
����������
�������

Citation: Lawen, J.; Lawen, K.;

Salman, G.; Schuster, A. Multi-Band

Bathymetry Mapping with Spiking

Neuron Anomaly Detection. Water

2022, 14, 810. https://doi.org/

10.3390/w14050810

Academic Editors: Georgios Sylaios

and Ghada El Serafy

Received: 19 December 2021

Accepted: 22 February 2022

Published: 4 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Multi-Band Bathymetry Mapping with Spiking Neuron
Anomaly Detection
J. Lawen 1,*, K. Lawen 2, G. Salman 3 and A. Schuster 3

1 Institute of Process Systems Engineering, Hamburg University of Technology,
Am Schwarzenberg-Campus 4 (C), 21073 Hamburg, Germany

2 Nvidia, 2788 San Tomas Expressway, Santa Clara, CA 95951, USA; klawen@nvidia.com
3 Department of Computer Science, Technion—Israel Institute of Technology, Haifa 3200003, Israel;

george.sa@campus.technion.ac.il (G.S.); assaf@cs.technion.ac.il (A.S.)
* Correspondence: jl@environment.report

Abstract: The developed method extracts bathymetry distributions from multiple satellite image
bands. The automated remote sensing function is sparsely coded and combines spiking neural net
anomaly filtration, spline, and multi-band fittings. Survey data were used to identify an activation
threshold, decay rate, spline fittings, and multi-band weighting factors. Errors were computed
for remotely sensed Landsat satellite images. Multi-band fittings achieved an average error of
25.3 cm. This proved sufficiently accurate to automatically extract shorelines to eliminate land areas
in bathymetry mapping.

Keywords: remote sensing; multi-band; SNN; anomaly detection; shoreline recognition

1. Introduction

Bathymetry, that is, underwater topography, exhibits in satellite imagery a depth-
dependent correlation with pixel shadings. Remote estimations of water depths have
been particularly successful for shallow waters with detectable reflections from the seafloor.
Absent atmospheric correction, machine learning has been found to be superior over fittings
to rigorous optical models [1]. Neural nets have been extensively used for remote sensing
(RS), including convolutional neural nets (CNN), NN–physics hybrid methods [2], and to
utilize multiple bands or spectra [3].

The remote sensing method has to account for: uneven numbers of measurements per
pixel, shared pixel shadings for a measured depth, different measured depths for the same
shading, different fittings for different bands, and simply anomalies on (1) the seafloor due to
vegetation, varying geology or anthropogenic effects such as pollution and (2) instances of
cloud cover besides atmospheric interference. Recent CNN works limited mean errors for
littoral waters to 0.39 m [4], which is in this work surpassed with an average error of 0.25 m.

Advancing sensor technology permits hyperspectral imaging [5] by recording a con-
tinuous spectrum for each pixel vis-à-vis merely discrete sampling of, for example, RGB
colors. In this work, automatic remote sensing is developed to provide an environmental
domain for riverine, lake, and coastal ocean simulations. Henceforth, compatibility to read-
ily available Landsat open-source data has been favored, which are heretofore limited to
multiband imaging. With advances in earth observations, this utility could also incorporate
the processing of hyperspectral sensing.

NN and CNN have found a wide application in feature recognition throughout
recent decades and likewise continuously evolved in Earth observations, adapting CNN to
hyperspectral images [5], multimodal inputs [6], and both, respectively [7].

In pursuit of the exploitation of yet less explored spiking neurons, bathymetric
anomaly detection appears as a suitable commencing increment, as the complexity is
then limited to a scalar depth derived from a particular pixel. Spiking neural nets have,
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hence, heretofore found application in anomaly detection for time series [8] and image
processing [9]. In this work, spiking neural nets are used to detect anomalies in bathymetric
data. The developed solution comprises a spline fitting, spiking neuron (SN) anomaly
detection, and multi-band fitting. Whereas neural nets are stationary, spiking neurons intro-
duce a differential regime with activation functions that exhibit decays between successive
stimuli. The decay occurs usually along time but can also occur along a spatial dimension.
The latter is utilized here, harnessing spiking neurons to filter outliers. That is, the differen-
tial between a local depth value and proximate values, weighted by its reciprocal distance,
is used to stimulate activation. Each stimuli is followed by exponential decay.

