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Abstract: Reliable water quality monitoring data, identifying potential pollution sources, and quan-
tifying the corresponding potential pollution source apportionment are essential for future water
resource management and pollution control. Here, we collected water quality data from seven
monitoring sites to identify spatiotemporal changes in surface water in the Imjin River Watershed
(IRW), South Korea, distinguish potential pollution sources, and quantify the source apportionment
from 2018–2020. An analysis was performed based on multivariate statistical techniques (MST) and
the absolute principal component score-multiple linear regression (APCS-MLR) model. Statistically
significant groups were created based on spatiotemporally similar physicochemical water quality
characteristics and anthropogenic activities: low-pollution (LP) and high-pollution (HP) regions, and
dry season (DS) and wet season (WS). There were statistically significant mean differences in water
quality parameters between spatial clusters, rather than between temporal clusters. We identified
four and three potential factors that could explain 80.75% and 71.99% in the LP and HP regions,
respectively. Identification and quantitative evaluation of potential pollution sources using MST and
the APCS-MLR model for the IRW may be useful for policymakers to improve the water quality of
target watersheds and establish future management policies.

Keywords: surface water quality; spatiotemporal variation; pollution source apportionment; cluster
analysis; factor analysis; APCS-MLR modeling

1. Introduction

Water is essential for human life and agricultural and industrial activities, and is a
crucial resource contributing to socio-cultural and economic development [1]. Water quality
is a major global issue, as surface water is degraded due to the effects of land-cover changes,
higher population density, livestock manure discharge, and point and nonpoint source
pollution [2]. Rivers are created by natural water sources that are susceptible to anthro-
pological, biological, and chemical impacts, and are important indicators for sustainable
development in terms of human well-being and ecological and economic development [3].
In general, the water quality of rivers is greatly affected by natural process factors, such as
soil erosion and weathering [4], oxidation of rock minerals [5], and seawater intrusion [6],
and by currently unsustainable anthropogenic factors such as domestic and municipal
sewage [7], livestock fertilizers [8], and agricultural and industrial wastewater [9]. In par-
ticular, anthropogenic factors influencing surface water can cause surface water quality
changes because pollutants are discharged through particular locations (point sources)
such as wastewater treatment plants or through surface flows (nonpoint sources) [10].
Agricultural, industrial, and urban activities have altered the quality and quantity of urban
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sewage [11] and caused a decrease in dissolved oxygen of surface water and runoff and
water temperature changes [12], with considerable impacts on aquatic ecosystems (e.g.,
higher eutrophication and algal production) [13].

Continuous reinforcement of water pollution management and control has improved
the ability to monitor surface water. Environmental research institutes such as the United
States Environment Protection Agency (US EPA) and United States Geological Survey
(USGS) have regularly monitored environmental data and provide the data in a file format
that is required to run an environmental model [14,15]. A regular water quality monitor-
ing program is important not only for protecting water resources and controlling water
pollution, but also for modeling the pollutant distribution, source location, and health
hazards [16]. The water quality monitoring program enables regular sampling, determina-
tion of physicochemical parameters, and provision of representative surface water condi-
tions [17]. Water quality monitoring data are obtained through sampling and analysis of a
specific number of physical, chemical, and biological parameters at various sampling points
in the river network; the number, type, sampling frequency, and method of monitored
parameters are defined by the government systems [18]. Water quality monitoring datasets
have numerous limitations in interpreting and drawing meaningful conclusions, because
they generally contain large amounts of information and complex relationships between
variables [19]. An evaluation of general water quality monitoring data aims to compare
the measured physicochemical parameters with the threshold values recommended by a
national or international organization; however, it has limitations in suggesting alternatives
because the interpretation of the cause is not clear [20]. Correlation analysis and multiple
linear regression (MLR) can be used to identify the correlation between environmental
variables and river water quality, and to provide quantitative information and spatial
variability of water quality variables; however, they are insufficient in providing general
information on pollutant sources [21]. Therefore, to sustainably prevent and control surface
water pollution, regular water quality monitoring should be conducted at various points in
river networks and reliable water quality assessment methods should be used that interpret
complex structured multivariate data [22,23].

Multivariate statistical techniques (MST) are powerful tools that provide environ-
mental information regarding the main factors and potential pollution sources affecting
water environment systems by identifying hidden relationships between variables and
reducing the dimensionality of complex datasets [24]. MST has been utilized in all aspects
of the social and natural environments, including in forecasts, mathematical modeling,
data analysis, and statistics [17]. Recently, many scientists around the world have used
MST, such as cluster analysis (CA) and principal component analysis and factor analysis
(PCA/FA), to simplify large and complex water quality datasets, and to identify spa-
tiotemporal changes, potential factors, and pollution sources [25] of surface water [26,27].
Furthermore, MST has been applied to determine spatiotemporal changes and diverse
sources of groundwater [28] and drinking water [29]. The absolute principal component
score-multiple linear regression (APCS-MLR) model has been used to quantitatively an-
alyze contributions of potential pollution sources [30–32]. By combining MST and the
APCS-MLR model, it is possible to comprehensively manage the spatiotemporal variability
of surface water and the identification of pollution sources [33]. Therefore, as the data
mining of water quality monitoring results involves several statistical techniques, and
environmental systems are considered multivariate systems, MST and the APCS-MLR
model are considered the most reliable method [34].

The river environment in Korea is mainly controlled by spatial and seasonal fluc-
tuations, and its economic growth and development have been heavily influenced by
the regional and seasonal availability of surface water. The spatial and seasonal avail-
ability of surface water is highly sensitive to the topography and monsoon climate of a
country [35]. On the Korean Peninsula, the Imjin River is a transboundary river jointly
occupied by South and North Korea; due to the specificity of the Military Demarcation Line
(MDL), environmental conservation and water resource development and utilization are
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expected [36]. The Ministry of Environment of the Republic of Korea has set target water
quality (biological oxygen demand (BOD) and total phosphorus (TP)) values for the Imjin
River Watershed (IRW), South Korea, since May 2007. The Total Pollution Load Manage-
ment System (TPLMS) is being implemented to manage the number of total pollutants
flowing into the river that are below the quality standard [37]. However, it was recently
estimated that the IRW is vulnerable to domestic wastewater due to rapid urbanization
and industrialization, industrial wastewater pollution from textile factories or large-scale
industrial facilities, and runoff from agricultural land impacted by African swine fever
(ASF) virus [38]. In particular, as 62.8% (1926 facilities) of industrial wastewater discharge
facilities (3065 facilities) are located in areas where the installation of discharge facilities is
restricted, the recent water quality of the IRW has been insignificantly improved, or has
deteriorated [38]. Considering that, rivers entering the IRW inevitably contain pollutants,
posing potential health and environmental risks to those living in the vicinity of the IRW.
Therefore, it is crucial to regularly monitor and establish pollution control policies to iden-
tify the spatiotemporal variability of IRW surface water and the various potential pollution
sources.

