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Abstract: In Chile in recent years, changes in precipitation and temperatures have been reported that
could affect water resource management and planning. One way of facing these changes is studying
and understanding the behavior of hydrological processes at a regional scale and their different
temporal scales. Therefore, the objective of this study is to analyze the importance of the hydrological
processes of the HBV model at different temporal scales and for different hydrological regimes. To
this end, 88 watersheds located in south-central Chile were analyzed using time-varying sensitivity
analysis at five different temporal scales (1 month, 3 months, 6 months, 1 year, and 5 years). The
results show that the model detects the temporality of the most important hydrological processes. In
watersheds with a pluvial regime, the greater the temporal scale, the greater the importance of soil
water accumulation processes and the lower the importance of surface runoff processes. By contrast,
in watersheds with a nival regime, at greater temporal scales, groundwater accumulation and release
processes take on greater importance, and soil water release processes are less important.

Keywords: hydrological processes; temporal scale; hydrological model; sensitivity analysis

1. Introduction

Due to climate change, climate variability, and changes in land use and cover, the
frequency and magnitude of extreme events such as floods have continually increased in
recent decades, generating environmental, economic, and social losses worldwide [1,2].
Thus, establishing a connection between watershed properties and climate and hydrological
variables could illustrate the vulnerability of a watershed to various changes, thereby
contributing to the development and management of systems that are resilient to natural
disasters [3–5]. An important part of this development is the study of the dominant
processes in a watershed and their temporality as, depending on the process, they could
take on importance at different temporal scales—from minutes, hours (e.g., floods), weeks,
and months to years (e.g., droughts)—and vary in wet and dry periods [6–8].

Analysis of the temporality of the most important processes that influence various
climate scenarios has become a focus of study for many researchers. For example, Diop
et al. [9] investigated the long-term streamflow trends at three time scales (monthly, sea-
sonal, and annual) in the upper Senegal River basin, Howden et al. [10] presented a method
to detect changes in the mean and variance of hydrological variables and explore the
hydrological processes involved in the non-seasonal behavior of time series, and Basijokaite
and Kelleher [11] analyzed the relationship between the most important processes in a
watershed and their seasonal and annual behavior. In addition, various studies have
demonstrated that changes in streamflow time series can be attributed to climate [12–15]
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and/or anthropogenic factors [16,17]. Thus, they provide important information for un-
derstanding the hydrological processes of a watershed and their different responses to
changing climate conditions.

Analysis and understanding of hydrological processes and their changes depend
on the sufficient availability of hydrometeorological information on a watershed. Thus,
hydrological models are a fundamental component in the development of studies. They
are also crucial for water resource planning and management, as they allow the simulation
of streamflow series through a simplified representation of hydrological processes, pro-
viding a basis for understanding and investigating the relationship between the climate
and water resources. In addition, complementary tools such as sensitivity analysis allow
models to be evaluated to guarantee acceptable results and greater representativeness of
these processes [18] through the study of the impact of input factor variation on model
results [19–21]. Their application and understanding have increased in recent years, as
they have become recognized as an essential tool for the development and assessment of
environmental models [19,22,23]. Unlike traditional sensitivity analysis, which is based
on model aggregation over time [24,25], time-varying sensitivity analysis (TVSA) allows
the sensitivity to be estimated in a moving window; that is, the calculated value is as-
signed to the center of the window. This method helps identify the components that affect
model performance, analyze their functioning, and obtain a more precise estimate of the
factors [24,26,27]. Therefore, it allows the selection of a more suitable representation of
a system for prediction in unmonitored watersheds and under changing conditions and
the study of hydrological processes, their temporal variability, and their relationship with
climate variables.

In recent years, various studies have reported a decrease in precipitation [28–31]
and snow and glacier cover [32–34] and an upward temperature trend [35,36] in south-
central Chile. In addition, since 2010 there has been a rainfall deficit in south-central Chile.
This event, termed the megadrought, brought about a marked decrease in water reserves,
contributing to an extended dry trend [30,37]. These changes could affect the way in
which water is managed on a regional level for different uses, as well as for confronting
extreme events such as floods and droughts. However, in Chile, streamflow records are
relatively short (30 years on average), and stations are distributed unequally throughout
the country [38,39], complicating the analysis of hydrological processes. Therefore, the
objective of this study is to analyze the importance of the processes represented by the
10-parameter Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrological model [40]
at different temporal scales using information from watersheds with different hydrological
regimes located in Chile.