Dynamic SNN permit to integrate a growing set of data into a binary decision of in- or
excluding data. This is an important feature to permit the onward development of remote
sensing based on multi-temporal satellite images [10,11]. The SNN is sandwiched between
pre- and post-processing that can be formulated in either fashion: the pre-processing can be
denoted as a spline fit followed by the computation of the SN input or as a classical sparse
neural net. Likewise, the post-processing can be denoted as a weighted linear fitting or as a
classical neural net.

For bathymetry estimations, the use of three RGB bands was found to return more
robust results than using one or two bands alone [1]. More robust means here that whereas
monochrome sensing failed for some pixels (Figure 3), multi-band sensing returned esti-
mates for all pixels. An open source Landsat 8 image from the USGS Earth Explorer [12]
was used. Band values that turn out unsampled in the survey or share the same depth
received an interpolated allocation. Anomalies were mitigated with the spiking neuron
layer. Stationary data were made compatible with the transient functioning of SNN by
substituting time with the radius around a pixel that is being processed. The threshold
for the spiking neurons was identified iteratively until either the sensing error was mini-
mized or features, such as shores and highways, were extracted best. Figure 5 shows the
extracted bathymetry surrounding south Bahrain and the artificial islands at the island’s
eastern coast.

2. Methods

Outlying pixels are filtered with spiking neurons by converting the neuron’s transient
dependency to a spatial function. An SNN mirrors natural neural nets by exhibiting the
exponential decay of stimuli. Spiking neurons are reset once accumulating stimuli pass
the neurons’ thresholds. Outlying soundings or depths can be filtered versus the sorted
measurement series or the seafloor background. In this paper, the filtration occurs vs. the
seafloor background, which allows usage also for noise filtration in other image types.
That is, if a depth magnitude is not re-stimulated with increasing distance r and reciprocal
weight, then the activation function f falls below the threshold.

f (r+j ) = f (r−j ) + ∑
∀d∗(rj)

∣∣d∗i − d∗(rj)
∣∣

rj d∗i
(1)

f (rj + δrj) = e−δrj f (rj) (2)

where the input is the cumulative discrepancy between the input depth d∗ at a particular
location i and the depths d∗

(
rj
)

at a neighbor distance rj until the cutoff radius rcuto f f . The

distance of locally proximate centroids, rj, is obtained in sorted order with rj =
√

a2
j + b2

j
with r0 = 0,

bj = (3)((
rj−1 + 1

)(
1−

rj−1 mod 2
2

)
+ j
)

mod
(
rj−1 + 1

)
where aj and bj are the radius’ vertical and horizontal components, respectively.
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As bj ∈R, pixels encompass both adjacent numbers∈N, that is, bj + 01±1−
(
bj mod 1

)
.

rj = rj−1 + 0bj (4)

Equation (4) was obtained by observing that rj increments whenever bj resets to zero.
aj equals the growth period of bj and the growth height bj. Hence, bj can be constructed
out of a mutual reference of the two quantities and the index j. When bj vanishes, then
the recursive sequence shown in Equation (4) exhibits a leap of one unit length. When
bj returns any other natural number, then series Equation (4) remains constant. Hence,
using the recursive series bj in the exponent of 0 permits to obtain the recursive series
rj. That is, as bj is alternating between a natural number and 0, rj alternates between
growth and stagnation. The code for Equations (3) and (4) are provided with the code
for the neural net as the link in the Appendix A. Alternatively, aj can also be obtained by
incrementally summing the elements of the lower triangle matrix of the identity matrix
with ascending indices.

a1+p(p+1)/2+q =
j

∑
p=0

p

∑
q=0

Ipq (5)

Matrix storage can be omitted by denoting the identity matrix implicitly as an exponent
of 0 to the power of the difference of its indices:

a1+p/2(p+1)+q =
j

∑
p=0

p

∑
q=0

0p−q (6)

The code for Equation (6) is provided in the Appendix A such that aj is obtained readily
sorted. As a third alternative, the same series is recovered with a rigorous derivation in
the Appendix A. If the entire processing is supposed to be integrated into one neural net,
then the computation of the input for the spiking neurons can be formulated as arithmetic
neurons [13] fed by a layer which conducts a spline fit. Prior to the spline fit routine, survey
data are curated by removing all soundings above the water surface. The functioning of a
spiking neuron and particularly the circle-shaped arithmetic stimuli input is illustrated in
Figure 1 below.
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Figure 1. (Left): increments among discrete distances (red, green, . . . ) of neighboring pixels are
(right) corresponding to time increments in the spiking activation.