This study combined MST (CA and PCA/FA) and the APCS-MLR model based on
the water quality data via regular monitoring, identified the spatiotemporal variability
of the IRW surface water, and conducted a quantitative analysis of apportionment of the
sources. This involved the following: (1) for CA, the spatiotemporal characteristics of IRW
water quality were analyzed; (2) for PCA/FA, spatial group factors and potential pollution
sources influencing the water quality of the IRW were identified; (3) for the APCS-MLR
model, contributions of potential factors and pollution sources identified by PCA/FA were
quantitatively evaluated. The results provide scientific data for efficient water quality
management and policy establishment for the IRW.

2. Materials and Methods
2.1. Study Area

South and North Korea on the Korean Peninsula have been divided since the Korean
War (25 June 1950–27 July 1953); due to the special situation of the MDL, two countries
have jointly occupied the Imjin River [39]. The Imjin River is the seventh largest river
on the peninsula, originating from Duryu Mountain, Beopdong-gun, Gangwon Province,
North Korea, passing through MDL, joining the Hantan River and Moonsan Stream, joining
the Han River in Gimpo-si, Gyeonggi Province, and then flowing into the West Sea [38].
The Imjin River is located between 37◦44′23′′ N 126◦31′19′′ E and 37◦11′12′′ N 126◦36′21′′ E;
the entire watershed area is 8139 km2, with a total length of 273.5 km [40]. This study
targeted the IRW, South Korea, which accounts for 37.1% of the total watershed area, based
on the MDL (Figure 1). The shape factor of the IRW is 0.126, indicating a smaller watershed
width compared to the extension of the river channel [41]. The mean altitude is 680.5 m,
and the elevation is between 155 and 1570 m, indicating a complex topography [40]. Mean
annual precipitation of the IRW is approximately 1100 mm, of which approximately 74%
occurs from June to September; it has a climate similar to a monsoon climate, with wet
summers and dry winters [42]. The Ministry of Environment is currently implementing
TPLMS for seven IRW watersheds [43]. Figure 2 shows the land use ratio and pollutant
density ratio for each unit watershed, and that the urban and agricultural areas of IRW
accounted for 24.6%. Hantan-A unit watershed had the highest percentage (17.9%) in the
use of area, whereas Yeongpyeong-A unit watershed had the highest percentage (29.3%)
in the agricultural area [44]. The IRW cannot be used as a drinking water source or tap
water because it is impacted by tides twice a day from the estuary of the Han River to
the Gorangpo point (approximately 40 km) in Yeoncheon-gun, Gyeonggi Province; hence,
water is supplied from Paldang Dam of the Han River [41].
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Figure 1. Locations of study area and surface water quality sampling sites in the Imjin River Water-
shed, South Korea. Sites: Imjin River (IJ-A and IJ-B) of the main streams of the IRW; Hantan River 
(HT-A and HT-B), Yeongpyeong Stream (YP-A), and Shincheon Stream (SC-A); Moonsan Stream 
(MS-A) of the main tributaries of the Imjin River Watershed. 
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2.2. Water Sampling and Analysis

We conducted water sampling at the following water quality monitoring network
points of the Ministry of Environment: Imjin River (IJ-A and IJ-B) of the main streams of
the IRW; Hantan River (HT-A and HT-B), Yeongpyeong Stream (YP-A), and Shincheon
Stream (SC-A); Moonsan Stream (MS-A) of the main tributaries of the IRW (Figure 1). These
7 sites were representative sites for river water quality monitoring and pollution sources
management in this study [43]. Water quality samples were collected at mean intervals
of 8 d from January 2019 to December 2020. The samples were analyzed for 12 water
quality parameters: water temperature (WT), the potential of hydrogen (pH), electrical
conductivity (EC), dissolved oxygen (DO), 5 d BOD, chemical oxygen demand (COD),
suspended solids (SS), total nitrogen (TN), ammonium nitrogen (NH3-N), nitrate-nitrogen
(NO3-N), TP, and phosphates phosphorous (PO4-P). WT, pH, EC, and DO were measured
on site using a multiparameter sonde (EXO1, YSI Crop., Yellow Springs, OH, USA). The
sample was placed in a polyethylene bottle (2 L, 3 EA) washed with 0.1 N HNO3 solution,
stored in an icebox at <4 ◦C, and was then transported to the laboratory. BOD, COD, SS,
TN, NH3-N, NO3-N, TP, and PO4-P were analyzed in the laboratory in compliance with
safety regulations. Water quality sampling, preservation, transportation, and analysis
were performed in line with the Water Pollution Standard Method of the Ministry of
Environment [45]. The analysis methods and tools for the 12 water quality parameters are
summarized in Table 1. These water variables are important indicators of water pollution
showing organic, nutrient, physical, and biological properties of the river [26]. Quality
assurance and quality control (QA/QC) procedures of tools and data to be analyzed were
evaluated for all test items, with reference to 5% repeats, 5% spikes, standard calibration
curves, and quality control reference standards [45].

Table 1. Environmental variables used for analysis methods and instruments.

