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Abstract: Water is a finite resource and should be given the attention it deserves to reduce its depletion
through leakages in pipe systems. The authors implemented pressure management strategies linked
to fixed and variable discharge (FAVAD), the burst and background estimate (BABE), and orifice
principle methodologies to analyze a two-phased comparative method for applying optimal pressure
management and its efficiency indexes in measuring volumetric cost performance, consumption,
leakage flowrate, linear leakage reduction, infrastructural leakage and leakage cost indices. Using
time-modulated smart control pressure reducing valve (PRV) simulation processes, the authors
selected Alexandra Township in Johannesburg, South Africa as a case study. The results showed
a reduction in head pressure, a reduction in the system input volume (SIV) from 26,272,579 m3 to
21,915,943 m3 and a reduction in minimum night flow (MNF) from 14.01% to 12.50%. The annual
estimated nodal system output (NSO) was reduced from 14,774.62 m3 to 12,787.85 m3. The monthly
average linear system repairs were reduced from 246 to 177, while the efficiency index percentages of
leakage frequency/km/pressure were reduced from 8.31% to 5.98%. At a unit cost of $3.18/m3, the
cost of leakages declined from $4,009,315.54 to $2,862,053.10 per month, while average household
consumption (AMC) reduced from 36.33 m3 to 24.56 m3. Finally, the linear reduction value R2

for the percentage of the total leakage flowrate (TLFR)/SIV declined from 0.58 to 0.5, whereas the
infrastructure leakage ratio (ILI) increased from 4 to 4.3. The results fully demonstrated that optimal
pressure management is an alternative way to simulate, estimate, quantify and understand where and
how water is lost in a distribution system. The authors propose that the implementation of proactive
leakage management and domestic background leakage repair could further assist in reducing the
frequency and cost of water leakages.

Keywords: optimal pressure management; linear leakage measurements; volumetric efficiency
indexes; customer consumption saving; water cost reduction

1. Introduction

Water is a vital and fundamental resource for human health, survival and development.
However, the world’s water resources continue to be depleted by high customer demand
and infrastructural losses and leakages [1–3]. Although water leakages continue to increase
in developed and developing countries, detecting and repairing them is even more costly
for most developing countries experiencing limited financial capacity [2–4]. As a result of

Water 2022, 14, 805. https://doi.org/10.3390/w14050805 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14050805
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-7794-7839
https://orcid.org/0000-0001-8919-3838
https://doi.org/10.3390/w14050805
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14050805?type=check_update&version=1


Water 2022, 14, 805 2 of 20

this realization, there has been a significant global change among water managers who are
determined to reduce water leakages. In practice, one of the trusted methods to reduce
water leakages is pressure management control [5–7]. Pressure management is a basic
tool to manage water leakages in a water distribution system because the leakage flowrate
is a function of change in head pressure or average zonal pressure [8–12]. In leakage
hydraulics, many researchers are of the view that a change in average zonal pressure (AZP)
is a direct integration of the fixed and variable discharge principle (FAVAD), the burst and
background estimate (BABE) and the orifice principle, which are all efficient methodologies
for assessing water leakage behavior [2,6,12–16]. In relation to pressure management, some
of the most used tools are pressure reduction methods which use a time-modulated or
flow-modulated PRV in a selected network zone or nodal output to control upstream and
downstream pressures [8,9,17,18]. Among the noted benefits of pressure management in
leakage reduction are that it

• reduces working pressure, which helps to conserve water;
• improves the reliability of the continued supply by reducing pipe bursts;
• reduces the fluctuation of pressure in the system;
• increases the lifespan of the water supply assets;
• decreases the costs of operations through a reduction in burst frequency as well as

energy consumption;
• is efficient with respect to water demand and conservation management; and
• offers possible cost savings through pressure reduction options [14,19–21].

Pressure management has been used with great success in some parts of the
world [6,8,10,12,22,23]. However, other studies indicate that pressure management ap-

proaches may be difficult to implement in developing countries characterized by theft,
illegal connections, old infrastructures, poverty and unplanned settlements due to socio-
economic factors [2,4,9,16,24–26]. There are, however, multiple studies in some parts of
the world that looked at the application of PRV as an energy recovery solution for leakage
control [16,27]. Some studies also proved that a reduction of the operational costs in leakage
control is directly proportional to the application of PRV in leakage control [9,14,18,24]. The
use of pressure management as a predictive solution to assess pipe failure in water distribu-
tion systems has also been implemented in some parts of the world. Findings indicate that
pressure management helps to increase the useful investment life of infrastructures [28,29].

With reference to multiple studies in water leakage control through the use of pres-
sure management approaches, the objective of this paper is to show the influence of
optimal pressure management in water distribution systems through efficiency indexes.
The measurement indexes were applied through a comparative analysis of two phases
(before and after the application of optimal pressure management) and are as follows:
leakage/km/AZP, volumetric cost efficiency performance, customer consumption, SIV,
MNF, total leakage flowrate (TLFR), linear leakage repair reduction, the economics of
leakages and ILI. For illustration purposes, Alexandra Township, which is located in the
north-eastern part of Johannesburg, South Africa and has the coordinates 26◦6′1.68′′ S
and 28◦7′3.50′′ E, was selected [30]. Alexandra Township is a socio-economically deprived
township with a high unemployment rate [20–32]. For example, in the year 2016, household
consumption was 52% higher than a set limit of 20 m3/month [30]. The report further
noted a high percentage of water losses due to illegal connections, which is attributed to
existing socio-economic problems, such as high unemployment and poverty. The area’s
non-revenue water was recorded at 87.02% of the total system’s input volume, equat-
ing to a total cost of $49.882 million USD dollars, whereas MNF was estimated at over
70% [33] The authors used Alexandra Township as a suitable area to demonstrate the
significance of optimal pressure management in water distribution systems by measuring
its efficiency indices in terms of volumetric cost performance, customer consumption and
linear leakage measurements.
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2. Methodology and Materials

The proceeding sections present the methodology followed by the researchers in
this study—a combination of a literature search, system data analysis and visual condi-
tion assessment on site. The general methodolgy applied in this study is based on the
variables fixed and variable discharge (FAVAD), burst and background estimates, un-
avoidable annual real losses (UARL), current annual real losses (CARL), infrastructure
leakage index (ILI), burst and background estimates (BABE) as well as minimum night
flow (MNF) [8,24,26]. The average zonal pressure (AZP) and flows at each node were mon-
itored using the Supervisory Control and Data Acquisition (SCADA), Water Distribution
and System Optimization (WADISO) and Infrastructure Monitoring Query System (IMSQ)
methods. The existing hydraulic model was verified for each district metered area (DMA)
using the data provided by the water utility’s (Johannesburg Water SOC LTD) SCADA and
onsite data verifications by the authors. The results were compared with the findings of
this study as presented in the proceeding sections.

