figure 6 shows the shoreline local validation results.

Figure 5. Comparison image of extracted coastline results: (a–c) the result maps of northern, central
and southern coastlines of Jiangsu extracted using various methods; enlarged maps of local results,
where (A–D) are the overlapping areas.
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Table 5. Accuracy analysis of the coastline results (%) for different indices.

Index’s
Name

Figure 1a
(0–30 m)

Figure 1a
(0–60 m)

Figure 1a
(0–90 m)

Figure 1b
(0–30 m)

Figure 1b
(0–60 m)

Figure 1b
(0–90 m)

Figure 1c
(0–30 m)

Figure 1c
(0–60 m)

Figure 1c
(0–90 m)

IWI 81.63 92.74 97.36 84.61 86.77 94.72 85.86 89.47 91.45
EWI 59.00 65.55 69.29 7.18 12.97 15.13 55.25 76.91 84.23

MNDWI 55.44 66.06 71.62 38.21 48.03 52.68 50.69 72.40 78.37
NDWI 58.03 63.46 66.77 0.00 0.04 0.13 44.78 67.73 76.54

AWEInsh 25.69 43.41 50.17 7.04 12.81 14.65 17.65 45.75 55.94
RNDWI 60.62 70.60 76.13 40.41 52.30 57.43 46.36 66.86 73.61
AWEIsh 21.30 35.44 40.88 8.81 15.74 19.67 23.88 50.24 61.99

Figure 6. Image of shoreline local validation results, in descending order of dimensionality. The leg-
end S D (coastline distance) indicates the distance between the extracted coastline and the validation
coastline; black, red and blue represent the different validated coastline distances.
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From the validation results in Table 5, we can conclude that the coastline accuracy
extracted by the IWI with the Otsu algorithm exceeds 81% in all three scenarios compared
to the validation coastline, while the accuracy exceeds 91% for the three-pixel tolerance for
all three images, which is the highest accuracy among the indices. The lowest accuracy
of almost zero comes from the coastline of the NDWI-extracted image in Figure 1b. For
the image in Figure 1a for the one-pixel tolerance, the RNDWI- and MNDWI-extracted
coastline result is the second highest after the IWI at approximately 60%. For the image in
Figure 1b, all indices are below 50% accuracy, except for the IWI for the one-pixel tolerance.
For the image in Figure 1c, the EWI-, MNDWI- and NDWI-extracted coastline results have
accuracy levels above 76% for the three-pixel tolerance. Overall, with the exception of IWI,
the response of the index to water varies considerably under different tide and sediment
conditions. Sensitivity can be defined as the influence of tide and water turbidity when the
index identifies a water body, which is the opposite of the accuracy. The sensitivity can be
ranked as IWI < MNDWI < RNDWI < EWI < AWEI < NDWI in this study.

5. Discussion

Landsat 8-OLI is the latest satellite of the Landsat series launched specifically for
global land resource monitoring, which can be used to monitor coastline changes and
support the studies of coastal evolutions and sea–land interactions. The Jiangsu coast has
the world’s unique radial sandbars and a wide intertidal zone. The spectral reflectance
of the silty mudflats from visible band to shortwave infrared band wavelengths is sim-
ilar to that of the water body, and the difference in reflectance of each band is as small
as 0.05. The indices developed in previous studies did not take into account the influence
of the silty mudflats on the extracted coastline, resulting in poor results and an inability to
extract the muddy coastline under various tidal conditions. To better identify silty mudflats
and extract coastlines under different tidal conditions, in this we study constructed a new
spectral index to improve the extraction accuracy of muddy coastlines based on the analysis
of spectral characteristics of nearshore features such as silty mudflats, vegetation, land and
water bodies. The blue band was added to form a combination of high-reflectivity and low-
reflectivity bands using a ratio-based algorithm. Silty mudflats and sandy coastlines are
often inundated by water, and water bodies may remain at low tide, resulting in frequent
misclassification by remote sensing. Therefore, the algorithm constructed in this study
adds the blue band, which has a short electromagnetic wavelength; contains high energy;
and has strong penetrating power and the ability to penetrate the water body to obtain
underwater features. The improved index enhances the differences between sediment
waters and silty mudflats. The corresponding algorithms based on the improved index are
more suitable for the classification of features with flat and changing spectra.