Parameter Unit Analysis Methods Instrument and Equipment

WT ◦C Temperature probe EXO1 (YSI, Yellow Springs, OH, USA)
pH - pH probe EXO1 (YSI, Yellow Springs, OH, USA)
EC µS/cm Conductometry EXO1 (YSI, Yellow Springs, OH, USA)
DO mg/L DO probe EXO1 (YSI, Yellow Springs, OH, USA)

BOD mg/L Winkler azide method
(5 d, incubation, 20 ◦C)

5910 DO Meter (YSI, Yellow Springs, OH, USA)
BOD Incubator (VISION Scientific, Bucheon, Korea)

COD mg/L KMnO4 method Water Bath (100 ◦C Acid)
SS mg/L Gravimetric 47 mm GF/C Filter (Whatman, Maidstone, UK)
TN mg/L Continuous flow analysis AACS_VI (BLTEC, Tokyo, Japan)

NH3-N mg/L Continuous flow analysis AACS_VI (BLTEC, Tokyo, Japan)
NO3-N mg/L Smart Chem analysis Smart Chem 200 (AMS, Westborough, MA, USA)

TP mg/L Continuous flow analysis AACS_VI (BLTEC, Tokyo, Japan)
PO4-P mg/L Smart Chem analysis Smart Chem 200 (AMS, Westborough, MA, USA)

WT—water temperature, EC—electrical conductivity, DO—dissolved oxygen, BOD—5 d biological oxygen
demand, COD—chemical oxygen demand, SS—suspended solids, TN—total nitrogen, NH3-N—ammonium
nitrogen, NO3-N—nitrate nitrogen, TP—total phosphorus. PO4-P—phosphates phosphorous.

2.3. Data Treatments and Multivariate Statistical Techniques

Kolmogorov–Smirnov statistics were used to test the normality of water quality
data [46]. Most variables of MST should show a normal distribution; however, most
variables in the raw data were far from a normal distribution with 95% confidence through
statistical tests of skewness and kurtosis [26]. The water resources data collected did not
meet the assumption of normality due to the survey time and location [47]. Therefore, the
data were standardized (mean value: 0, standard deviation value: 1; Z-Score) to improve
the explanatory power of the statistical analysis results and reduce the related errors. Stan-
dardization reduces errors due to large fluctuations in water quality data (i.e., lower effects
of a unit of measure and parameter variance), and satisfies the assumption of normality for
statistical analysis [3].
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MST has recently been widely used as a powerful tool for research involving envi-
ronmental data [24]. MST enables analysis of the relationship between different variables,
and the reduction to a small number of factors from large and complex physiochemical
data without the loss of information, eventually providing more accurate information
regarding water quality and potential pollution sources influencing research systems [48].
In this study, we utilized MST such as hierarchical cluster analysis (HCA) and principal
component analysis/factor analysis (PCA/FA), and the APCS-MLR model to identify
spatiotemporal variability of IRW surface water and potential pollution sources, and to
quantitatively analyze the contributions of pollution sources. An analysis was conducted
by using a Z-score standardized to MST. To perform MST and the APCS-MLR model, we
used the Statistical Package in the Social Science software (SPSS, v22.0; IBM Corp., Armonk,
NY, USA). Data processing and basic statistical analyses (e.g., minimum, maximum, mean,
standard deviation, and standard uncertainty) were performed using Excel 2019 (Microsoft
Corp., Redmond, WA, USA). OriginPro 2021b (OriginLab Corp., Northampton, MA, USA)
was utilized to visualize the analysis data.

2.3.1. Cluster Analysis

Cluster analysis (CA) is an unsupervised pattern detection method that identifies the
characteristics of each group after clustering large-scale data of each entity into several
groups [26]. In this study, we used HCA in which clustering is sequentially performed
based on distances between objects. Ward’s method and squared Euclidean distance were
used for a standardized dataset to provide spatiotemporal similarity information regarding
the IRW surface water [29]. Ward’s method suggests that pairs with the smallest variance
are merged in a connected manner based on the variance of the entity constituting each clus-
ter [49]. Euclidean distance indicates similarity between two samples in general; “distance”
refers to the “difference” between the analyzed values of two samples [33]. HCA gener-
ated spatiotemporal dendrograms by grouping seasonal (temporal) similarities between
sampling sites (spatial variability) and variables (samples). Spatiotemporal clusters were
clearly identified by dendrograms with connection distances expressed as Dlink/Dmax
× 100. Dlink/Dmax is a method of standardizing the connection distance expressed on
the y-axis; it is reported as the value obtained by dividing the connection distance in a
specific case by the maximum connection distance, multiplied by 100 [50]. Dendrograms
are utilized to provide a visual summary of the clustering processes, explaining groups
and proximities, and greatly reducing the dimensionality of the raw dataset [51]. As for
the HCA, a one-way analysis of variance (ANOVA) was performed (p < 0.05) to analyze
significant differences in spatiotemporal water quality parameters, and post hoc analysis
was conducted to identify significant differences in clusters.

2.3.2. Pearson’s Correlation Analysis

Correlation analysis is a statistical technique used for testing the significance of a
linear relationship between two or more variables [52]. This study obtained correlation
information between water quality parameters using the Pearson’s correlation coefficient,
based on a standardized Z-scale. Correlation coefficients closer to +1 or −1 indicate
respectively strong positive or negative linear relationships between two variables [53].
When the correlation coefficient between two variables is zero, there is no linear relationship
at the p < 0.05 level; however, a low correlation in large datasets can be strongly statistically
significant at the p < 0.01 level [54].

2.3.3. Principal Component Analysis/Factor Analysis

We conducted principal component analysis (PCA) and factor analysis (FA), analyzed
main factors in polluted areas grouped via HCA, and identified potential water pollution
sources. PCA and FA were used as the tools for exploratory data analysis and model
prediction to identify hypothetical and unobservable potential pollution sources that can
trigger pollution of surface water, and to quantify pollutant source apportionment [55]. PCA
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is a powerful statistical method to dimensionally reduce complex multivariate datasets with
linear structures and interpret them as principal components (PCs) without information
loss [25]. In this study, we selected factors by considering only the PC axis for which
the eigenvalue (i.e., the size of variance explaining the factor based on the Scree plot and
Kaiser’s rule) was >1.0. PCA enables a rational identification of main pollution factors;
however, in terms of actual controlling sources and processes, the interpretation of such
factors is highly subjective and has a limitation of generalization [31]. Prior to PCA,
we confirmed the basic statistics of the data via descriptive statistical analysis. In addition,
the strong correlation between data was identified through Pearson’s correlation analysis;
the applicability of PCA was determined through Keiser–Meyer–Olkin (KMO) and Bartlett’s
test of sphericity [56]. The KMO test indicates the degree of variance caused by the PC;
in general, the KMO test coefficient is between 0.5 and 0.7, which is satisfactory [57].
Bartlett’s test determines the possibility of whether a correlation matrix is a unit matrix;
if the significance probability of Bartlett’s test is <0.05, it is applicable to PCA [58]. After
extracting factors via PCA, FA was performed to create a new group of variables referred to
as variance factors (VFs) through varimax rotation of the PCs, to clarify the factor structure
in line with the correlation coefficient between factors and variables [33]. VFs were classified
as “strong”, “moderate”, or “weak” if absolute loadings were >0.75, between 0.75 and 0.50,
or between 0.50 and 0.30, respectively [59].