2.1. Preliminary Data Collection and Hydraulic Simulation Process

The pre-data flow logging approach used in this study involved:

• a literature search to collect historic loss levels;
• the use of SAP-PM, a customer-centric software application for tracking infrastructure

leakage failures, for periods between 2015 and 2019; and
• the use of ultra-sonic flow and pressure logging devices to measure preliminary flow

and operating system pressures from the six supplying DMA connections and their
flow-modulated PRV.

All flows and pressures were recorded for 15 days and used to compute the total
system input volume (SIV) and minimum night flow (MNF) between 12:00 a.m. and
4:00 a.m. [28,34]. The authors further checked flow and pressure from 20 critical nodal
points (CNPs) in the distribution system within the six DMAs and finally used the Water
Distribution and System Optimization’s (WADISO)_(GLS Software (PTY) Ltd., South
Africa) hydraulic modelling software application (a similar group software product to
EPANET 2.2 (US EPA Research, Durham, NC, USA)) and Infrastructure Monitoring Query
System (IMSQ) software to compare onsite preliminary collected flow and pressure values
from six DMAs and 20 CNPs against the approved and designed hydraulic model as per
WADISO. Finally, the researchers conducted customer water consumption estimations per
household through daily meter readings of metering devices for a period of 7 days.

The preliminary findings outlined above were used to develop the methodological
flow process as displayed in Figures 1 and 2. In order to achieve the study objectives,
all the changes in average flow, operating pressure, customer consumption patterns and
infrastructure leakage trends, as well as the reduction in volumetric SIV and MNF rates,
were measured, simulated and analyzed in two phases, as presented in the proceeding
sections. The authors used WADISO, IMQS (IMQS SOFTWARE (PTY) LTD, Johannesburg,
South Africa) and Excel spreadsheets to tabulate, analyze, simulate and create a graphical
presentation of all the collected data.

2.2. Logging and Simulation of the Transient Data Flow and the Indexes’ Computation

Phases 1 to 3, described below, present the practical methodological approaches
followed in this study. The process flow presented in Figure 1, below, was executed
twice after preliminary data collection for purposes of establishing the effects of pre- and
post-optimal pressure adjustment in leakage control measurements. The data recording,
simulation and analysis processes in this study were conducted using ultrasonic flow and
pressure data loggers.

2.2.1. Phase 1: Flow and Pressure Simulation Process

Phase 1 included steps (1) to (3) as per Figure 1. This entailed setting up the hydraulic
bulk flow data logging process for simulation of transient flows from the six DMAs and
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20 CNPs for a period of 15 days between 21 September 2020 and 6 October 2020. Flow
and pressure were recorded every 30 min and every four hours for each DMA and CNP,
respectively. We then applied the orifice principle, FAVAD, BABE and MNF methodologies
to analyze changes in average pressure, average flowrate, leakage trends per kilometer of
pipeline as well as average household customer consumption. This exercise was aimed at
establishing any changes in average flowrate with respect to system input volume (SIV),
MNF and nodal system output (NSO) flows from the DMA and CNP in the distribution
system. Pre-logging led to the three flow-modulated PRVs marked LP-1, LP-2 and LP-3
(Figure 2) exhibiting higher average zonal pressures (AZP) of between 9 and 18 bar when
verified through the SCADA’s WADISO and IMQS systems. The following section presents
a further outlook on the three dysfunctional PRVs.

2.2.2. Phase 2: Simulation Process

After completion of Phase 1, the research team implemented steps 3 and 4 as per
Figure 1. All hydraulic models in step 3 were used to interpret, simulate and analyze all
transient flows abstracted from the three flow-modulated PRVs marked as LP-1, LP-2 and
LP-3 (Figure 2). We then recommended that the three critically identified flow-modulated
PRVs should be replaced by time-modulated smart control PRVs. The time-modulated
smart control PRVs were calibrated for pressure and flows measurements and re-aligned to
the stipulated downstream pressures of between 2 and 9 bar as per WADISO. The time-
modulated smart control PRVs were chosen because they allowed for the pre-setting of the
PRVs for minimum automated time-modulated flows through reduced pressure during
off-peak periods measured or MNF durations between 12:00 a.m. and 4:00 a.m.
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Figure 1. Process flow and analysis methods for the case study.

In phase 2, the authors introduced six boundary zone valves (closed zone valves) to
separate the two bulk supply zones and the six DMAs. The time-modulated smart control
PRV downstream pressures were later adjusted to 2 and 9 bar as per the WADISO hydraulic
model system. Similar to phase 1, the team then re-logged all flows using ultra-sonic flow
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and pressure logging devices and simulated pressure and flow data for a period of 15 days
between 22 February 2021 and 9 March 2021 at all DMAs and CNPs.
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2.2.3. Phase 3: Simulation Process and Computation of Efficiency Indexes

All collected data and hydraulic simulations after the change in optimal pressures
from a range of 9 to 18 bar to a lower range of 2 to 9 bar were used to compare re-
sults between phase 1 and phase 2. As presented in Figure 2, the following results were
derived accordingly:

• leakage flowrate ratio;
• leakage frequency/km/pressure linear repair data;
• change in volumetric flow;
• the ratio of MNF/SIV;
• changes in customer consumption; and
• water-saving costs in comparison to the findings of Phase 1.

The mathematical formulations for the efficiency indexes are presented in the proceed-
ing Section 2.3.

Figure 1 shows the methodological flow process that the authors followed in this study
and Figure 2 indicates the data flow and pressure logging simulation points for each DMA.
The simulated data were based on the orifice principle and thereby used to estimate the
SIV, MNF and BABE parameters. The team incorporated the FAVAD principle to compute
the total leakage flowrates and volumetric leakage indexes for the study. The changes in
optimal pressure at the three time-modulated smart control PRVs were used as a base to
compute and compare the pre- and post-efficiency index ratios, as presented in stages 4
and 5 of Figure 1.
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Figure 2 shows the hydraulic flow and pressure simulation layout plan that was set up
for the study area. The figure shows zonal supply areas (Zone 01 and Zone 02), six logging
points (LPs), marked LP-01, LP-02, LP-03, LP-4.1, LP-4.2 and LP-4.3, and their subsequent
six DMAs. There are also 20 CNPs within the six DMAs (marked 01 to 20), which were
pre- and post-logged to measure and simulate changes in flow and average zonal pressure
(AZP) after the optimal pressure adjustment through a time-modulated smart control PRV.