2. Materials and Methods
2.1. Study Area and Data

In addition to being important for human consumption, water resources are an essen-
tial part of the development of economic activities. Among the most important activities
associated with water resources, both in Chile and the world, are industrial, mining, forestry,
agricultural, and livestock activities, which vary in each zone depending on the climate
conditions.

In order to avoid the influence of anthropogenic effects (e.g., reservoirs, canals, etc.)
on the analysis, watersheds without (or with minimal) anthropogenic alternations and,
since streamflow records have a relatively short length, with at least 30 years of daily
records of hydrometeorological information, were selected. Thus, the study area consists of
88 watersheds located between latitudes 33◦30′ S and 56◦30′ S (Figure 1).
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accumulation and snowmelt/glacier melt processes controlled by temperature cycles in 
the Andes [43]. 

To determine the hydrological regime of each watershed, a flood frequency analysis 
was carried out. Of the 88 studied watersheds, 34 present a pluvial regime (P), 25 a mixed 
regime with pluvial input predominating (Mp), 25 a mixed regime (M), and 4 a nival re-
gime (N). Rivers with a pluvial regime depend directly on winter rain (July–September) 
and have a period of low flows during the summer months (January–March). In rivers 
that present a mixed regime with rainfall predominance, the main input is winter rain 
(July–September), along with a minor contribution from snowmelt during the spring 
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Figure 1. Locations of watersheds used in the study area and the regime of each. The light blue dots
indicate watersheds with a pluvial regime, the yellow points watersheds with a mixed regime with
pluvial predominance, the red dots watersheds with a mixed regime, and the green dots watersheds
with a nival regime.

Central Chile (30◦–40◦ S) presents a Mediterranean climate with mean annual precipi-
tation that ranges from 100 to 3000 mm, distributed in a seasonal cycle characterized by an
increase in precipitation in winter and very low values in summer. In the austral region
(40◦–56◦30′ S) precipitation presents very wet conditions, reaching over 4000 mm per year,
accompanied by strong winds throughout the year [41,42].

Due to the geographic units present throughout Chile (Andes Mountains, intermediate
depression, coastal mountains, and coastal plains), river regimes are regulated by the
climate, with intra-annual variability. Pluvial basins present precipitation seasonality,
while snow–rain basins present intra-annual variability controlled by precipitation–snow
accumulation and snowmelt/glacier melt processes controlled by temperature cycles in the
Andes [43].

To determine the hydrological regime of each watershed, a flood frequency analysis
was carried out. Of the 88 studied watersheds, 34 present a pluvial regime (P), 25 a mixed
regime with pluvial input predominating (Mp), 25 a mixed regime (M), and 4 a nival regime
(N). Rivers with a pluvial regime depend directly on winter rain (July–September) and
have a period of low flows during the summer months (January–March). In rivers that
present a mixed regime with rainfall predominance, the main input is winter rain (July–
September), along with a minor contribution from snowmelt during the spring months
(October–December). Unlike the previous regime, in mixed regime watersheds, the main
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contributions depend on rainfall and snow accumulation during winter and snowmelt
in the spring–summer months. Finally, rivers with a nival regime are characterized by
increased flows during the spring–summer periods (October to March) caused by snowmelt
that depends on the increase in temperatures. Table A1 presents a brief description of the
watersheds used in the study.

To implement the hydrological model of each watershed considering data availability
and to represent the current state of each system, precipitation, temperature, and evapotran-
spiration time series from 1990–2019 were used, obtained from the Catchment Attributes
and Meteorology for Large Sample Studies—Chile Dataset (CAMELS-CL) presented by
Alvarez-Garreton et al. [38], which comprises physical and hydrometeorological informa-
tion from throughout Chile. In addition, streamflow records were used to perform the
frequency analysis and carry out subsequent analyses. It bears mentioning that the infor-
mation obtained from the CAMELS-CL database can be used directly without applying
data processing methods.

2.2. Model Description

The HBV model is a lumped conceptual snow–rainwater balance model. In this
study, the simplified version developed by Aghakouchak and Habib [40] and based on
Bergström [44] was used. The model simulates daily discharge based on daily precipitation,
temperature, and potential evapotranspiration time series [40] and includes a snow routine,
a soil routine, and a response routine (see conceptual diagram in Figure 2).