In this study, we used the global automatic threshold algorithm (i.e., Otsu algorithm)
to classify water bodies and non-water bodies. The IWI algorithm focuses on the differ-
ences between silty mudflats and sediment water bodies, and the difference between the
calculated results was greater than 0.5, which is generally bimodal and useful for accu-
rate classification of the global automatic threshold. The applicability to other features is,
however, reduced. In addition, the global threshold may cause some clear water bodies
with very low reflectivity to be misclassified. It is, therefore, helpful if a chunked threshold
is used for the classification of clear water bodies in very small areas, and the size of the
sliding window needs to be properly determined. However, the study area of Jiangsu
offshore water bodies in this study is turbid, with high suspended sediment content, and
the IWI calculation value of offshore suspended sediment waters is high, so the global
threshold has a low impact on the extraction of offshore water bodies.

The accuracy of the coastline extracted results by different indices at low tide and
high tide were different, leading to very different results for coastline extraction. The
silty mudflats are revealed at low tide, and the classification results for NDWI and AWEI
were incorrect, leading to a decrease in coastline extraction accuracy. For example, the
NDWI identified part of the water with high sediment content in the overlapping area of
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Figure 1a,b as land and water bodies, respectively, while it identified part of the coastal
land in the overlapping area of Figure 1b,c as water bodies and land, respectively. Silty
mudflats have different states under different tidal conditions, and the accurate extraction
of information on silty mudflats under various scenarios is critical to the correct extraction
of coastlines. Ryu et al. [23] used the red band density partitioning to extract the water-
line of silty mudflats in Gomso Bay, Korea, with an average deviation of less than 60 m.
Tong et al. [39] explored the NDWI and ratio of the green band to short-wave infrared
band 1 in different seasons to extract the shoreline of silty mudflats in northern Vietnam.
The results showed that different uses of the green band divided by short-wave infrared
band 1 with coefficients of variation of 13% in the dry season and 25% in the rainy sea-
son was the optimal shoreline extraction method. In summary, the IWI evaluated in one
pixel with an accuracy of more than 81% in various cases can be better applied to a wide
range of situations.

However, the spatial resolution difference between the shoreline extracted from
sentinel-2 10 m MSS image and landsat-8 30 m image was small. The analysis would
be improved if more accurate images could be acquired for verification.

6. Conclusions

The IWI spectral water index constructed in this study uses the blue, green, SWIR1 and
SWIR2 bands of the OLI sensor to improve the accuracy of complex coastline extraction.
The results demonstrate that it performs better than the other commonly used indices, such
as the NDWI, MNDWI and AWEI. In particular, the proposed IWI index can better identify
offshore artificial structures and silty mudflats than the commonly used spectral indices
with higher accuracy. In addition, the IWI method allows the extraction of coastlines from
shores with different tidal conditions and different land covers (e.g., wetlands, buildings,
etc.) with better accuracy. It can be extended to a wide range of complex coastal types
without being restricted to specific conditions (e.g., micro-tidal or single coastal types).

The results show that the IWI is independent of tides and the sand content of the water
column, reduces the “salt-and-pepper” phenomenon of Otsu’s classification, accurately
identifies water boundary information, extracts information on silty mudflats and offshore
structures with high accuracy and significantly increases coastline extraction automation.
The IWI combined with the Otsu algorithm extracts multiple types of coastlines, and it has
been verified that the one-pixel accuracy of the extracted muddy coastline exceeds 84%,
while the three-pixel accuracy exceeds 91%. It is reliable and can be used for an improved
understanding of sea–land processes and coastline evolution.