Figure 3 and Table 1 shows the visual condition assessment flow chart process followed
in this study and the water distribution characteristics. The visual condition assessment is
a base which the authors used to verify the water distribution system in order to practically
confirm the site conditions of the study area and compare the findings with data from IMQS
and WADISO. The onsite visual condition assessment of PRVs and CNPs was conducted
with the water utility’s maintenance crews and involved, amongst other procedures, practi-
cal testing of zone valves, inspection of flow modulated PRVs and recording upstream and
downstream pressures for all DMAs and the 20 CNPs within the distribution system.
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Figure 3. Visual condition assessment process for water leakage measurements.

Table 1a–c present the preliminary data collection conducted for the development of
the water distribution network characteristics. The data show that three reservoirs supply
the area and that the majority of the pipelines are made of uPVC and steel (older than
25 years). The varying pipeline materials have different coefficients of expansion due to
pressure changes. The average dynamic pressure in the area was 180 m, while most pipes
are pressure-rated class 16 and 9. It was also confirmed that the topographical layout of
the study area is what makes the energy grade line (EGL) steep and hence reduces high
pressures when measured from the reservoir’s top water level (TWL). The preliminary data
findings were further confirmed by a high number of pipeline leakage observations during
visual condition assessments. The authors used this visual condition assessment to draw
up the research methodology and mathematical formulations for the study.
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Table 1. (a) Water reservoir characteristics, (b) water distribution characteristics (DMA), and (c)
critical nodal point (CNP) characteristics analysis.

(a)

Name of Reservoir Elevation Top Water Level (m) Static Head (m) Latitude Longitude DMA Supply Node Supply

Linbro Park 1617.47 1642.47 100.08 26◦10′2.90′′ S 28◦13′2.89′′ S DMA1, DMA3 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13
Marlboro 1592.6 1600.12 60.00 26◦09′4.38′′ S 28◦08′7.11′′ S DMA4, DMA5, DMA6 6, 7, 15, 16, 17, 18

Randjieslaagte 1667.64 1674.6 70.03 26◦14′1.65′′S 28◦09′1.55′′S DMA2 14, 19, 20

(b)

Pipeline Details Average Pressure Outlook

ID PRV Size
Pipe

Diameter
(mm)

Pipe
Material

Pipe Age
(Years)

Number of
Nodes
(DMA)

Energy Grade
Line (m) Elevation (m)

Co-Efficient of
Expansion

(K-2)

Head (TWL–PRV
Elevation) (m)

Total Head
(Static + Head Diff)

Dynamic Head (Total
Head, EGL–TWL) (m)

LP-1 300 600 Steel 22 +500 1596.38 1514.74 1.2 × 10−5 127.73 227.81 181.72
LP-2 200 675 Steel 59 +500 1654.79 1599.34 1.2 × 10−5 75.26 145.29 125.48
LP-3 300 600 Steel 22 +500 1595.93 1523.16 1.2 × 10−5 119.31 219.39 172.85

LP-4.1 - 110 uPVC 29 −100 1610.26 1552.84 8 × 10−5 47.28 107.28 117.42
LP-4.2 - 110 uPVC 29 −100 1610.27 1549.59 8 × 10−5 50.53 110.53 120.68
LP-4.3 - 110 uPVC 29 30–50 1610.3 1547.82 8 × 10−5 52.30 112.30 122.48

(c)

ID PRV Size
Pipe

Diameter
(mm)

Pipe
Material

Pipe Age
(Yrs)

Number of
Connection

(Node)

Energy Grade
Line (m) Elevation (m)

Co-Efficient of
Expansion

(K-2)

Head (TWL–PRV
Elevation) (m)

Total Head
(Static + Head Diff)

Dynamic Head (Total
Head, EGL–TWL) (m)

1 DMA1 110 uPVC 29 4 1595.94 1515.4 8 × 10−5 127.07 227.15 180.62
2 DMA1 110 uPVC 25 3 1595.63 1554.82 8 × 10−5 87.65 187.73 140.89
3 DMA1 110 uPVC 30 4 1611.33 1547.49 8 × 10−5 94.98 195.06 163.92
4 DMA1 110 uPVC 30 4 1611.28 1544.05 8 × 10−5 98.42 198.5 167.31
5 DMA1 110 uPVC 30 4 1613.39 1550.26 8 × 10−5 92.21 192.29 163.21
6 DMA6 160 uPVC 29 4 1627.38 1594.34 8 × 10−5 5.78 65.78 93.04
7 DMA6 160 uPVC 29 4 1627.38 1520.19 8 × 10−5 79.93 139.93 167.19
8 DMA3 160 uPVC 29 3 1595.62 1520.56 8 × 10−5 121.91 221.99 175.14
9 DMA3 200 uPVC 22 3 1577.84 1541.47 8 × 10−5 101 201.08 136.45
10 DMA1 100 steel 35 3 1595.27 1527.43 1.2 × 10−5 115.04 215.12 167.92
11 DMA1 110 uPVC 23 4 1570.34 1538.59 8 × 10−5 103.88 203.96 131.83
12 DMA1 110 uPVC 25 4 1568.2 1526.95 8 × 10−5 115.52 215.6 141.33
13 DMA1 110 HDPE 10 4 1562.66 1512 20 × 10−5 130.47 230.55 150.74
14 DMA2 100 steel 30 4 1614.75 1610.25 1.2 × 10−5 64.35 134.38 74.53
15 DMA5 300 uPVC 30 3 1595.81 1530.99 8 × 10−5 111.48 211.56 164.9
16 DMA5 110 uPVC 29 3 1610.43 1547.62 8 × 10−5 94.85 194.93 162.89
17 DMA4 110 uPVC 29 4 1659.84 1586.96 8 × 10−5 55.51 155.59 172.96
18 DMA4 100 HDPE 18 3 1610.86 1555.88 20 × 10−5 44.24 144.32 155.06
19 DMA2 160 uPVC 30 4 1661.51 1600.43 8 × 10−5 74.17 144.2 131.11
20 DMA2 100 steel 30 4 1613.75 1562.5 1.2 × 10−5 112.1 182.13 121.28

2.3. Mathematical Formulations

Table 2 presents a summary of the mathematical formulations and efficiency index
parameters adopted in this paper. The mathematical formulations were derived from
the orifice principle, which is also known as Torricelli’s theorem, as well as the water
balance method, the minimum night flow, fixed and variable discharge (FAVAD), burst and
background estimates, unavoidable annual real losses (UARL), current annual real losses
(CARL) and the infrastructure leakage index (ILI). These methodologies are supported
in the literature by other studies [6,7,11,20,22,26,28,29,35–40]. Furthermore, in order to
measure the effect of optimal pressure reduction and its benefits after adjusting the three
PRVs to the required downstream pressures, the above hydraulic principles were used as a
basis from which to derive the results for the volumetric and efficiency indexes.