Precipitation is deemed to be snow or rain depending on the temperature on the
corresponding day above or below a threshold temperature (TT). All precipitation is snow
when the temperature is below TT, and all the snow contributes directly to the snow storage.
If the actual temperature is greater than TT, there will be snowmelt. Snowmelt water is con-
trolled by a degree–day factor (Cmelt), which determines the daily amount of melted snow
depending on the difference between the actual and threshold temperatures. Subsequently,
the sum of precipitation and snowmelt (∆P) passes to the soil routine, which includes two
modules. The first module calculates the actual evapotranspiration (ETa), which is equal to
potential evapotranspiration (PETd) if the relationship between soil moisture (SM) and field
capacity (FC) is above a threshold value for potential evapotranspiration (LP). However,
for soil moisture values below LP, the actual evapotranspiration will be linearly reduced.

To calculate evapotranspiration, Bergström [44] introduced a routine that incorporates
a correction factor (c) to obtain daily potential evapotranspiration (PETd) from the daily
mean air temperature and the long-term PET and monthly temperature averages.

Subsequently, the model calculates runoff (∆Q), which depends on precipitation (∆P),
the actual water content of the soil (SM), the maximum soil moisture (FC), and an empirical
coefficient (β), which determines the relative contribution of rain or snowmelt to runoff.
Finally, the runoff response routine estimates the runoff at the watershed outlet. The system
consists of two storage compartments, one above the other, which are directly connected to
each other through a constant infiltration rate (Qp).

The upper deposit has two outlets (Q0 and Q1), while the lower deposit has one (Q2).
When the water level in the upper deposit exceeds a threshold value (L), runoff is produced
quickly in its upper part (Q0). The response of the other outlets is relatively slow. The
streamflows are controlled by recession coefficients K0, K1, and K2, which represent the
response functions of the upper and lower deposits. The constant infiltration rate (Qp) is
controlled by a coefficient Kp.

In order to ensure that the surface runoff process is quicker than the subsurface and
groundwater runoff, the initial value of K0 must always be greater than K1. In addition,
the response of the third outlet (groundwater runoff; Q2) must be slower than that of the
second one (Q1); therefore, K2 must be lower than K1 [40]. For a better understanding of
the model, see Bergström [44], Lindström et al. [45], and Seibert [46].

To adequately represent the spatial variability of precipitation and include the oro-
graphic effects in the study watersheds, a precipitation adjustment factor (A) was consid-
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ered in the models. This factor allows the model to obtain a long-term mass balance [21]
and thereby correct the underestimation of precipitation resulting from the absence of
records in the highest parts of each watershed. Table 1 presents a brief description of the
parameters and initial ranges used, based on the studies of Aghakouchak and Habib [40]
and Kollat et al. [47].

Table 1. Model parameters and initial ranges used for the analysis.

Parameter Description Range

Mass balance

A Precipitation modification parameter 0.8–2.5

Snow module

TT (◦C) Threshold temperature that indicates the
initiation of snowmelt (normally 0 ◦C) 0

Cmelt (mm ◦C−1 day−1)
Fraction of snow that melts above the
threshold temperature (TT) from the

beginning of snowmelt.
0.5–7

Moisture module

FC (mm) Field capacity (storage in the soil layer) 0–2000

Beta Empirical coefficient that represents the soil
moisture variation in the area 0–7

LP Fraction of field capacity to calculate the
permanent wilting point (PWP = LP × FC) 0.3–1

c(◦C−1)
Correction factor for potential

evapotranspiration 0.01–0.3

Response module

L (mm) Threshold for quick runoff response 0–100
K0 (day−1) Quick response coefficient (upper reservoir) 0.3–0.6
K1 (day−1) Slow response coefficient (upper reservoir) 0.1–0.2
K2 (day−1) Lower reservoir response coefficient 0.01–0.1
Kp ( day−1) Maximum flow coefficient for percolation 0.01–0.1
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2.3. Description and Implementation of TVSA

Through the estimation of sensitivity in a moving window, TVSA aids the identification
of time periods in which a specific component of a model can affect its performance and
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uses additional information to analyze the functioning of the model and obtain a more
precise estimate of the factors [6,24–27].

In this study, the code presented by Medina and Muñoz [27], which is based on Re-
gional Sensitivity Analysis (RSA) [50], was used. It allows the most important hydrological
processes in a watershed to be detected [49] and the factors to be ordered according to their
relative influence on the model results (i.e., ranking) [20,49].