The pre-processing prior to identifying the neuron properties is conducted. Therefore,
by eliminating all dry measurements m,

m = m∗(∀m∗ > 0) (7)
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An input quantity is differentiated from an output quantity by the indication of a
superscript asterisk. Measurements m, i.e., echo soundings, are then correlated with satellite
image values v according to

∑
dim=[1 2]

|xm
dim − xv

dim|

∣∣∣∣∣∣
min

(8)

for the distance xdim. Given the satellite image resolution of 30 m, measurements that
share a pixel are averaged. Measurements that share the same pixel shade are averaged
too. To ascertain that all depths are in each third and preclude an interference of the
partition onto the results, elements are distributed to three equal parts in alternating
fashion. That is, the first third comprising [d1 d4 d7 . . . ], the second [d2 d5 d8 . . . ] and
so forth. Associated measurements and pixel shades are bookkept by referencing for a
particular post-processing measurement the found post-processing pixel shading in the
second layer. This is conducted for each color or band. For the third layer, the arithmetic
neurons compute the input term in Equation (1). The SNN layer then processes the output
depths further as per Equations (1) and (2), and

d = d∗(∀ f < fth) (9)

with the threshold fth. Pixels where the successive weighted deviations pass the threshold
are deemed outlying and eliminated. The multiband fitting then utilizes unused echo
measurement values to compute the best band weighting factor wi ∈ w for a particular
color i and pixel shading. The nonzero values for a particular vector w of weighing factors
are, hence, given with

w
(

imin(d∗)

)
= 1, for dm < min(d∗)

w
(

imax(d∗)

)
= 1, for dm > max(d∗)

wa =
dm−db
da−db

∧wb = dm−da
db−da

∧
[

a
b

]
= i
(

/∈ imax(d∗)

)
, for ∏(dm − d∗) > 0

wa =
dm−db
da−db

∧wb = dm−da
db−da

∧
[

a
b

]
= i
(

/∈ imin(d∗)

)
, for ∏(dm − d∗) < 0

(10)

imin(d∗) and imax(d∗) are the indices of the minimal and maximum depth estimates, re-
spectively, from the three utilized bands. Equation (10) merely describes the different cases
of weighting two adjacent depths out of three band estimates to return the measured depth.
If the measured depth is above or below the highest and deepest estimates respectively,
then only one band is used. If the measured depth lays between the first two or the last two
of the three bands, then the former or the latter are picked to contribute to the weighting.
Hence, Equation (10) contains four cases.

If all processing is cast into one neural net, then the synapses between the first and
second layer conduct a spline fit, and the multi-band fitting post SN constitutes a bona fide
neural layer, where several inputs vote with individual weighting factors. The intersected
SN layer permits to exclude locally volatile pixel values which statistically correspond to
an elevated probable error. The computational effort for the key spiking neuron anomaly
detection depends on the cutoff radius within which neighboring pixels are taken into
account. In actual application, the image size vastly exceeds the number of intertwined
neighboring neurons. A fixed cutoff radius and, hence, fixed number of relevant neighbor-
ing pixels, entails thus a complexity of O(n). The functions of the normal, arithmetic and
spiking layers are illustrated in Figure 2 below.

Increasing spatial distance corresponds here to an increasingly delayed time of spike
stimulation. The refinement of this conversion might warrant examining the conversion of
still perception fields to transience in biological SNN and if this exploits the difference in
transmission times of chemical vs. electrical synapses.
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Figure 2. Layers with a number neurons for input (nI), band fitting (nBF), arythmetics (nAN),
conventional neurons nMBF, arithmetic, and spiking neurons nSN . Neuron numbers are indicated for
the application case demonstrated in the subsequent section.

Based on parameter estimation iterations, the threshold of the neurons is set to 6 for
error filtration. For method comparison, errors are computed against soundings retained
for this accuracy examination. That is, the first third is used to conduct the spline fitting
for all bands; the second third is used to assess the spline fittings’ errors before and after
spiking neuron filtration and to conduct the weighting of bands; and the remaining third is
used to estimate the error of the composite fitting before and after spiking neuron filtration.
It occurs that if the arithmetic and SN layers are moved to the end of the stack, then features
such as shorelines and highways are extracted. The output for this configuration is shown
in Figure A1.