Table 2. Summary of the methodologies for the leakage estimation indexes.

Methodology Mathematical Equation Research Index Summary Advantages

Orifice Principle Qleak = ChN1

Qleak = Cd A
√

2gh
The method depends on pressure and can be applied in
multiple DMAs [34,38,40].

System Input
Volume SIV =

n
∑

i=1
Q(l/s)24h

(
DMA1 ...DMA6

Average Flow Duration

)
× 365 days

This index provides holistic pressure and flow data for
the entire water distribution system [14,20,30]. Base
data are created for developing a water balance for the
DMA, supply zone or an entire bulk system [22].
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Table 2. Cont.

Methodology Mathematical Equation Research Index Summary Advantages

Minimum Night
Flow

LDMA = QMNF − QLNC
Q(MNF)DMA1

=

n
∑

t=1
(MNF)

 (Ave. Night Flow0:00−4:00)
−

(Ave. Nigh Flow0:00−4:00 × DMAPOP × 10l × 6%)


Qleak(t) = QL(tMNF)×

∣∣∣ PAZP(t)
PAZP (tMNF)

∣∣∣∝

This is the most reliable method for estimating water
leakages when consumption is at its lowest in the
DMA [6,30,36]. The methodology is beneficial for
assessing the effect of variable pressure on leakages
during peak and off-peak periods [36].

Fixed and
Variable Area
Discharge
(FAVAD)

Qleak(t) = k1h0.5 + k2h1.5

Qli = Ci × Pβ
i

L1
L0

=
(

P1
P0

)N1
; A = A0 + mh

N1 =
ln

(
Qi

2
Qi

1

)

ln

(
hi

2
hi

1

)
Qleak = Cd

√
2g
(

A0h0.5 + mh1.5)

FAVAD integrates the conservation of mass and energy,
the orifice principle, the theory of hydraulics of leaks
and the effect of variable pressure for leakage
estimations [38]. Furthermore, it scientifically caters to
turbulent flows due to pressure, material type, the type
of leakage and soil hydraulics [35,41].

Background and
Burst Estimate
(BABE)

UARL =
(
18Lm + 0.8Nc + 25Lp

)
× PAVE

CARL = SIV− (AC + CL)
where SIV is the system input volume (m3/month); AC is the
authorized consumption (m3/month); and CL is the commercial
loss (m3/month)

BABE is beneficial in the bottom-up estimation of system
leakages versus customer consumption [14,26,41]. It is a
widely used method to measure CARL, ILI and UARL,
producing indicative data for the FAVAD
principle [6,26,36,42].

Optimal Pressure
Management

BF1
BF2

=
(

P0
P1

)N2

N2 =

(
ln
( BF1

BF2

)
ln
( P0

P1

)
)

∆BF = 1−
(

P0
P1

)N2
× (100%) = 1−

(
P0−∆P

P0

)N2
× (100%)

This index integrates the orifice and FAVAD principle
through the simulation of variable pressure before and
after the application of pressure management [26,43].
Pressure management is an alternative method for
measuring efficiency indexes for water savings, energy
savings and leakages per pipe length [40,44–46].

Efficiency Indexes

Leakage Flow
Rate

TLD(n=1) = BS(Date:Time) − BF(Date:Time)
where TLD is the total leakage duration (hour); BS is the basic start
date and time when the service ticket was logged on SAP-PM (day
or hour); and BF is the basic finish date when a leakage was
physically isolated and the repair was initiated (day or hour).
TAVL = (NRB × ALFR × ALD)
where TAVL is the total annual volume of leakage; NRB is the
number of reported bursts; ALFR is the average leakage flowrate;
and ALD is the average leakage duration

We used the TLD on linear repair abstracted from
SAP-PM to set the benchmark for computing TLFR.
Leakage durations provide base data for the estimation
of real and apparent losses [18]. The method is
beneficial when measuring an active leak control (ALC)
component in linear leakage repair [14,36,47].

Infrastructure
Leakage Index
(ILI)

ILI = CARL
UARL

where ILI is the infrastructure leakage index; CARL is the current
annual real loss (m3/year); and UARL is the unavoidable annual
real loss (m3/year) measured as a component of SIV month by
month

According to [17,20], ILI is defined as the ratio of the
“current annual real losses” (CARL) to the
“unavoidable annual real losses” (UARL). This
dimensionless performance indicator was used in this
study to assess the comprehensive leakage index in the
water distribution system month by month after the
reduction in optimum pressure from the PRV.

Total Cost of
Water

Cost of water = (Volume of Water/Period)× (Water Tariff)
(Note that a unit cost of $3.18/m3 converted from South African
Rand/m3 to US Dollar was used in this study)

Water is an economic resource and has a cost value [48].
Therefore, this index provides a base to estimate the
cost of water production versus total losses [26]. The
authors used this to estimate the total costs of water
losses in the water distribution system.

Customer
Consumption
Index

n = N
[(1+Ne2)]

where n is the sample size; N is the total number of households; and
e is the level of precision at a level of 7 ± 2%

A study by [14] used this index in their study for
customer meter consumption assessments. For this
study, the authors sampled over 63 properties in the
case study area to manually read and record water
consumption levels for a period of seven days to
establish consumption patterns for Phases 1 and 2.
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Table 2. Cont.

Methodology Mathematical Equation Research Index Summary Advantages

Pressure
Efficiency Index

∆ % Pressure1−2 = P1−P2
P2
× 100

% Ave. Reduction RatioMFF/SIV =

(
% MNF1

SIV1
−% MNF2

SIV2

% MNF1
SIV1

)

IR(P1−2)(MNF/SIV =

(
Average Pressure1−2

%
MNF1−2
SIV1−2

)

After resetting downstream operating pressures at each
PRV to the required level, the team assessed the
following: (1) the percentage change in pressures for
Phase 1; and (2) the percentage reduction in MNF/SIV
between Phases 1 and 2, as well as the index ratio (IR)
of pressure versus %MNF/SIV in Phases 1 and 2. A
percentage reduction in these indexes means that a
change in optimal pressure has a direct positive impact
on leakage control.