The method consists of generating a sample of N points in the feasible space of each
parameter (xi) obtained from a uniform distribution. The parameter sets are categorized
as behavioral and non-behavioral (B and NB, respectively) based on an objective function.
The cumulative distribution functions—FB

i (xi) and FNB
i (xi)—of both groups are compared

and the discrepancy between them is quantified using, as a sensitivity index, the maximum
vertical distance (MVDi) between the curves. The values of Equation (1) vary between
0 and 1. When the parameter sets do not generate B or NB models, the index cannot be
calculated [27].

MVDi = max
xi

∣∣∣FB
i (xi)− FNB

i (xi)
∣∣∣, (1)

To implement the TVSA, a Monte Carlo sampling of 15,000 simulations in the feasible
space of each parameter was performed, assuming a uniform distribution. Five instances of
TVSA were run, using windows of 1 month (w1), 6 months (w2), 1 year (w3), 3 years (w4),
and 5 years (w5), with respective analysis periods for the calculation of the time-varying
sensitivity analysis of 3 months, 8 months, 3 years, 6 years, and 9 years. Time windows are
selected with the aim of detecting the hydrological processes that govern the main behavior
of each watershed at different temporal scales, encompassing seasonality and longer-term
processes such as climate variability. In addition, the five analyses allow the performance
of the HBV model to be assessed at different time scales.

To calculate the MVD sensitivity index, it is necessary to group the simulations as
B and NB. In this study, the Kling Gupta Efficiency (KGE) was used. The KGE index is
focused on equitably assessing the correlation, deviation, and variability of the simulated
hydrograph [51]; it is calculated with Equation (2):

KGE = 1−
√
(r− 1) + (α− 1) + (β− 1) (2)

where r is the linear correlation coefficient between the observed and simulated values,
α measures the variability of the data values (equal to the ratio between the standard
deviation of the simulated data and the standard deviation of the observed data), and β is
the ratio between the average of the simulated data and the average of the observed data. In
the literature, the threshold value for a model to be considered adequate is KGE = 0.6 [52].
Therefore, the models that present KGE values equal to or greater than 0.6 were considered
B, while models with KGE values below 0.6 were considered NB.

3. Results

The TVSA method based on RSA was implemented using simulations of 88 previously
selected watersheds, and 5 analyses were performed at different time scales (1 month, 6
months, 1 year, 3 years, and 5 years). To calculate the MVD index, it is necessary that B
(KGE ≥ 0.6) and NB (KGE < 0.6) results be obtained for the watershed model and time
window. In some cases (watersheds), B solutions were not obtained; therefore, no solution
in the analyzed time window was obtained.

Figure 3 shows the number of studied watersheds for which results (MVD index
values for each parameter) were obtained in each analysis. In the analysis in which a
time window of 1 month (w1) was used, fewer results were obtained (35 watersheds) in
comparison to the other analyses. For w2 = 6 months, the greatest quantity of watersheds
with solutions was obtained (80), while for w3, w4, and w5 (1, 3, and 5 years, respectively),
a similar number of solutions was obtained (65, 68, and 68, respectively). In Figure 3, it is
also observed that in the w1 analysis, no solutions for watersheds with a mixed or nival
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regime were obtained, while at least one was obtained in the other analyses (w2, w3, w4,
and w5).
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88 watersheds. The blue bar represents watersheds with a pluvial regime (P), the orange bar is
watersheds with a mixed regime with pluvial predominance (Mp), the green bar is watersheds with
a mixed regime (M), and the gray bar is watersheds with a nival regime (N). The x-axis shows the
analyzed time windows. w1, w2, w3, w4, and w5 correspond to 1 month, 6 months, 1 year, 3 years,
and 5 years, respectively.

For subsequent analyses, the results of each time window using watersheds for which
solutions were obtained were used.