3. Results

The method was tested by applying it to recreational and residential artificial islands
at the coast of Bahrain. Survey bathymetry data were obtained for the Gulf of Salwa
through echo sounding measurements that longitudinally extended from shallow to deeper
sections. More than 30 thousand echo measurements were used, covering a depth up to
16 m. The bathymetry distributions obtained from satellite bands B2 to B4 and the final
triband bathymetry distribution are shown in Figure 3 below. The three utilized Landsat
8 images, band 2 to 4, were recorded in March 2021 with 7631 × 7781 pixels at a resolution
of 30 m. The triband bathymetry in the lower right corner exhibits a low error of 7.9% and
high robustness, as all pixels are successfully converted into bathymetric estimates.

The quantities that determine the size of the neural layers are listed in Table 1 below.
Outliers have subsequently been filtered, reducing the error as shown for the composite
sensing in Figure 4. The refined, displayed in Figure 5, exhibits a common smooth area at
the left and uneven areas in front of the artificial islands.

Table 1. Pixel properties.

Pixel Property Case

2bit depth 216

depthmax× resolution/[m] 16.5× 102

horizontal number 7631
vertical number 7781

locally proximate: 1 + 3× 22 + 23 + . . . here: 21



Water 2022, 14, 810 6 of 11

The filtered multi-band fitting with shore recognition is shown in Figure 5. The settled
silt is visible on the uniformly dredged floor of the artificial island development.
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Figure 3. Bathymetry in meters, sensing for band 2 (upper left), band 3 (upper right), band 4
(lower left), and a triband combination (lower right). The triband combination, shown in the lower
right corner, is the most robust, free of unrecognized swathes.

Depths at less than 2 m are additionally error-prone due to tidal and wave dynam-
ics. As the water column’s relative transience is significant in shallow sections, the local
reflectively is then increasingly ill-posed. For example, in intertidal wet–dry zones and at
centimeter scales, the local relative error inherently spans the entire water column.

Figure 4 below shows the error distribution for the first 1000 measurements for the
composite sensing and the spiking neuron filtered result. Figure 4 appears to confirm the
premise that a low baseline error is compromised by error outliers that exceed the former
by logarithmic orders of magnitude. The detection of the latter is, thus, relevant to the
refinement of the sensing.

The accuracy was assessed based on the average of all percent errors relative to
soundings retained for error computation:

error =
|dm − dTB|

dm 100 (11)

One third of the entire survey was utilized for the error estimation. Each error is the
normalized difference between the triband sensed depth dTB and measurements dm. The
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percent average errors are listed in Table 2 below. The average error 7.9% for the filtered
composite fitting translates to 0.253 m. Whereas the limited resolution of the Landsat
satellite, that is, 30 × 30 m, provides an inherent smoothing, high resolution commercial
satellite images might benefit more from the SNN anomaly detection. The accuracy of the
composite fitting is high enough to conduct a reliable automatic shoreline recognition with
a flood fill algorithm. That is, the algorithm propagates from the deepest smoothed average
and halts at pixels that are shallower than the cutoff depth.

Before SN -ltration
After SN -ltration
Error Improvement: Post/Pre %

0 200 400 600 800 1,000
0

20

40

60

80

100

Measurements

Pe
rc

en
ta

ge

Error Pre and Post SN

Figure 4. As outliers with high errors are filtered, the post-filtration series shifts left. Pre- and post-SN
exhibit in this section, despite the outliers, moderate average errors of 6.0% and 4.9%, respectively.
Additionally shown is the SN improvement in percent.

Table 2. Percent Average Errors.

Band 2 Band 3 Band 4 Composite

Unfiltered 19.719 7.283 14.920 7.932
Filtered 19.608 7.081 14.696 7.917

The dense infrastructure in artificial islands and streets in proximity to the shore
required a deeper cutoff than natural shores, that is, because dark shaded streets can be
mistaken for water in Landsat bands 2 to 4. The filtered composite fitting with automatically
excised land is depicted in Figure 5. Despite the low image resolution of 30 m, four
circular channels were resolved west of the artificial islands such that also the shoreline
could be resolved for each channel. Sensing of band 3 provided the lowest average error.
The composite solution reduced incidences of high errors by evening the resulting error
distribution, eliminated unprocessed pixels, and retained an average error similar to the
best band. The leveling effect is evident when comparing the average errors for the filtered
sensing of band 3 and the composite: whereas the former is refined in the second digit, the
latter is refined only in the third digit.