Volumetric
Efficiency Index

% Reduction in MNF/SIV =m × PReduction (m) + b
% Index ratio leakage = TLFR/SIV
where m is the coefficient value for the linear regression; b is the
average constant value of MNF/SIV (l/s); PReduction is the hydraulic
system pressure (m); and TLFR is the total leakage flowrate volume
as per the reported, unreported and leakage connections.

We used the linear regression analysis method to
measure the effect of reduced pressure for the
percentage reduction in MNF and SIV by volume. The
assessment was carried out at each DMA and 20 critical
nodal points (CNPs). Reduction by percentage ratio of
MNF/SIV means that a change in optimal pressure is
an alternative way to reduce the average flow during
off-peak times, e.g., 12:00 a.m. and 4:00 a.m. The
authors assessed the percentage index of the total
leakages of TLFR/SIV before and after adjusting the
PRV to optimal pressures. The reduction in the index
ratio means a reduction in infrastructure leakages.

Index Ratio for
Leakage per
Kilometer

Index ratio leakage =
∞
∑

n=1

(
Total Leakages:SAP−PM

Length o f Pipeline

)
The authors further assessed the change in the sum of
reported and unreported bursts per kilometer month
by month for Phases 1 and 2. They used data
abstracted from SAP-PM and IMQS to obtain service
failures and the lengths of pipelines. A reduction in the
ratio or burst pipe per kilometer indicates a reduction
in AZP-reduced bursts and related leakages in water
distribution systems and directly translates to
water savings.

3. Results and Discussion

The following sections present the analysis of the results and a discussion of the
findings following the implementation of the study methodology outlined above.

3.1. Transient Flow Data and Pressure Analysis

In order to assess the effect of pressure on transient flow, Table 3 presents data flow
analysis results for six DMAs and 20 critical nodal points (CNPs) in the water distribution
system for Phases 1 and 2. The transient flow and pressure trends for the six DMAs and
20 CNPs in the distribution system are presented in Figures 3 and 4. When assessing the
impact of head pressure in terms of SIV and MNF measurements, the results show that in
Phase 1 of the study, the SIV was an estimated 26,272, 579 m3/year, with a measured MNF of
14.01% [30], whereas Phase 2 showed a reduction in SIV to an estimated 21,915,943 m3/year,
with 12.50% as MNF. This reduction of bulk flow into the DMA due to changes in head
pressure is equivalent to a projected 16.58% in SIV and 16.21% in MNF per year. Although
nodal system output (NSO) flows look insignificant, the estimated average nodal system
output (NSO) reduced from 14,774.62 m3/year in Phase 1 to 12,787.85 m3/year in Phase 2.
The results demonstrated that the application of time-modulated PRVs in leakage control
reduced the SIV and MNF percentages proportionally in LP-1, LP-2 and LP-3. The overall
reduction equates to 16% of the projected annual SIV.
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Table 3. (a) Data flow analysis results for the district metered areas (DMAs). (b) Data flow analysis
results for the nodal points.

(a)

Phase 1 Phase 2

ID Ave Flow
(m3/s)

Ave
Pressure

(m)

Annual
SIV
(m3)

Night
Flow

(m3/s)

Annual
MNF
(m3)

Ave
Flow

(m3/s)

Ave
Pressure

(m)

Annual
SIV
(m3)

Night
Flow

(m3/s)

Annual
MNF
(m3)

Reduced
% SIV

Reduced
% MNF

LP-1 70.1 180 2,209,412 60.0 296,438 55.0 90 1,734,480 47.1 232,605 21% 22%

LP-2 343.8 80 10,843,338 315.0 1,556,302 298.2 65 9,404,035 215.4 1,064,263 13% 32%

LP-3 248.5 90 7,836,696 215.0 1,062,238 208.0 68 6,559,488 174.1 860,165 16% 19%

LP-4.1 9.3 50 293,285 8.7 42,984 8.5 48 268,056 8.0 39,525 9% 8%

LP-4.2 2.7 51 85,147 1.4 6917 2.7 45 83,570 1.38 6818 2% 1%

LP-4.3 158.7 49 5,004,700 145.0 716,393 122.6 49 3,866,314 108.5 536,059 23% 25%

(b)

Phase 1 Phase 2

ID Ave Flow
(m3/s)

Ave
Pressure

(m)

Annual
SIV
(m3)

Night
Flow

(m3/s)

Annual
MNF
(m3)

Ave
Flow

(m3/s)

Ave
Pressure

(m)

Annual
SIV
(m3)

Night
Flow

(m3/s)

Annual
MNF
(m3)