Figures 4 and 5 show the MVD sensitivity index calculated for each parameter in the
different analyzed time windows (w1, w2, w3, w4, and w5). The number of analyzed
watersheds with a nival regime (1 or 2, depending on the time window) did not allow
the results to be grouped in a boxplot; therefore, they are shown individually in Figure 5.
Figure 4a shows the results of watersheds with a pluvial regime, Figure 4b shows the results
of watersheds with a mixed regime with pluvial predominance, and Figure 4c shows the
results of watersheds with a mixed regime. In Figure 4a (pluvial regime), it is observed
that the most sensitive parameters are Beta, FC, and L. Beta represents the variation of soil
moisture, FC represents the maximum moisture capacity of the soil, and L defines the limit
for a quick response (surface flow). Similarly, it is observed in Figure 4b (mixed regime
with pluvial input predominating) that the most sensitive parameters are Beta, FC, and L,
but it is also observed that the parameters related to groundwater—k2 and kp—present a
slight relative increase in the range of MVD index values compared to the results of the
watersheds with a pluvial regime. Meanwhile, in Figure 4c (mixed regime), a comparison
with the results of the watersheds with pluvial predominance shows an increase in the
range of MVD index values in all parameters except Beta, which remains the most sensitive
parameter. It is also observed that, according to the median of the values, the parameters
k2 and kp take on greater importance than in the watersheds with a pluvial regime. In
Figure 5 (nival regime), unlike in Figure 4, it is observed that the model is more sensitive to
the parameters Beta, Cmelt, and k2. Cmelt represents the fraction of snow that melts.
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(c) mixed regimes. w1, w2, w3, w4, and w5 correspond to time scales of 1 month, 6 months, 1 year,
3 years, and 5 years, respectively.
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Figure 5. Median MVD values for each parameter obtained from the different analyses of watersheds
with a nival regime. Yellow bar corresponds to analysis w5 (5 years) and green bar corresponds
to analysis w4 (3 years), while for analyses w2 (6 months) and w3 (1 year), there are two bars that
correspond to the results of the different watersheds (light blue/gray and blue/orange, respectively).

In the cases of the watersheds in Figure 4a, the main input is pluvial; therefore, soil
moisture is the process that takes on the greatest importance in the model. Because these
watersheds do not present a nival input, the model is not sensitive to the parameter Cmelt
associated with snow accumulation and melting processes. Although the watersheds in
Figure 4b present a nival regime influence, the pluvial input predominates and therefore
major importance of the snow accumulation and melting process (Cmelt) is not detected.
However, the analysis does allow an increase in the relative importance of processes
associated with slow flows or baseflow (k2 and kp) to be detected. The watersheds in
Figure 4c have a greater nival input than the watersheds in Figure 4a,b, which in this case
allows the model to detect the importance of snowmelt and underground processes. This
occurs because streamflows during low-water periods depend mainly on groundwater
input.
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It can also be seen in Figure 4 that the value range of the median MVD index of the
parameter FC increases as the analyzed time window increases, and in the parameter Beta,
the median MVD index exceeds values of 0.6 in all cases and different time windows.

Figure 6 shows the relative importance of the most sensitive parameters identified
in watersheds with solutions for each analyzed time window. It was calculated for each
parameter using the ratio of the sensitivity of a parameter to a set of corresponding pa-
rameters, that is, the value of the MVD index of the analyzed parameter over the sum of
the MVD index of the complete parameter set. In Figure 6a (watersheds with a pluvial
regime), it is observed that the relative importance of the parameters Beta and FC increases
as the analyzed time window increases, while the relative importance of the parameter L
decreases as the time window increases.

Water 2022, 14, x FOR PEER REVIEW 9 of 14 
 

 

Figure 6 shows the relative importance of the most sensitive parameters identified in 
watersheds with solutions for each analyzed time window. It was calculated for each pa-
rameter using the ratio of the sensitivity of a parameter to a set of corresponding param-
eters, that is, the value of the MVD index of the analyzed parameter over the sum of the 
MVD index of the complete parameter set. In Figure 6a (watersheds with a pluvial re-
gime), it is observed that the relative importance of the parameters Beta and FC increases 
as the analyzed time window increases, while the relative importance of the parameter L 
decreases as the time window increases. 

 
Figure 6. Average MVD index values for the most important parameters in watersheds with (a) 
pluvial regimes, (b) mixed regimes with pluvial predominance, (c) mixed regimes, and (d) nival 
regimes. The yellow bar corresponds to analysis w5 (5 years), the green bar to analysis w4 (3 years), 
the orange bar to analysis w3 (1 year), the grey bar to analysis w2 (6 months), and the blue bar to 
analysis w1 (1 month). 