An error distribution is estimated by mapping the errors for certain depths to the best
matching depths in Figure 6.
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Figure 5. SNN filtered bathymetry with automatically excised shoreline.
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Figure 6. Estimated error distribution surrounding the artificial islands.
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4. Discussion

The tri-band fitting, in conjunction with spiking neurons, permitted to sense bathymetry
with an average percent error of 7.9% or 25.3 cm. Stationary inputs can be processed
by substituting time with spatial coordinates. The anomaly detection also underlined
shorelines and roads, that is, object boundaries, as these are anomalies in terms of shading
as shown in the Appendix B with Figure A1. The remote sensing was accurate enough to
automatically excise land from sea. That is, shoreline recognition is possible via both vertical
resolution or anomaly detection. Despite the low 30 m resolution of the Landsat image,
improvements due to the anomaly detection were consistently found for all individual
bands and the composite fitting.

Gains are expected to increase for the high resolution available with commercial
satellite images, absent the inherent averaging of the limited resolution.

Conclusions

This bathymetric RS method is, to our knowledge, the first to involve spiking neuron
anomaly detection, which contributed to achieve high accuracy, limiting the error to 25 cm.
Unforeseen, despite the low Landsat 8 image resolution, this permitted also to ad hoc
incorporate an automatic shoreline recognition with a flood fill algorithm that halts at
dry pixels. Furthermore, the spiking neuron anomaly detection can operate on streamed
time series, streamed array data, and, due to the generality of the SN concept, spatially
unstructured array data. Further investigations may address the detection of anomalies
in the sorted measurement series instead of vs. the seafloor and to smooth the weighting
distribution beyond the current local weighting for each vertical increment. Especially
the shoreline recognition can be further enhanced by incorporating the near infrared, for
example, band 5 of Landsat 8, and bands that discern water based on a difference in thermal
properties between wet and dry pixels. Onward, the automatic meshing for automated
computer fluid dynamic simulations will be developed and published separately.
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USGS United States Geological Survey
r−j Distance before jump
r+j Distance after jump
δr Increment of r
f (r) Activation potential
m Measurements after excision
i Index i
j Index j
d∗i Depth i before layer
d(rj)

∗ Neighboring depths at rj
aj Vertical component of rj
bj Horizontal component of rj
fth Threshold potential
d Depth estimates after layer
m∗ Measurements before excision
RS Remote sensing

Appendix A

This section provides a rigorous derivation of rj with rj =
√

a2
j + b2

j . A pixel in R2 is a

box B defined by a1, b1, a2, b2 ∈ N with the grid’s centroids in intersection with the circle,
yielding a sequence ri, i ∈ N such that at the center C(0, ri),

B =

{
(x1, x2) :

{
a1 ≤ x1 ≤ b1
a2 ≤ x2 ≤ b2

}}
(A1)

The box’s corners (a, b) in the image are vectors in the set Z2 = {(a, b)|a, b ∈ Z}.
Moreover, the distance from the corner to the center of the pixel is

√
a2

j + b2
j /2.

Given the fundamental theorem of arithmetic’s [14], an integer n > 1 can be expressed
as a product of p1, . . . , pn primes such that n = ps1

1 ps2
2 · · · p

sk
k , si ∈ N. Moreover, this

representation is unique.
The sum of two squares theorem [14] states that an integer n > 1 can be written as a

sum of two squares if, and only if, its prime decomposition contains no term pk when p
mod 4 = 3 and k is odd.

Every element ri of the radius vector, as per the above, forms a monotonically in-
creasing sequence. With each increment, the distance between the pixel of concern and a
particular neighbor increases. Therefore, i = ps1

1 · p
s2
2 · · · p

sk
k when p1, . . . , pk are primes.

ri =
{√

i : i = ps1
1 · p

s2
2 · · · p

sk
k ,@j : pj mod 4 = 3∧ sj ∈ 2N+ 1

}
(A2)

Determining existence on a particular circle for n ∈ N, given
On circle, φ > 0
Out circle, φ ≤ 0

,

φ = ∑
d | n

d = 1, 3 ( mod 4 )

(−1)
d−1

2




(A3)

The link for the corresponding code is provided in the data availability section.

Appendix B

The anomaly detection correlates well with features, such as shoreline and highways
in Figure A1, which constitute anomalies in shading, that is, an SNN-delineation of object
boundaries. For road recognition, commercial satellite images with higher resolution than
the Landsat images of 30 m are required. Including the above, there are three methods for
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shoreline recognition: detecting shores as anomalies, e.g., with spiking neurons, with a
suitable band, such as Landsat band 5, via a flood fill algorithm that does not spread to
areas enclosed by pixels below a minimal depth, or a combination of all three.

Figure A1. Feature extraction despite limited 30 m resolution.
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