Author Contributions: Conceptualization, W.T.; methodology, C.Z.; software, J.L.; validation, W.T.,
C.J.; formal analysis, G.Z.; investigation, J.Z.; resources, X.P.; data curation, X.H.; writing—original
draft preparation, W.T.; writing—review and editing, J.Z.; visualization, J.L.; supervision, C.Z.; project
administration, C.Z.; funding acquisition, C.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China grant
number 42130405 and the Innovative and Entrepreneurial Talent Program of Jiangsu Province grant
number R2020SC04.

Acknowledgments: We are grateful to those involved in data processing and manuscript writing revision.

Conflicts of Interest: The authors declare no conflict of interest.



Water 2022, 14, 855 14 of 15

References
1. Wu, T.; Hou, X.Y. Review of research on coastline changes around the world. Acta Ecol. Sin. 2016, 36, 1170–1182.
2. Louati, M.; Saïdi, H.; Zargouni, F. Shoreline change assessment using remote sensing and GIS techniques: A case study of the

Medjerda delta coast, Tunisia. Arab. J. Geosci. 2015, 8, 4239–4255. [CrossRef]
3. Chen, Y.; Dong, J.W.; Xiao, X.M.; Zhang, M.; Tian, B.; Zhou, Y.X.; Li, B.; Ma, Z.J. Land claim and loss of tidal flats in the Yangtze

Estuary. Sci. Rep. 2016, 6, 24018. [CrossRef] [PubMed]
4. Wu, Y.Q.; Liu, Z.L. Research progress on methods of automatic coastline extraction based on remote sensing images. J. Remote Sens.

2019, 23, 582–602.
5. Shi, J.J.; Li, W.F.; Liu, Y.L.; Zhou, W.Q.; Han, L.J.; Tian, S.F.; Wang, Y.M.; Niu, X.Q. Impacts of urbanization on coastline and coastal

zone in the Guangdong-Hong Kong-Macao Greater Bay Area. Acta Ecol. Sin. 2022, 1, 1–10.
6. Zhang, X.X.; Yan, C.Q.; Xu, P.; Dai, Y.X.; Yan, W.B.; Ding, X.R.; Zhu, C.X.; Mei, D.D. Historical evolution of tidal flat reclamation in

the Jiangsu coastal areas. Acta Geogr. Sin. 2013, 68, 1549–1558.
7. Ma, X.F.; Zhao, D.Z.; Xing, X.G.; Zhang, F.S.; Wen, S.Y.; Yang, F. Means of with drawing coastline by remote sensing. Mar. Environ. Sci.

2007, 26, 185–189.
8. Li, Q.Q.; Lu, Y.; Hu, S.B.; Hu, Z.W.; Li, H.Z.; Liu, P.; Shi, T.Z.; Wang, C.S.; Wang, J.J.; Wu, G.F. Review of remotely sensed

geo-environmental monitoring of coastal zones. J. Remote Sens. 2016, 20, 1216–1229.
9. Yan, Z.; Jin-wei, D.; Xiang-ming, X.; Tong, X.; Zhi-qi, Y.; Guo-song, Z.; Zhen-hua, Z.; Yuan-wei, Q. Open Surface Water Mapping

Algorithms: A Comparison of Water-Related Spectral Indices and Sensors. Water 2017, 9, 256.
10. Zhou, Z.; Gui, S.X.; Li, Y.C.; Tao, Y.Q.; Peng, Y. Inversion of typical water quality parameters in Chaohu Lake based on composite

spectral indices. Yangtze River 2020, 51, 45–50.
11. Li, Y.M.; Zhang, X.J. Remote Sensing Monitoring of Leaf Water Contentin Lycium Barbarum Based on Spectral Index. Geogr.

Geo-Inf. Sci. 2019, 35, 16–21.
12. McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J.

Remote Sens. 1996, 17, 1425–1432. [CrossRef]
13. Xu, H.Q. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI).