In Figure 6b (watersheds with a mixed regime with pluvial predominance), the same 
trends seen in Figure 6a are observed, except for parameter Beta, which does not present 
a significant change between the different temporal scales. 

Figure 6c,b shows the relative importance of the most sensitive parameters in water-
sheds with mixed and nival regimes, respectively: Cmelt, FC, Beta, k2, and kp. In both 
figures, it is observed that the relative importance of the parameter Beta decreases as the 
analysis window increases, as is the case with Cmelt and FC in watersheds with a nival 
regime. By contrast, the relative importance of parameters k2 and kp increases in water-
sheds with a nival regime, and in watersheds with a mixed regime there are no differences 
in the relative importance of parameters Cmelt, FC, k2, and kp at the different temporal 
scales. 

Parameters Beta and FC represent the variation of soil moisture and maximum soil 
moisture, respectively. It is observed that at, a greater temporal scale, soil water accumu-
lation processes take on greater relative importance in watersheds with pluvial predomi-
nance. However, in watersheds with a mixed regime, this trend is not observed, and in 

0

0.1

0.2

0.3

0.4

0.5

0.6

FC Beta L

a)

FC Beta L

b)

w1
w2
w3
w4
w5

0

0.1

0.2

0.3

Cmelt FC Beta k2 kp

c)

Cmelt FC Beta k2 kp

d)

R
el

at
iv

e
Im

po
rt

an
ce

Parameters

Figure 6. Average MVD index values for the most important parameters in watersheds with (a)
pluvial regimes, (b) mixed regimes with pluvial predominance, (c) mixed regimes, and (d) nival
regimes. The yellow bar corresponds to analysis w5 (5 years), the green bar to analysis w4 (3 years),
the orange bar to analysis w3 (1 year), the grey bar to analysis w2 (6 months), and the blue bar to
analysis w1 (1 month).

In Figure 6b (watersheds with a mixed regime with pluvial predominance), the same
trends seen in Figure 6a are observed, except for parameter Beta, which does not present a
significant change between the different temporal scales.

Figure 6c,b shows the relative importance of the most sensitive parameters in wa-
tersheds with mixed and nival regimes, respectively: Cmelt, FC, Beta, k2, and kp. In
both figures, it is observed that the relative importance of the parameter Beta decreases
as the analysis window increases, as is the case with Cmelt and FC in watersheds with
a nival regime. By contrast, the relative importance of parameters k2 and kp increases
in watersheds with a nival regime, and in watersheds with a mixed regime there are no
differences in the relative importance of parameters Cmelt, FC, k2, and kp at the different
temporal scales.
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Parameters Beta and FC represent the variation of soil moisture and maximum soil
moisture, respectively. It is observed that at, a greater temporal scale, soil water accumula-
tion processes take on greater relative importance in watersheds with pluvial predominance.
However, in watersheds with a mixed regime, this trend is not observed, and in watersheds
with a nival regime, the opposite trend is seen, while processes of water accumulation and
release from the aquifer (k2 and kp) take on greater relative importance in watersheds with
a nival regime at greater temporal scales. By contrast, the relative importance of parameter
L (the limit for surface runoff) decreases at greater temporal scales, as the surface runoff
process acts in short time periods. In watersheds with a nival regime, streamflows depend
mainly on snowmelt, a process that occurs in short time periods in which temperatures
increase, such that at greater temporal scales its relative importance decreases. Because soil
moisture and its variation depend on snowmelt, the importance of these processes follows
the same trend (it decreases at greater temporal scales). Meanwhile, the relative importance
of the parameters that represent the groundwater input (k2 and kp) increases at greater
temporal scales since, unlike surface runoff, they are considered slow processes. These
results are consistent with prior studies such as those presented by Medina and Muñoz [49],
who conclude that the HBV model detects the most important processes in watersheds
with different hydrological regimes, and Taucare et al. [53], who note the important input
to aquifer recharge allowed by groundwater drainage from the Andes Mountains.

While the model allows the importance of hydrological processes and their temporality
in watersheds with different hydrological regimes to be detected, it is not possible to
simulate the processes of a watershed with a nival regime or with significant snowmelt
input (mixed regime) at small temporal scales due to the limited sample of watersheds
with these characteristics and the non-convergence of solutions for the calculation of MVD.
This is observed in Figures 4c and 5, as no results were obtained for the analysis with a
one-month time window.