2.3.4. APCS-MLR Model

The application of the modeling, based on APCS-MLR, is known as the combination
of PCA and MLR; it is generally applied to statistical techniques for source apportionment
of environmental pollutants [32]. Wang et al. [60] indicated that the datasets analyzed
with PCA and MLR enabled an understanding of precision and quantification of source
apportion. In this study, we used PCA to determine the number and properties of potential
pollution sources, and then developed the APCS-MLR model to determine the contribution
of potential pollution sources. To achieve this, we first established an MLR between APCS
(independent variables) and the pollutant concentration (dependent variables). We then
calculated regression coefficients and quantified the contribution ratio of each PCs to the
water quality variable. The source contributions to the pollutant concentration (Cj) are
listed in Table S1 [30,32].

However, in the APCS-MLR model, a negative contribution ratio may appear in the
calculations, misleading the accuracy of the source apportionment [60]. Negative values
can be considered to be inversely related to the factor. To overcome this problem, we
converted negative values to positive contributions, to indicate the contribution ratios to
the water quality parameters of the corresponding water source [30,61].

3. Results and Discussion
3.1. Spatial and Temporal Variations in Water Quality

Table 2 shows the descriptive statistics of 12 water quality parameters collected be-
tween 2018 and 2020 from seven water quality monitoring sites in the IRW. In terms of
the spatial conditions, the IRW showed relatively high levels of BOD, COD, TN, and TP
compared to the water quality standards set by the Ministry of Environment in South Korea.
The spatial variation in the IRW because of anthropogenic activities and various land use
types was evident [44]. The standard deviation was very large for the main streams (IJ-A
and IJ-B sites), because they were more affected by summer floods than tributaries were.
For the BOD, COD, TN, and TP parameters, as opposed to WT and SS, the fluctuation range
was smaller for the tributary (SC-A, YP-A, and MS-A sites) than for the main stream, which
may be attributed to the buffering effect of the main stream mixed with water. According to
the water quality environment standards, a BOD between 1 and 10 mg/L was considered
a fair grade. At sites IJ-A (0.3 mg/L) and HT-A (0.3 mg/L), the BOD was at a very good
level (Ia; ≤1 mg/L). At site SC-A, on-site WT (19.5 ◦C) and EC (1479 µS/cm) were high
compared to those elsewhere. Furthermore, the concentrations of COD (11.9 mg/L), TN
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(8.098 mg/L), NH3-N (1.316 mg/L), and TP (0.186 mg/L) were highest because SC-A site
was significantly affected by the wastewater from textile and leather factories around the
watershed [62]. At site MS-A, the mean SS concentration (55.7 mg/L) exceeded the slightly
poor (IV; ≤100 mg/L) water quality standards. The high SS concentration was impacted by
the low tide due to the tidal effect of the Imjin River and domestic sewage [38].

Table 2. Descriptive statistics of water quality parameters in the Imjin River Watershed, South Korea
during 2018–2020.

Sites WT
(◦C) pH EC

(µS/cm)
DO

(mg/L)
BOD

(mg/L)
COD

(mg/L)
SS

(mg/L)
TN

(mg/L)
NH3-N
(mg/L)

NO3-N
(mg/L)

TP
(mg/L)

PO4-P
(mg/L)

IJ-A
(N = 115)

Min 0.5 7.3 85 6.8 0.3 1.9 0.2 0.496 0.003 0.092 0.004 0.000
Max 32.9 8.5 227 15.9 2.5 15.2 300.0 3.480 0.194 1.823 1.110 0.029

Mean 17.5 8.0 146 10.4 1.0 3.3 9.5 1.184 V 0.024 0.856 0.041 0.003
SD 8.2 0.3 25 2.0 0.5 1.5 29.1 0.446 0.027 0.334 0.108 0.005

HT-A
(N = 115)

Min 0.1 7.1 80 7.0 0.3 1.7 0.4 1.180 0.007 0.441 0.010 0.000
Max 29.4 8.7 254 16.6 8.2 16.4 205.3 5.270 0.897 2.639 0.410 0.151

Mean 15.5 8.1 146 10.7 1.3 3.8 11.0 2.280 VI 0.069 1.721 0.059 0.012
SD 7.5 0.3 29 2.0 1.3 2.1 21.7 0.582 0.114 0.408 0.066 0.016

YP-A
(N = 115)

Min 0.6 7.0 138 6.8 0.6 3.2 1.3 3.105 0.017 1.190 0.030 0.000
Max 31.7 9.2 1893 16.4 11.2 17.5 92.0 13.650 3.313 7.862 0.660 0.230

Mean 17.5 7.9 657 11.0 2.9 6.6 IV 8.6 6.900 VI 0.691 4.526 0.085 0.021
SD 7.5 0.4 338 1.8 2.0 2.9 13.2 2.087 0.764 1.395 0.080 0.033

SC-A
(N = 115)

Min 3.6 6.9 316 6.1 1.4 5.7 4.0 3.185 0.006 1.554 0.075 0.003
Max 32.9 9.3 3153 15.3 16.0 25.9 141.7 15.240 8.925 7.282 0.645 0.206

Mean 19.5 7.8 1479 10.7 6.1 IV 11.9 VI 19.9 8.098 VI 1.316 4.491 0.186 III 0.039
SD 7.2 0.4 601 1.8 3.7 4.0 22.7 2.416 1.772 1.210 0.114 0.035

HT-B
(N = 115)

Min 0.0 7.2 118 6.5 0.5 2.7 1.6 2.620 0.005 1.430 0.019 0.000
Max 32.3 9.3 1712 15.7 10.3 17.4 96 11.360 4.287 5.280 0.565 0.194