J. Remote Sens. 2005, 9, 589–595.
14. Cao, R.L.; Li, C.J.; Liu, L.Y.; Wang, J.H.; Yan, G.J. Extracting Miyun reservoir’s water area and monitoring its change based on a

revised normalized different water index. Sci. Surv. Mapp. 2008, 33, 158–160.
15. Yan, P.; Zhang, Y.J.; Zhang, Y. A Study on Information Extraction of Water System in Semi-arid Regions with the Enhanced Water

Index ( EWI) and GIS Based Noise Remove Techniques. Remote Sens. Inf. 2007, 6, 62–67.
16. Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping

using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [CrossRef]
17. Sheng, J.H.; Zhang, C.; Wan, J.H. Automatic coastline extraction method based on multitemporal remote sensing data. Mar. Sci.

2021, 45, 16–22.
18. Borja, S.P.V.; Miguel, O.S. Automatic methodology to detect the coastline from landsat images with a new water index assessed

on three different spanish mediterranean deltas. Remote Sens. 2019, 11, 44.
19. Yun, D.; Zhang, Y.; Feng, L.; Wang, Q.; Li, W.; Li, X. Water bodies’ mapping from sentinel-2 imagery with modified normalized

difference water index at 10-m spatial resolution produced by sharpening the swir band. Remote Sens. 2016, 354, 354.
20. Wu, J.P.; Zhang, Y.; Zhang, J.; Fan, S.L.; Yang, C.; Zhang, X.F. Comparison and analysis of water indexes in muddy coasts based

on MODIS data: A case study of the Yellow River Delta coast. Remote Sens. Land Resour. 2019, 31, 242–249.
21. Zhang, X.; Wang, X.P.; Huang, A.Q.; Li, Y.S.; Zhang, S.; Bai, Y.; Malak, H.; Zhang, J.H. Extraction of complex coastline feature and

its multi-year changes in Shandong Peninsula Based on remote sensing image. Trans. Oceanol. Limnol. 2021, 43, 171–181.
22. Paravolidakis, V.; Ragia, L.; Moirogiorgou, K.; Zervakis, M.E. Automatic coastline extraction using edge detection and optimiza-

tion procedures. Geosciences 2018, 8, 407. [CrossRef]
23. Ryu, J.H.; Won, J.S.; Min, K.D. Waterline extraction from Landsat TM data in a tidal flat: A case study in Gomso Bay, Korea.

Remote Sens. Environ. 2002, 83, 442–456. [CrossRef]
24. Ding, X.R.; Kang, Y.Y.; Mao, Z.B.; Sun, Y.L.; Li, S.; Gao, X.; Zhao, X.X. Analysis of largest tidal range in radial sand ridges southern

Yellow Sea. Acta Oceanol. Sin. 2014, 36, 12–20. (In Chinese)
25. Zhang, X.X.; Wang, W.W.; Yang, C.Q.; Yan, W.B.; Dai, Y.X.; Xu, P.; Zhu, C.X. Historical Coastline Spatio-temporal Evolution

Analysis in Jiangsu Coastal Area During the Past 1000 Years. Sci. Geogr. Sin. 2014, 34, 344–351.
26. Chen, W.T.; Zhang, D.; Shi, S.J.; Zhou, J.; Kang, M. Research on monitoring coastline changes by remote sensing in muddy coast,

central Jiangsu coast. HaiyangXuebao 2017, 39, 138–148.
27. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
28. Wang, Y.X.; Liu, Y.X.; Jin, S.; Sun, C.; Wei, X.L. Evolution of the topography of tidal flats and sandbanks along the Jiangsu coast

from 1973 to 2016 observed from satellites. ISPRS J. Photogramm. Remote Sens. 2019, 150, 27–43. [CrossRef]
29. Chen, W.T.; Zhang, D.; Cui, D.D.; Lv, L.; Xie, W.J.; Shi, S.J.; Hou, Z.Y. Monitoring spatial and temporal changes in the continental

coastline and the intertidal zone in Jiangsu province, China. Acta Geogr. Sin. 2018, 73, 1365–1380.
30. Li, Y.F.; Liu, H.Y.; Sun, X.B.; Zhu, L.J. Assessment of ecological functions for coastal wetlands based on hydrogeomorphic units: A

case study on coastal wetland of Yancheng, Jiangsu Province, China. Acta Ecol. Sin. 2010, 30, 1718–1724.