In general, it is observed that pluvial watersheds make up the majority in south-central
Chile, where it is observed that processes related to soil water accumulation such as soil
moisture variation and maximum soil moisture predominate in streamflow generation and
take on greater importance as the analyzed time window increases.

In watersheds with a mixed regime, located throughout the central, southern, and
austral zones, behavior similar to that of watersheds with pluvial input is observed, but
processes of snowmelt and groundwater input also take on importance in streamflow
generation, and trends regarding the variation of time windows are less clear.

Finally, in watersheds with a nival regime, located mainly in the austral zone of
Chile, it is observed that streamflows depend on groundwater input, the importance of
which increases in larger time windows, and soil moisture and snowmelt processes, the
importance of which decreases at greater time scales.

4. Conclusions

Using the 10-parameter HBV model, time-varying sensitivity analysis (TVSA), and
time windows of 1 month, 6 months, 1 year, 3 years, and 5 years, the relative importance of
hydrological processes in 88 watersheds with different hydrological regimes located mostly
in south-central Chile was analyzed.

In accordance with the obtained results, TVSA allowed the importance of HBV model
parameters to be detected and the predominant hydrological processes of watersheds
grouped by the hydrological regime to be identified. In all watersheds, the most sensitive
parameter was Beta, which allows the process of water accumulation and release from the
soil to be simulated, even in watersheds with a nival regime. In watersheds with pluvial
predominance, the most important parameters were those that represent soil moisture (Beta
and FC), while in watersheds with a greater nival input, the most sensitive parameters were
those that represent the snow accumulation and melting process (Cmelt) and groundwater
input (k2 and kp). Therefore, the model parameters that presented the greatest sensitivity
were directly related to the hydrological regimes of the watersheds and their predominant
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hydrological processes. In addition, the model detects the temporality of the most important
hydrological processes. In watersheds with a pluvial regime, at greater temporal scales,
soil water accumulation processes take on greater importance and surface runoff processes
take on less importance. Meanwhile, in watersheds with a nival regime, at greater temporal
scales, the importance of processes of groundwater accumulation and release increases and
the importance of soil water release decreases.

Due to the low number of watersheds with a nival regime and the limited convergence
of B models, it was not possible for the model to simulate processes in watersheds with
significant snowmelt inputs at small time scales of one month.

In addition, because the model is capable of simulating hydrological processes at
different time scales and the TVSA tool detects the most/least relevant ones, it can be
concluded that this method would allow the identification of possible alterations in the
temporal distribution of the hydrological processes of a watershed, such as anticipated
snowmelt, increased evapotranspiration, and changes in groundwater discharges, making
it an important contribution to the development of research focused on climate change
impacts and predictions and the management of resilient systems.
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Appendix A

Table A1. Information on the 88 watersheds used in the study.

Station
Code

Area
(km2)

Lat.
(◦)

Altitude
(masl)

Interv.
Degree Regime Station

Code
Area
(km2)

Lat
(◦)

Altitude
(masl)

Interv.
Degree Regime

5702001 523.4 −33.8 1304 0.029 Nival 9104001 93.8 −38.2 319 0.000 Pluvial
6018001 1022.6 −34.4 166 0.020 Pluvial 9104002 393.1 −38.2 266 0.005 Pluvial
6027001 349.4 −34.7 542 0.049 Mixto 9106001 276.7 −38.3 282 0.004 Pluvial
6043001 801.8 −34.1 118 0.228 Pluvial 9107001 853.6 −38.3 82 0.006 Pluvial
7103001 354.4 −35.0 664 0.020 Mixto 9113001 710.0 −38.4 26 0.061 Pluvial
7116001 367.2 −35.2 426 0.084 Mixto P 9116001 5047.6 −38.6 19 0.014 Pluvial
7123001 5699.9 −35.0 5 0.073 Mixto P 9122002 170.9 −38.5 551 0.031 Mixto
7330001 502.4 −36.4 275 0.005 Mixto P 9123001 1306.1 −38.4 413 0.005 Mixto
7332001 1209.0 −36.2 121 0.439 Mixto P 9127001 650.3 −38.6 158 0.001 Pluvial
7335001 1686.8 −36.1 103 0.460 Mixto P 9129002 2755.6 −38.7 115 0.006 Mixto
7335002 217.0 −36.0 103 0.070 Pluvial 9134001 348.0 −38.9 125 0.003 Mixto P
7336001 622.1 −36.0 134 0.145 Pluvial 9135001 1665.6 −38.9 39 0.017 Pluvial
7339001 1637.5 −35.9 102 0.438 Pluvial 9140001 5547.3 −38.8 10 0.022 Mixto P
7343001 404.3 −35.8 134 0.309 Pluvial 9404001 1675.1 −39.0 205 0.022 Mixto
7350001 668.9 −36.2 449 0.003 Mixto P 9412001 356.9 −39.4 382 0.008 Mixto
7350003 466.9 −36.3 607 0 Mixto P 9414001 1379.4 −39.3 363 0.006 Mixto
7354002 894.3 −36.0 309 0.009 Mixto P 9416001 349.0 −39.3 277 0.019 Mixto