Reduced
% SIV

Reduced
% MNF

1 0.44 92.8 13,876 0.38 1877.4 0.35 75.0 11,038 0.27 1334.0 20% 29%

2 0.31 78.9 9776 0.31 1531.6 0.28 65.0 8830 0.25 1235.2 10% 19%

3 0.36 65.0 11,353 0.31 1531.6 0.33 63.0 10,407 0.21 1037.5 8% 32%

4 0.42 70.7 13,245 0.39 1926.8 0.41 60.0 12,930 0.33 1630.4 2% 15%

5 0.13 68.9 4100 0.12 592.9 0.12 60.0 3784 0.10 494.1 8% 17%

6 0.57 68.2 17,976 0.49 2420.9 0.56 55.0 17,660 0.42 2075.1 2% 14%

7 0.27 76.3 8515 0.25 1235.2 0.23 63.0 7253 0.18 889.3 15% 28%

8 0.39 72.0 12,299 0.34 1679.8 0.34 67.0 10,722 0.28 1383.4 13% 18%

9 0.57 84.3 17,976 0.49 2420.9 0.56 71.0 17,660 0.47 2322.1 2% 4%

10 0.89 109.2 28,067 0.66 3260.8 0.39 83.0 12,299 0.28 1383.4 56% 58%

11 0.61 55.9 19,237 0.51 2519.7 0.58 50.0 18,291 0.41 2025.7 5% 20%

12 0.92 68.2 29,013 0.66 3260.8 0.88 55.0 27,752 0.62 3063.2 4% 6%

13 0.80 54.5 25,229 0.71 3507.9 0.65 49.0 20,498 0.57 2816.2 19% 20%

14 0.11 59.4 3469 0.09 464.4 0.10 55.0 3154 0.08 395.3 9% 15%

15 0.22 54.3 6938 0.19 938.7 0.18 50.0 5676 0.15 741.1 18% 21%

16 0.45 56.7 14,191 0.31 1531.6 0.39 50.0 12,299 0.24 1185.8 13% 23%

17 0.58 94.0 18,291 0.50 2470.3 0.53 78.0 16,714 0.41 2025.7 9% 18%

18 0.28 79.7 8830 0.22 1086.9 0.26 73.0 8199 0.19 938.7 7% 14%

19 0.62 62.9 19,552 0.54 2667.9 0.58 57.0 18,291 0.50 2470.3 6% 7%

20 0.43 88.4 13,560 0.37 1828.0 0.39 71.0 12,299 0.32 1581.0 9% 14%

District metered areas were assessed and the results (presented in Figure 4) show
that during Phase 1 the highest average pressure was recorded at 17.8 bar for LP-1 in
contrast to 4.9 bar for LP-4.3. The two contrasting pressure results exhibited average flows
of 70 l/s and 158 l/s, respectively. The latter flow was attributed to highly populated
informal settlements where 15 communal standpipes were found to be leaking during
visual assessments. The highest average flows were recorded as 344 l/s and 249 l/s for LP-2
and LP-3, respectively. During Phase 1, the total estimated AZP for six DMAs was 8.3 bar.
After the implementation of pressure management, Phase 2 results showed a reduction in
AZP, average flow and MNF.
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Figure 4. Flow and pressure for the district’s metered areas.

The nodal zone points were evaluated. Figure 5 presents an analysis of the 20 critical
nodal points within the six DMAs or logging points. Similar to the six DMA outcomes,
higher pressure patterns were observed in all the nodal points during Phase 1 and lower
pressures during Phase 2. During Phase 1, the average nodal pressure (ANP) was 7.3 bar
compared to 6.3 bar during Phase 2. The results show that between Phases 1 and 2, average
output flows reduced from 0.55 l/s to 0.38 per node and MNF were reduced from 0.39 l/s
to 0.27 l/s. The results showed that changes in AZP at the DMA level directly influence the
behavior of the nodal hydraulic flow. This finding is supported by [22,49,50].
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Figure 5. Flows and pressures for the nodes.

3.2. Pressure and Flow Efficiency Index Analysis

In order to measure the effects of reduced pressure, Table 4 present the efficiency
indexes computed in terms of the ratio of the average pressure, MNF and SIV. This efficiency
index ratio method has been applied elsewhere [49,51]. According to [49,51], the efficiency
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index ratio is also called the volumetric efficiency index, where the change in pressure
influences the rate of volumetric input and output. For this study, the efficiency index
results are presented below. Concerning the district metered areas (DMAs), the average
pressure was reduced from 83.3 m to 60.8 m. The average MNF in Phase 2 was 4.43% lower
than the one for Phase 1. The average reduction percentage ratio of MFF/SIV was reduced
from 13.1 to 12.4. The average index ratio (IR) representing MNF/SIV reduced from 6.5%
to 5% between Phases 1 and 2. The nodal system output (NSO) was analyzed. The average
pressure reduced from 73 m to 62.5 m. The average MNF in Phase 2 was 8.59% lower than
that of Phase 1. The average reduction percentage ratio of MFF/SIV was reduced from 13.37
to 12.20. The average index ratio (IR) of MNF/SIV reduced from 5.51% to 5.17% between
the two phases. The average ratio indexes in Phase 2 are lower than in Phase 1. Therefore,
the authors preliminarily deduced that a ratio reduction in pressure has a direct efficiency
index output in the percentage reduction of MNF and SIV in the water distribution system.
These findings are similar to those outlined by [42,46,49,52,53] in their studies.

Table 4. (a) Flow and pressure efficiency index data for the district metered areas. (b) Flow and
pressure efficiency index data for the nodal points.

(a)

Phase 1 Phase 2 Efficiency Index

ID % Ratio
MNF/SIV-1

Average
Pressure-1 (m)

% Ratio
MNF/SIV-2

Average
Pressure-2 (m)

% Reduction
Pressure Ratio

(P1–P2)

% Reduction
MNF/SIV

Ratio (P1–P2)

Index Ratio:
Pressure-

1/(%MNF/SIV-1)

Index Ratio:
Pressure-

2/(%MNF/SIV-2)

LP-1 13.4 180 13.4 90 50 0.05 13.4 6.7
LP-2 14.4 80 11.3 65 19 21.15 5.6 5.7
LP-3 13.6 90 13.1 68 24 3.26 6.6 5.2

LP-4.1 14.7 50 14.7 48 4 −0.61 3.4 3.3
LP-4.2 8.1 51 8.2 45 12 −0.43 6.3 5.5
LP-4.3 14.3 49 13.9 49 0 3.14 3.4 3.5

(b)

Phase 1 Phase 2 Efficiency Index

ID % Ratio
MNF/SIV-1

Average
Pressure-1 (m)

% Ratio
MNF/SIV-2

Average
Pressure-2 (m)

% Pressure
Reduction

Ratio (P1–P2)

% Reduction
MNF/SIV

Ratio (P1–P2)

Index Ratio:
Pressure-

1/(%MNF/SIV-1)

Index Ratio:
Pressure-

2/(%MNF/SIV-2)

1 13.53 93 12.1 75 19 11 6.86 6.21
2 15.67 79 14.0 65 18 11 5.03 4.65
3 13.49 65 10.0 63 3 26 4.82 6.32
4 14.55 71 12.6 60 15 13 4.86 4.76
5 14.46 69 13.1 60 13 10 4.76 4.60
6 13.47 68 11.8 55 19 13 5.06 4.68
7 14.51 76 12.3 63 17 15 5.26 5.14
8 13.66 72 12.9 67 7 6 5.27 5.19
9 13.47 84 13.1 71 16 2 6.26 5.40

10 11.62 109 11.2 83 24 3 9.40 7.38
11 13.10 56 11.1 50 10 15 4.26 4.51
12 11.24 68 11.0 55 19 2 6.07 4.98
13 13.90 54 13.7 49 10 1 3.92 3.57
14 13.39 59 12.5 55 7 6 4.44 4.39
15 13.53 54 13.1 50 8 4 4.01 3.83
16 10.79 57 9.6 50 12 11 5.25 5.19
17 13.51 94 12.1 78 17 10 6.96 6.44
18 12.31 80 11.4 73 8 7 6.48 6.38
19 13.65 63 13.5 57 9 1 4.61 4.22
20 13.48 88 12.9 71 20 5 6.56 5.52