Mean 17.4 7.9 630 10.7 3.2 III 6.5 III 11.0 5.440 VI 0.791 3.249 0.090 0.013
SD 7.9 0.4 367 1.9 2.3 3.0 14.0 1.664 0.872 0.765 0.082 0.024

MS-A
(N = 115)

Min 0.0 7.0 207 5.1 0.9 3.4 3.1 1.965 0.086 0.807 0.050 0.004
Max 30.2 8.2 2457 13.8 10.1 12.2 290 8.720 3.474 3.998 0.620 0.195

Mean 18.1 7.6 604 9.5 3.0 6.8 III 55.7 IV 4.162 VI 0.550 2.362 0.171 0.034
SD 7.1 0.2 302 1.8 1.6 2.0 57.5 1.198 0.547 0.708 0.095 0.039

IJ-B
(N = 115)

Min 0.5 6.8 68 6.1 0.4 2.5 0.6 1.530 0.004 0.447 0.015 0.000
Max 33.1 9.5 1146 16.1 6.1 38.8 957.5 6.850 1.555 3.610 0.940 0.076

Mean 17.5 8.0 440 10.3 2.0 5.6 III 28.5 IV 3.322 VI 0.168 2.192 0.088 0.011
SD 7.8 0.4 228 2.1 1.4 3.8 90.4 1.147 0.294 0.752 0.100 0.013

Environmental standards of water quality set by the Ministry of Environment in South Korea. Water quality
levels: Fair (III), Slightly poor (IV), Poor (V), and Very poor (VI).

Table S2 presents the mean and standard deviation of monthly water quality param-
eters in the Imjin River Watershed in South Korea. Monthly BOD concentrations were
maintained at slightly average (II; ≤3 mg/L) levels during September–December; however,
these levels were close to the slightly bad (IV; ≤8 mg/L) levels measured in April and
May. The BOD and COD concentrations were highest in spring, assumingly because of
the relatively large effect of point pollution sources brought in by the low flow rate of
rivers and the impact of river runoff on irrigation water carrying organic matter such as
compost or fertilizer accumulated in paddy fields [63]. As shown in Table S2, TN and TP
concentrations were the most polluted variables each month. The mean TN concentration
was between 3.22 and 7.01 mg/L, exceeding the very poor (VI; >1.5 mg/L) level of water
quality standard. The highest mean TN concentration had a large mean and standard
deviation between January (6.67 mg/L) and February (7.01 mg/L). The TP concentration
gradually increased from March (0.15 mg/L), reached a peak by May when there were
active agricultural activities, and showed a decreasing trend between September and De-
cember, the months with the high precipitation. This reflects the complex diluting effect
of the increase in river flows and other factors [63]. The TP concentrations were highest
during summer due to surface runoff, and very close to the slightly poor (IV; ≤0.3 mg/L)
levels of the water quality standard. Hence, water quality management is required.

3.2. Spatial and Temporal Hierarchical Agglomerative Clustering

The seven sampling sites were classified into two statistically significant clusters at
(Dlink/Dmax) × 100 < 40 via spatial HCA (Figure 3a). There was a significant difference
in water pollution at the sampling sites between both clusters. The cluster classifications
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showed spatial distribution because the sites had water quality features and natural back-
grounds that were affected by similar pollution sources [47,49]. One-way ANOVA and
post hoc analysis were conducted to increase the reliability and validity of HCA. The p-
values of EC, BOD, COD, and NH3-N were 0.010, 0.013, 0.011, and 0.050, respectively,
indicating statistically significant mean differences between clusters for each water quality
parameter. By utilizing box plots [49] featuring two or more static variables, we analyzed
spatial changes in EC, BOD, COD, and NH3-N water quality parameters between clusters
(Figure 4). As shown in Figure 4, EC, BOD, COD, and NH3-N presented higher mean val-
ues with greater variations in cluster 2 than in cluster 1. Therefore, cluster 1 corresponded
to a lower pollution (LP) region than did cluster 2. Cluster 1 encompassed sites YP-A,
HT-B, and HT-A, which are located in Imjin River (IJ-A and IJ-B sites), the main stream,
and Yeongpyeong Stream and Hatan River, the tributary. Sites IJ-A and HT-A are located in
the upper reaches of the Imjin River and Hantan River, respectively, where there are dense
forests and the only basalt in Korea. IJ-B, HT-B, and YP-A sites reflected dilution effects,
mainly due to agricultural activities and anthropogenic factors [44]. In cluster 2, sites SC-A
and MS-A corresponded to the high-pollution (HP) region; these two sites are located in
the Shincheon Stream and Moonsan Stream, respectively. As shown in Figure 4, EC, BOD,
COD, and NH3-N showed greater variability and higher mean values in the HP region
than in the LP region. According to Cho et al. [38], Shincheon Stream is highly polluted by
textile and leather industrial complexes, and Moonsan Stream is an area with a high rate of
industrial wastewater discharge.
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The temporal variability of IRW water quality was further analyzed through HCA.
As for temporal HCA, we created a dendrogram by classifying 12-month mean data over
3 years (from 2018–2020) into two clusters, at (Dlink/Dmax)× 100 < 60 (Figure 3b). The two
clusters corresponded to the dry and wet seasons (DS and WS, respectively) of the IRW;
the DS and WS variations were statistically significant because IRW pollution was mainly
affected by human activities and rainfall. Cluster 1 encompassed September–May; the
cluster corresponded to DS accounting for approximately 41% of the annual mean precip-
itation. Cluster 2 included June–August, which corresponded to the WS and accounted
for approximately 59% of the annual mean precipitation [43]. According to the measured
parameter values in Table 1, the IRW had TN and TP, the most serious and concerning
pollutants. In addition, EC and COD are generally considered important indicators for
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monitoring organic pollution in rivers, industrial water, and factory wastewater [32]. There-
fore, the temporal variability of the parameters selected for DS and WS (EC, BOD, COD,
and NH3-N) is shown in Figure 4b. The mean COD and NH3-N concentrations were higher
in the WS than in the DS, because of the combined effect of increased surface runoff in
spring and major stream inflows carrying organic matters and nitrogen from land to the
aquatic environment [32,64].
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As for the spatiotemporal HCA of the IRW in this study, the regional difference be-
tween LP and HP was more evident than the difference between DS and WS. Therefore,
we focused on exploration and apportionment of pollution sources by performing correla-
tion analysis of spatial groups in the IRW (LP and HP regions) and utilizing the PCA/FA or
APCS-MLR model. HCA was useful in providing reliable information on spatiotemporal
variability of surface water [26]. Furthermore, it was found that each cluster classified
based on the characteristics of the surrounding pollution sources and monthly water quality
could represent the water quality of the corresponding watershed [65]. Therefore, HCA
enables the design of future optimal spatiotemporal sampling strategies by reducing the
frequencies in the monitoring network and sampling, thereby reducing costs without losing
the significance of the results [66].