http://doi.org/10.1007/s12517-014-1472-1
http://doi.org/10.1038/srep24018
http://www.ncbi.nlm.nih.gov/pubmed/27035525
http://doi.org/10.1080/01431169608948714
http://doi.org/10.1016/j.rse.2013.08.029
http://doi.org/10.3390/geosciences8110407
http://doi.org/10.1016/S0034-4257(02)00059-7
http://doi.org/10.1109/TSMC.1979.4310076
http://doi.org/10.1016/j.isprsjprs.2019.02.001


Water 2022, 14, 855 15 of 15

31. Liao, H.J.; Li, G.S.; Wang, S.H.; Cui, L.L.; OuYang, N.L. Evolution and spatial patterns of tidal wetland in North Jiangsu Province
in the past 30 Years. Prog. Geogr. 2014, 33, 1209–1217.

32. USGS. Product Guide: Landsat 8 Surface Reflectance Code (LaSRC) Product. Available online: https://www.usgs.gov/media/
files/landsat-8-collection-1-land-surface-reflectance-code-product-guide (accessed on 18 January 2022).

33. Roy, D.P.; Qin, Y.; Kovalskyy, V.; Vermote, E.F.; Ju, J.; Egorov, A.; Hansen, M.C.; Kommareddy, I.; Yan, L. Conterminous United
States demonstration and characterization of MODIS-based Landsat ETM+ atmospheric correction. Remote Sens. Environ. 2014,
140, 433–449. [CrossRef]

34. Xu, H.Q.; Tang, F. Analysis of new characteristics of the first Landsat 8 image and their eco-environmental significance. Acta Ecol. Sin.
2013, 33, 3249–3257.

35. Xu, H.Q. Water colour variation analysis of the coastal waters surrounding Xiamen Island of SE China by multispectral and
multitem poral remote sensing measurements. Acta Sci. Circumstantiae 2006, 26, 1209–1218.

36. Tang, K.K.W.; Mahmud, M.R. Imagery-derived bathymetry in Strait of Johor’s turbid waters using multispectral images. Remote
Sens. Spat. Inf. Sci. ISPRS Arch 2018, 42, 133–137. [CrossRef]

37. Zhang, J.; Lai, Z.L.; Sun, J. Coastline extraction of remote sensing image by combining Otsu, regional growth method with
morphology. Bull. Surv. Mapp. 2020, 10, 89–92.

38. Hou, X.Y.; Wu, T.; Hou, W.; Chen, Q.; Wang, Y.D.; Yu, L.J. Characteristics of coastline changes in mainland China since the early
1940s. Sci. China Earth Sci. 2016, 46, 1065–1075. [CrossRef]

39. Tong, S.S.; Deroin, J.P.; Pham, T.L. An optimal waterline approach for studying tidal flat morphological changes using remote
sensing data: A case of the northern coast of Vietnam. Estuarine. Coast. Shelf Sci. 2020, 236, 106613. [CrossRef]

https://www.usgs.gov/media/files/landsat-8-collection-1-land-surface-reflectance-code-product-guide
https://www.usgs.gov/media/files/landsat-8-collection-1-land-surface-reflectance-code-product-guide
http://doi.org/10.1016/j.rse.2013.09.012
http://doi.org/10.5194/isprs-archives-XLII-4-W9-139-2018
http://doi.org/10.1007/s11430-016-5317-5
http://doi.org/10.1016/j.ecss.2020.106613

	Introduction 
	Study Area and Data Sources 
	Study Area Overview 
	Data Sources 

	IWI Index Construction and Water Extraction Method 
	Analysis of Spectral Characteristics of Ground Objects 
	IWI Index Construction 
	IWI Index Combined with Otsu Algorithm for Water Extraction 
	Coastline Extraction and Accuracy Evaluation 

	Analysis and Evaluation of Results 
	Comparison of Extraction Results for Open Water Bodies (Marine) 
	Accuracy Analysis of Coastline 

	Discussion 
	Conclusions 
	References