3.3. Volumetric Linear Reduction Index

The authors analyzed the linear volumetric efficiency index ratio during Phases 1
and 2 of the study. Figure 6a,b show the change in volumetric bulk flows due to pressure
assessed for the six measured DMAs and the 20 critical nodal output points. The summary
outcome measurements demonstrate that the linear reduction of pressure in the distribution
system resulted in a proportional reduction in the percentage ratio of MNF/SIV. When
the ratio percentage of MNF/SIV is reduced due to a change in pressure, there is a higher
volume of water retained in the distribution systems and losses are reduced [46,53,54].
When this happens, the water utility will likely experience reduced SIV into DMAs and
nodes [30,46,47,55,56]. The respective linear identical flow ratio’s constant values of 14.38
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and 12.992, as well as the values of 14.298 and 12.333 for the percentage of MNF/SIV at
DMAs and nodal levels, show the direct impact of changes in optimal pressure.
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3.4. Leakage Flowrate Results
3.4.1. Linear Repair Results and Indexes

To estimate the total leakage flowrates, the authors used the SAP-PM system, an
operational data-centric performance information measurement software package utilized
for tracking all logged service tickets from start to finish. We selected 90 job cards of
reported bursts, unreported bursts and leaking connections to estimate the total leakage
duration (TLD). The average leakage flowrate (ALFR) was adopted from [46]. In this study,
the ALFR for the reported bursts, unreported bursts and service connections had a pressure
of 240, 120 and 32 L/h/m, respectively.

Figure 7a,b present linear repairs and estimated TLFR results for reported bursts,
unreported bursts and leaking service connections in the distribution system for periods be-
tween 1 June 2020 to 31 July 2021 (divided into seven months for Phase 1 and seven months
for Phase 2). The leakage frequency index per kilometer of pipeline and leakage index in
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relation to AZP demonstrate that all leakage ratios were lower in Phase 2 as compared to
Phase 1. The results further demonstrate that, as the age of pipelines increases, reductions
in pressure may reduce the leakage rate and increase the lifespan of the infrastructure. The
authors preliminarily deduced that linear repair and the leakage frequency rate can be
assessed through the pressure reduction comparative method, specifically when pipes are
old and susceptible to handling high system pressures.
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3.4.2. Leakage Estimation

Table 5 shows the linear repair data between Phase 1 and Phase 2 and the respective
TLFRs. The results in Table 5 show that reported bursts (RB) and leaking connections (LC)
contributed higher flowrates; however, there is a significant reduction in Phase 2 due to
reduced pressures from the DMA supplying PRVs. Further results show that although
unreported bursts (URBs) were fewer in number, the longer average leakage duration
(ALD) makes their contribution to TLFR significant. Table 5 further shows how optimal
pressure reduction reduced the average SIV from 2,189,381 m3/to 1,826,329 m3 between
Phases 1 and 2, whereas the ratio average TLFR/SIV reduced from 0.583 to 0.497, which
equates to bulk water savings of 14.71%. The bulk water loss savings are also evident in
Table 6, which shows the total cost of water, as described in the proceeding section.
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Table 5. Total leakage flow rate estimation and indexes.

Reported Bursts (RBs) Unreported Bursts (URBs) Leaking Connection (LC) Linear Leakage Indexes (LLIs)

ID RB
No

ALD
(hours)

TAVL
(m3)

URB
No

ALD
(hours)

TAVL
(m3)

LC
No

ALD
(hours)

TAVL
(m3)

TLFR
(m3)

SIV
(m3/month) TLFR/SIV

1 123 31.20 921,024 15 73.55 132,390 103 61.01 201,089 1,254,503 2,189,381.50 0.57
2 131 31.20 980,928 22 73.55 194,172 112 61.01 218,660 1,393,760 2,189,381.50 0.64
3 134 31.20 1,003,392 10 73.55 88,260 111 61.01 216,708 1,308,360 2,189,381.50 0.60
4 120 31.20 898,560 13 73.55 114,738 119 61.01 232,326 1,245,624 2,189,381.50 0.57
5 126 31.20 943,488 12 73.55 105,912 98 61.01 191,327 1,240,727 2,189,381.50 0.57
6 119 31.20 891,072 15 73.55 132,390 112 61.01 218,660 1,242,122 2,189,381.50 0.57
7 125 31.20 936,000 13 73.55 114,738 89 61.01 173,756 1,224,494 2,189,381.50 0.56

8 132 31.20 988,416 22 73.55 194,172 110 61.01 214,755 1,397,343 1,826,328.58 0.77
9 102 31.20 763,776 19 73.55 167,694 78 61.01 152,281 1,083,751 1,826,328.58 0.59
10 86 31.20 643,968 10 73.55 88,260 83 61.01 162,043 894,271 1,826,328.58 0.49
11 67 31.20 501,696 16 73.55 141,216 76 61.01 148,376 791,288 1,826,328.58 0.43
12 71 31.20 531,648 12 73.55 105,912 65 61.01 126,901 764,461 1,826,328.58 0.42
13 76 31.20 569,088 9 73.55 79,434 71 61.01 138,615 787,137 1,826,328.58 0.43
14 60 31.20 449,280 7 73.55 61,782 67 61.01 130,805 641,867 1,826,328.58 0.35

3.4.3. Leakage Cost Indexes

Table 6 shows the total cost index parameters per leakage type as an extension of the
TLFR presented in Table 5. With the year 2021’s water tariff of $3.18/m3, the total combined
leakage cost index between Phases 1 and 2 was $48,099,580.45, whereas the values of MNF
and SIV were estimated to be $11,798,049.1 and $88,546,407.34, respectively. The results
further demonstrate that the reduction in AZP between Phases 1 and 2 had a huge impact
on the cost of water lost due to leakages. The results demonstrate that water is an economic
good and not a social good. This assertion is supported by the authors of [21,27,48,56–60]
in their studies.

Table 6. Leakage cost estimation index.