3.3. Correlation Analysis of Water Quality Parameters According to Polluted Region

To provide correlation information between physicochemical water quality parameters
of spatially clustered LP and HP regions through HCA, the Pearson’s correlation coefficient
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(r) with statistical significance was used (p < 0.05). As indicated in Figure 5, the correlation
analysis for the IRW showed the following: EC had a positive (+) correlation with the
concentrations of organic matter and nitrogen-based substances, and SS and PO4-P had
a negative (−) correlation. Such correlations were more obvious in the HP region than in
the LP region. Furthermore, SS and PO4-P showed negative (−) correlations with pH, EC,
and DO. The negative (−) correlation between WT and DO was statistically stronger in the
LP region than in the HP region (r = −0.71, p < 0.01). The statistically strong positive (+)
correlations between EC, and COD, TN, and NO3-N were predominant in the HP region
(r > 0.60, p < 0.01). The reason is that the Shincheon and Moonsan Streams in the HP region
showed high densities of nondegradable materials and industrial wastewater discharge
due to textile factories and large-scale industrial facilities around the streams [67]. In the LP
region, EC had a statistically strong positive (+) correlation with BOD and NH3-N (r > 0.60,
p < 0.01). There was a strong positive (+) correlation between SS and COD concentrations
(r = 0.59, p < 0.01) in the LP region; however, there was no statistically significant correlation
in the HP region. The statistically strong positive (+) correlations between BOD, and TN
and TP were more prominent in the HP region than in the LP region (r > 0.47, p < 0.01).
On the basis of these correlations, organic matters in the HP region were confirmed to flow
into the river along with nutrients [68].
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3.4. Pollution Source Identification Using PCA/FA

PCA/FA was performed on the standardized data to identify the factors affecting
water quality in the LP and HP regions clustered by HCA. The KMO test values for LP
and HP regions were 0.592 and 0.621, respectively, and Bartlett’s sphericity test value was
0.00 (p < 0.01), indicating that there was a statistical significance for the correlation between
water quality parameters, and the conformance of PCA [28]. PCA/FA extracted four and
three PCs with an eigenvalue of >1 for the LP and HP regions, respectively. This explained
approximately 80.8% and 72.0% of the total variance for the water quality datasets for
the LP and HP regions, respectively. Table 3 summarizes the PCA/FA results, including
loading, eigenvalues, variance, and cumulative variance for each VF.
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Table 3. Loadings of 12 water quality variables on significant VFs for LP and HP regions in the Imjin
River Watershed, South Korea.

Parameter
LP Region HP Region

VF1 VF2 VF3 VF4 VF1 VF2 VF3

WT −0.05 0.07 −0.92 −0.14 0.20 0.23 −0.82
pH −0.08 −0.02 0.03 −0.82 0.54 −0.45 −0.41
EC 0.90 0.04 −0.04 −0.16 0.83 −0.30 0.18
DO 0.15 −0.10 0.88 −0.24 0.28 −0.64 0.38

BOD 0.74 0.44 −0.13 −0.17 0.80 0.34 0.15
COD 0.62 0.71 −0.14 −0.20 0.95 0.12 −0.04

SS −0.10 0.87 0.00 0.01 −0.08 0.63 −0.07
TN 0.83 −0.05 0.25 0.40 0.65 −0.26 0.65

NH3-N 0.78 0.04 0.21 0.23 0.37 0.07 0.78
NO3-N 0.65 −0.15 0.27 0.46 0.48 −0.49 0.36

TP 0.14 0.90 −0.12 0.22 0.32 0.86 −0.09
PO4-P 0.01 0.52 −0.14 0.62 0.03 0.75 0.01

Eigenvalue 3.52 2.58 1.88 1.70 3.53 2.90 2.21
Total Variance (%) 29.37 2.149 15.70 14.19 29.40 24.13 18.45

Cumulative (%) 29.37 50.86 66.56 80.75 29.40 53.54 71.99

VF1 in the LP region accounted for 29.37% of the total variance with strong positive
loadings (0.90, 0.83, and 0.78, respectively) for EC, TN, and NH3-N, and with medium
positive loadings (0.74 and 0.65, respectively) for BOD and NO3-N. EC and TN of surface
water can originate from pollution sources including fertilizer use, animal waste, and do-
mestic and industrial sewage [69]. Five sites in the LP region are dominated by mountains,
grasslands, and agricultural lands. Since the LP region has low population density and
there has been minimal exploitation, it appeared to be mostly related to agriculture and
livestock, and to be more impacted by manure and chemical fertilizers than by industrial
sewage [32]. Nitrogen from agricultural land and pasture in the LP region flows into rivers
in the vicinity due to surface runoff and flooding irrigation, as primary fertilizer for crops
and general livestock waste. Studies on the Nakdong River in South Korea, Grand River in
the USA, and Min River in China also revealed that EC and TN were the most influential
parameters in VF1 in terms of agricultural areas through PCA/FA [70–72]. Therefore, VF1
in the LP region can be considered a nonpoint source due to agricultural activities. VF2 in
the LP region accounted for 21.49% of the total variance with strong positive loadings (0.90
and 0.87, respectively) for TP and SS, and with medium positive loading (0.71) for COD.
This factor can be regarded as the accumulated organic pollutants from the discharge of
untreated wastewater, including domestic and industrial wastewater [61]. VF3 had a strong
negative loading (−0.92) for water temperature, whereas it accounted for 15.70% of the total
variance with strong positive loading (0.88) for DO. WT and DO are commonly considered
as factors of seasonal variation [65]. VF4 accounted for 14.19% of the total variance with
a strong negative loading (−0.82) for pH, and with a medium positive loading (0.62) for
PO4-P. This can be regarded as the physicochemical variability of the river [72].