https://camels.cr2.cl/
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Table A1. Cont.

Station
Code

Area
(km2)

Lat.
(◦)

Altitude
(masl)

Interv.
Degree Regime Station

Code
Area
(km2)

Lat
(◦)

Altitude
(masl)

Interv.
Degree Regime

7357002 7078.8 −35.8 87 0.420 Pluvial 9433001 153.5 −39.2 81 0.005 Pluvial
7359001 9923.7 −35.6 65 0.255 Pluvial 9434001 769.7 −39.1 76 0.010 Pluvial
7372001 703.0 −35.2 155 0.068 Mixto 9436001 383.9 −39.1 26 0.018 Pluvial
7374001 382.3 −35.5 241 0.076 Mixto P 9437002 7926.8 −39.0 9 0.042 Mixto P
7383001 20514.6 −35.4 7 0.219 Mixto 10102001 367.9 −39.7 222 0.001 Mixto
8104001 606.7 −36.7 683 0 Mixto 10121001 626.2 −39.9 16 0.090 Pluvial
8105001 1254.3 −36.7 645 0.258 Mixto 10134001 1802.6 −39.6 14 0.040 Pluvial
8114001 970.1 −36.6 108 0.001 Mixto P 10137001 539.0 −39.7 8 0.031 Pluvial
8123001 860.1 −37.2 206 0.003 Mixto P 10140001 107.6 −39.4 10 0.019 Pluvial
8124001 1661.9 −36.9 79 0.002 Mixto P 10304001 1725.8 −40.3 55 0 Mixto
8124002 1148.2 −37.1 154 0.003 Mixto P 10306001 308.6 −40.3 125 0.093 Mixto
8130002 204.4 −36.9 715 0 Mixto P 10343001 313.3 −40.9 159 0.002 Mixto P
8132001 1300.5 −36.9 68 0.029 Mixto P 10356001 2279.7 −40.7 26 0.044 Pluvial
8134003 636.1 −36.7 42 0.004 Pluvial 10362001 466.8 −40.6 34 0.054 Pluvial
8135002 4510.0 −36.7 23 0.015 Mixto P 10363002 169.0 −40.9 84 0.041 Pluvial
8141001 10405.2 −36.5 24 0.110 Mixto P 10364001 5603.0 −40.5 7 0.038 Mixto P
8220001 750.3 −36.8 8 0.034 Pluvial 10411002 253.2 −41.4 44 0.089 Pluvial
8304001 466.7 −38.4 870 0.004 Mixto 11143001 2258.4 −44.7 465 0.004 Nival
8317001 7252.5 −37.7 257 0.004 Mixto 11143002 133.9 −44.8 484 0 Nival
8317002 103.4 −37.8 333 0.004 Pluvial 11302001 1997.0 −45.2 136 0.046 Mixto P
8323002 817.7 −37.6 230 0.003 Mixto P 11310001 1143.1 −45.8 482 0.145 Mixto
8342001 688.2 −37.9 118 0.009 Mixto P 11514001 897.1 −46.4 215 0 Nival
8343001 440.2 −37.9 120 0.011 Pluvial 12285001 101.1 −51.5 160 0 Mixto
8351001 415.1 −38.0 147 0 Pluvial 12582001 864.0 −53.7 4 0 Mixto
8358001 2537.0 −37.7 47 0.009 Pluvial 12600001 504.4 −52.0 183 0 Mixto
8383001 3428.2 −37.2 61 0.006 Mixto 12802001 808.5 −52.8 39 0 Mixto
9102001 853.1 −38.2 47 0.002 Pluvial 12805001 559.6 −52.8 30 0 Mixto
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