Leakage Cost Estimation % Leakage Cost Index % MNF Cost Index % SIV Cost Index

ID RB URB LC Total
Cost URB LC RB MNF

Cost %MNF SIV Cost %SIV

1 $2,901,226 $417,029 $633,430 $3,951,684 6.03% 0.87% 1.30% $966,334 8.19% $6,896,552 7.79%
2 $3,089,923 $611,642 $688,779 $4,390,344 6.42% 1.27% 1.40% $966,334 8.19% $6,896,552 7.79%
3 $3,160,685 $278,019 $682,629 $4,121,332 6.57% 0.58% 1.40% $966,334 8.19% $6,896,552 7.79%
4 $2,830,464 $361,425 $731,827 $3,923,716 5.88% 0.75% 1.50% $966,334 8.19% $6,896,552 7.79%
5 $2,971,987 $333,623 $602,681 $3,908,291 6.18% 0.69% 1.30% $966,334 8.19% $6,896,552 7.79%
6 $2,806,877 $417,029 $688,779 $3,912,684 5.84% 0.87% 1.40% $966,334 8.19% $6,896,552 7.79%
7 $2,948,400 $361,425 $547,333 $3,857,158 6.13% 0.75% 1.10% $966,334 8.19% $6,896,552 7.79%

8 $3,113,510 $611,642 $676,479 $4,401,631 6.47% 1.27% 1.40% $719,102 6.10% $5,752,935 6.50%
9 $2,405,894 $528,236 $479,685 $3,413,816 5.00% 1.10% 1.00% $719,102 6.10% $5,752,935 6.50%
10 $2,028,499 $278,019 $510,434 $2,816,952 4.22% 0.58% 1.10% $719,102 6.10% $5,752,935 6.50%
11 $1,580,342 $444,830 $467,385 $2,492,558 3.29% 0.92% 1.00% $719,102 6.10% $5,752,935 6.50%
12 $1,674,691 $333,623 $399,738 $2,408,052 3.48% 0.69% 0.80% $719,102 6.10% $5,752,935 6.50%
13 $1,792,627 $250,217 $436,636 $2,479,481 3.73% 0.52% 0.90% $719,102 6.10% $5,752,935 6.50%
14 $1,415,232 $194,613 $412,037 $2,021,882 2.94% 0.40% 0.90% $719,102 6.10% $5,752,935 6.50%

3.4.4. Customer Consumption Index

Figure 8 shows results for the consumption patterns during Phase 1 and Phase 2.
We randomly selected 63 properties at each phase and manually recorded consumption
for each household for a period of 7 days and used those results to estimate the average
monthly consumption (AMC). The linear reduction equations for Phase 1 and Phase 2
are given as y = 0.1601x + 31.205 and y = 0.1261x + 20.522 respectively. The results
show a reduction in the average consumption constant from 31.205 m3/month in Phase 1
to 20.522 m3/month in Phase 2. The results demonstrate that reduced pressure has a direct
influence on customer consumption, although the authors of [11,40,53,59,60] are of the view
that more studies on the influence of pressure versus consumption are needed.
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3.4.5. Infrastructure Leakage Index

Table 7 shows the comparative ILI between Phase 1 and Phase 2 during the study.
The ILI results were established by using authorized consumption to measure the value of
CARL, which is the difference between SIV and authorized consumption and commercial
losses [22]. Due to the unavailability of a number of connection data from water utility,
estimations for the number of connections for the computation of UARL were based on
the mathematical recommendation made by the authors of [22,41,61]. The results show
that ILI is almost identical between Phase 1 and Phase 2, with average ratios of 4.06 and
4.30. Although ILI in Phase 2 increased month by month compared to Phase 1, the authors
concluded that ILI was influenced by SIV, consumption and reduced pressure, and therefore
the outcome does not reflect an accurate finding due to many unknown factors beyond the
scope of this study that need further analysis.

Table 7. Infrastructure leakage data indexes.

ID SIV AMC AC CL CARL L (km) N (c) L (p) P (AVE) UARL ILI

1 2,189,381 36.33 178,807 0 2,010,574 98,435 4922 0 86.0 490,994 4.1
2 2,189,381 36.33 178,807 0 2,010,574 98,435 4922 0 82.3 469,870 4.3
3 2,189,381 36.33 178,807 0 2,010,574 98,435 4922 0 89.0 508,122 4.0
4 2,189,381 36.33 178,807 0 2,010,574 98,435 4922 0 91.0 519,540 3.9
5 2,189,381 36.33 178,807 0 2,010,574 98,435 4922 0 85.0 485,285 4.1
6 2,189,381 36.33 180,547 0 2,008,834 99,393 4970 0 88.0 507,302 4.0
7 2,189,381 36.33 180,547 0 2,008,834 99,393 4970 0 86.3 497,502 4.0

8 1,826,329 36.33 180,547 0 1,645,781 99,393 4970 0 74.8 431,207 3.8
9 1,826,329 24.56 122,055 0 1,704,274 99,393 4970 0 68.2 393,159 4.3

10 1,826,329 24.56 124,593 0 1,701,736 101,460 5073 0 68.2 401,335 4.2
11 1,826,329 24.56 124,593 0 1,701,736 101,460 5073 0 68.2 401,335 4.2
12 1,826,329 24.56 124,593 0 1,701,736 101,460 5073 0 62.4 367,204 4.6
13 1,826,329 24.56 127,723 0 1,698,606 104,009 5200 0 62.4 376,429 4.5
14 1,826,329 24.56 127,723 0 1,698,607 104,009 5200 0 62.3 375,826 4.5

AMC: average monthly consumption; AC: authorized consumption; CL: commercial losses (m3/month).
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4. Conclusions and Recommendations

The purpose of this study was to demonstrate the impact of optimal pressure, its
efficiency indexes for volumetric cost performance and linear leakage measurements. In
a high-level setting, the study utilized FAVAD, the orifice principle, MNF and BABE
methodologies in a two-phased approach in which 6 DMAs and 20 critical nodal points
were used to measure hydraulic flow and pressure changes. Specifically, the results showed
that changes in optimal pressure resulted in a reduction in SIV from 26,272,579 m3 to
21,915,943 m3, whereas MNF reduced from 14.01% to 12.50% and the average nodal system
output (NSO) reduced from 14,774.62 m3/year to 12,787.85 m3/year. The volumetric index
ratio MNF/SIV at the DMA level reduced from 13.1% to 4.3%, whereas it reduced from
13.7% to 8.9% at the NSO level. The total average leakages reduced from 246 to 177 per
month, whereas leakage frequency/km/pressure reduced from 8.31% to 5.98%. The total
leakage cost index reduced from $4,009,315.54 to $2,862,053.10. The AMC per household
declined from 36.33 m3 to 24.56 m3, whereas the ratio of TLFR/SIV declined from 0.58 to
0.5 at a R2 value of 0.4583. Finally, the month-by-month computed average ILI was 4.06
in Phase 1 and 4.30 in Phase 2. Therefore, it can be concluded that the study’s findings
are essential to persuade water managers, policy makers and decision makers in water
utilities to invest more resources in the reduction of water losses. The assessment methods
tested in this study may be used as alternative methods to measure the effect of pressure
on water leakage behavior in water distribution systems due to their proven benefits in
leakage control.
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