VF1 accounted for 29.40% of the total variance in the HP region and provided strong
positive loading (i.e., 0.95, 0.83, and 0.80, respectively) for COD, EC, and BOD and a
medium positive loading (0.54) for pH. VF1 of HP region was associated with various
organic matter sources of industrial wastewater, and municipal sewage [66]. According to
Choi et al. [67], Shincheon Stream and Moonsan Stream in the HP region showed the high
industrial wastewater discharge density and the discharge of a large amount of industrial
wastewater into rivers and ditches in the vicinity without proper treatment, which indicates
that the streams have been greatly influenced by urbanization and industrialization. The
SC-A site, where there were impacts of effluent from textile factories and basic treatment
facilities, indicated the highest mean concentrations of variables such as EC, BOD, COD,
TN, TP, NH3-N, and NO3-N. The mean NH3-N concentration, a toxicity indicator of river
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odor and degraded health of aquatic organisms [67], was 1.32 mg/L at site SC-A, which
was less than the US EPA standard of 1.9 mg/L; however, it requires strict management.
Therefore, VF1 in the HP region can be interpreted as being affected by point pollution
sources from municipal and industrial sewage discharges. VF2 accounted for 24.13%
of the total variance, and showed strong positive loadings (0.86 and 0.75, respectively)
for TP and PO4-P, a medium loading (0.63) for SS, and negative loadings (−0.64 and
−0.49, respectively) for DO and NO3-N. Since SS is partially related to surface runoff and
phosphorus flow into rivers with surface runoff [65], VF2 in the HP region can be attributed
to municipal sewage triggered by surface runoff. VF3 accounted for 24.3% of the total
variance and indicated a strong negative loading (−0.82) for WT, a positive loading (0.78)
for NH3-N, and a medium positive loading (0.65) for TN. WT is related to seasonal effects,
and nitrogen fertilizers may be a major source from agricultural activities [73]. As a result,
it can be considered that VF2 in the HP region was affected by nonpoint source pollution,
as nitrogen fertilizers have been shown to contribute to river loadings via agricultural
activities [32].

After identifying potential pollution sources using PCA/FA, MLR analysis was per-
formed on VFs in LP and HP regions. The R2 values in Table 4 range between 0.883 and
0.971, which is closer to 1; the prediction of the corresponding regression equation can
be considered valid. Of the information of the dependent variable VFs, 88.3–97.1% can
be considered as the variation in the independent variable. Furthermore, as the standard
error of the estimate was <0.5, it can be determined as a valid regression equation. As a
result of one-way ANOVA, as the probability value (p-value) of the F statistics was less than
the significance level of 0.001, the corresponding regression equation can be considered
statistically significant.

Table 4. Stepwise MLR model for VFs for LP and HP regions in the Imjin River Watershed, South Korea.

Region Dependent
Variable Regression Equations R2 Std. Error of

Estimate Sig.

LP

VF1 −1.449 + 0.01 EC + 0.066 TN + 0.129 BOD +
0.280 NH3-N + 0.103 NO3-N 0.971 0.171 <0.001

VF2 −0.732 + 5.604 TP + 0.010 SS + 0.037 COD 0.925 0.275 <0.001
VF3 −1.148 − 0.077 WT + 0.231 DO 0.957 0.209 <0.001
VF4 14.952 − 1.898 pH + 18.094 PO4-P 0.802 0.446 <0.001

HP
VF1 −6.020 + 0.104 COD + 0.542 pH + 0.087 BOD 0.970 0.175 <0.001

VF2 0.331 + 3.959 TP − 0.115 DO + 8.670 PO4-P +
0.004 SS − 0.101 NO3-N 0.935 0.258 <0.001

VF3 0.932 − 0.081 WT + 0.305 NH3-N + 0.048 TN 0.883 0.344 <0.001

3.5. Pollution Source Apportionment Using APCS-MLR Model

We analyzed the APCS-MLR model to quantify the contribution of each pollution
source to 12 water quality parameters in the LP and HP regions (Figure 6). MLR analysis for
the LP and HP regions showed a good model with consistency between the measured and
predicted values >0.6, except for the relatively lower determination coefficient (R2 = 0.396)
for SS in the HP region. According to Gholizadeh et al. [30], in general, when the coefficient
of determination (R2) is >0.5, there is a good consistency between observed and predicted
values, and a reliable assessment of pollution source apportionment can be made. Figure 7
indicates the mean contributions of pollution sources using the APCS-MLR model in the
LP and HP regions.

Source 1 (S1, 26.5%) in the LP region was greatly affected by nonpoint source pollution,
mainly from agricultural activities. Nonpoint source pollution accounted for 26.5% of the
total pollution sources and showed high contribution ratios in the nitrogen series (NH3-N,
34.1%; TN, 30.3%; NO3-N, 27.6%), EC (73.0%), and BOD (30.8%) water quality parameters.
Furthermore, organic pollution (S2) from domestic sewage and industrial wastewater
accounted for 24.9% of the entire pollution sources and showed high contribution ratios
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in SS (46.2%), TP (39.3%), PO4-P (35.2%), and COD (27.0%) water quality parameters.
Physicochemical effects (S3) accounted for 21.8% of the total pollution sources, and mainly
showed the contribution ratio of 23.5%, mainly in pH. Seasonal effects on diverse water
quality parameters (S4, 20.4%) showed contribution ratios in WT and DO of 26.2% and
24.6%, respectively. Through the APCS-MLR model, unidentified source (UIS) estimated
water quality parameters contributing to river water pollution ranging from 0.1% (TP)
to 17.1% (WT). According to Zhang et al. [74], since the estimated contributions of UIS
consist of a mixture of pollutants, and originate from complex sources, the identification
of sources via the APCS-MLR model could be problematic. Therefore, the contributions
of pollution sources in the LP area were determined as being in the following descending
order: Nonpoint source pollution from agricultural activities (S1, 26.5%), point pollution
sources from domestic sewage and industrial wastewater (S2, 24.9%), physicochemical
effects (S4, 21.8%), seasonal effects (S3, 20.4%), and UIS (6.4%).
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Figure 7. Mean contributions ratios (%) of different potential pollution sources to water quality based
on the APCS-MDL model of (a) LP and (b) HP regions in the Imjin River Watershed, South Korea.

Most water quality parameters in the HP region were significantly affected by point
pollution sources from domestic sewage and industrial wastewater (S1, 31.4%). This was
shown by the high contribution ratios of organic pollution sources (BOD, 39.1%; COD,
37.1%) and physicochemical effects (EC, 45.4%; pH, 30.9%) to river water quality. Point
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source pollution from municipal sewage (S2) accounted for 29.1% of the total pollution
sources, and phosphorus-based substances were present (TP, 40.9%; PO4-P, 43.9%). The im-
pact of nonpoint source pollution from agricultural activities (S3) accounted for 27.9% of the
total pollution sources in TN (32.8%) and NH3-N (45.7%); seasonal effects had the greatest
impact on WT (31.1%). As shown in Figure 4, UIS in the HP region estimated water quality
parameters contributing to river water pollution ranging between 0.04% (PO4-P) and 39.6%
(EC). Therefore, the pollution sources in the HP region descended in the following order:
Point source from domestic sewage and industrial wastewater (S1, 31.4%), point source
from urban sewage (S2, 29.1%), nonpoint source pollution from agricultural activities or
seasonal effects (S3, 27.9%), and UIS (11.5%) (Figure 7). Therefore, it was demonstrated
that the APCS-MLR model was able to quantify the source contribution to physicochemical
water quality parameters in the LP and HP regions.

3.6. Strengths and Limitations

Several advantages and limitations were identified in this study. First, MST and the
APCS-MLR model used in this study were useful tools for identifying hidden relation-
ships and factors regarding large and complex water quality datasets, and for providing
environmental information influencing environmental systems. Second, in the field of
water environment research, MST and the APCS-MLR model have shown reliability and
validity in water quality assessments of the target watershed, and the results are useful
for water environment protection and water resource management policies in the future.
Third, customized water quality assessment and management of the target watershed
required the identification of potential pollution sources, by determining the main factors
based on spatial conditions and quantitatively analyzing the contributions of pollution
sources. However, we must consider the following limitations in interpreting the study
results. First, the Imjin River on the Korean Peninsula is a transboundary river between
South and North Korea, and it was hard to access to obtain necessary information for water
quality data analysis of the IRW in North Korea due to the MDL and political conditions,
given that the entire watershed of the river could not be evaluated. Second, we were not
able to evaluate the variability of physicochemical water quality parameters (discharge,
fecal coliform, and chlorophyll-a) that were not selected in this study. Third, we could
not investigate unidentified pollution sources in the target watershed. Therefore, in the
future, a highly reliable water quality assessment of the target watershed should consider
the limitations of this study and will require additional research. Finally, there are many
acronyms in this study. Therefore, all acronyms and their meanings were summarized in
Table S3.

4. Conclusions

In this study, we combined MSA (such as HCA and PCA/FA) and the APCS-MLR
model to identify spatiotemporal variability of water quality in the IRW, distinguish poten-
tial pollution sources, and apportion the pollution sources. To assess the water quality of
the IRW, we selected seven monitoring sites (IJ-A, HT-A, YP-A, SC-A, HT-B, MS-A, and IJ-B)
and analyzed 12 water quality parameters (WT, pH, EC, DO, BOD, COD, SS, TN, NH3-N,
NO3-N, TP, and PO4-P). At the seven water quality monitoring sites, while reflecting the
impacts of anthropogenic activities and different land use types, significant changes in
physicochemical water quality parameters were observed. In particular, at the SC-A site,
parameters such as WT, EC, BOD, COD, TN, NH3-N, and TP indicated high concentrations;
this can be interpreted as meaning that the site was considerably impacted by textile and
leather factories around the watershed. Spatial HCA classified the seven monitoring sites
into two clusters, corresponding to LP and HP regions, in which there was a statistically
significant correlation (p < 0.01) between nitrogenous (TN and NO3-N, r = 0.93) and organic
matter (BOD and COD, r = 0.79) variables, respectively. The PCA/FA results showed that
LP and HP regions were significantly affected by different pollution factors. The LP region
was mainly affected by nonpoint source pollution, mainly from agricultural activities;
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whereas, in the HP region, a large amount of industrial wastewater and domestic sewage
flowed into the river, and organic matters and nutrient salts accumulated in the surface
water. The APCS-MLR model revealed that nonpoint source pollution from agricultural
activities (26.5%) was the crucial pollution source in the LP region, whereas point sources
from domestic sewage and industrial wastewater (31.4%) were the main contributors in the
HP region.

This study showed that MST and the APCS-MLR model are useful tools for under-
standing spatiotemporal water quality changes and identifying and apportioning potential
pollution sources, for efficient water quality management in the IRW. Currently, TPLMS has
been implemented in seven watersheds in the IRW to maintain target water quality (BOD
and TP); however, if appropriate water quality management policies are not enacted for the
watershed, water quality will inevitably deteriorate in the future. Therefore, the priorities
in the LP region should be as follows: (1) reduction of fertilizer in rural areas, control of pes-
ticide uses, and optimization for livestock breeding management; (2) reduction of nonpoint
source pollution, i.e., pilot projects should be implemented for rainwater runoff treatment
facilities and rainwater pumping station reservoirs. In the HP region, there should be
(1) reinforcement of effluent operation standards of wastewater treatment facilities, and
application of advanced wastewater reduction treatment technology; (2) TPLMS imple-
mentation reviews for tributaries, in order to control pollutant discharges to tributaries;
(3) improvement of individual treatment capacities of domestic sewage. This study can
assist water quality managers and policymakers to comprehensively understand the main
pollution sources in terms of spatial conditions, and to determine the priorities for water
quality improvement regarding water pollution control and sustainable development in
Imjin River, South Korea.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/w14050793/s1: Table S1: Factors and calculations considered
for the APCS-MLR model, Table S2: Mean and standard deviation (SD) of water quality parameters
during different months in the Imjin River Watershed, South Korea, Table S3: Summary of all
acronyms in this study.
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