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Abstract: The need for accurate estimates of reference crop evapotranspiration (ETo) is important in
irrigation planning and design, irrigation scheduling, reservoir management among other applica-
tions. ETo can be accurately determined using the internationally accepted FAO Penman–Monteith
(FAO-56 PM) equation. However, this requires numerous observed data, including solar radiation, air
temperature, relative humidity, and wind speed, which in most cases are unavailable, particularly in
developing countries such as the Philippines. This study developed models based on Support Vector
Machines (SVMs) and Extreme Learning Machines (ELMs) for the estimation of daily ETo using
different input combinations of meteorological data in Region IV-A, Philippines. The performance of
machine learning models was compared with the different established alternative empirical models
for ETo. The results show that the SVM and ELM models, with at least Tmax, Tmin, and Rs as inputs,
provide the best daily ETo estimates. The accuracy of machine learning models was also found to be
superior compared to the empirical models given with same input requirements. In general, SVM
and ELM models showed similar modeling performance, although the former showed lower run
time than the latter.

Keywords: reference crop evapotranspiration; machine learning; ELM; SVM

1. Introduction

The simultaneous occurrence of, and the difficulty of separately measuring, evapora-
tion and transpirations gives rise to the concept of evapotranspiration [1]. Both evaporation
and transpiration are influenced by factors such as weather parameters, crop characteristics,
management, and environmental factors. Due to the complexity of the concept, distinctions
are made among reference crop evapotranspiration (ETo), crop evapotranspiration under
standard conditions (ETc) and crop evapotranspiration under non-standard conditions
(ETc-adj). The reference crop evapotranspiration, ETo, which is the focus of this study, refers
to the evapotranspiration rate from a reference surface, defined as a hypothetical grass
reference crop with a height of 0.12 m, a fixed surface resistance of 70 s/m, and an albedo
of 0.23, which is actively growing, well-watered, and completely shades the ground [1].
The concept of ETo was introduced to study the evaporative demand of the atmosphere
independently of crop type, crop development, and management practices.

ETo is one of the most important agrometeorological inputs in the estimation of
the irrigation water requirements needed for irrigation system planning, design, and
operation [2–4]. Based on the Philippine Agricultural Engineering Standards [3] on the
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Determination of Irrigation Water Requirements, the calculation of ETo is a preliminary step in
estimating the crop water requirements for the development of climate- and site-specific
cropping calendars. Knowledge of ETo is also needed in the development of hydrologic
models for streamflow estimation and flood inundation [5–7], reservoir design and opera-
tion [8,9], climate change studies [10–12], and drought severity analyses [13,14]. Hence, the
importance of accurate methods for estimating ETo can never be overemphasized.

In general, ETo can be directly measured using the simple water balance derived from
equipment such as a lysimeter. However, this method is extensive, labor-intensive, and
time-consuming for practical applications [15]. In most cases, ETo is determined using
the internationally accepted FAO Penman–Monteith (FAO-56 PM) equation [1]. Since
FAO-56 PM requires numerous items of measured meteorological data that are mostly
unavailable in developing countries such as the Philippines, empirical equations with
reduced data requirements are usually utilized [16]. These equations are usually based on
individual or combinations of available meteorological data, such as the temperature-based
Hargreaves–Samani [17] equation, the temperature–radiation-based Makkink [18] and
Priestley–Taylor [19] equations, the temperature–radiation and wind speed-based Matt–
Shuttleworth [20] equation, and the temperature–radiation and relative humidity-based
Turc [21] equation. Although these empirical models are simple in terms of data inputs and
computational procedures, their usage is observed to be site-specific, or variable according
to the climatic conditions of the places where they are developed, and in some cases, they
provide unsatisfactory results [22–24]. Furthermore, these simplified empirical models are
mostly suited to estimating ETo on a weekly or monthly basis, but are less suitable for daily
ETo estimation [25].

Advances in computation have led to the introduction of machine learning algorithms
in accurate daily ETo estimation. The term machine learning was coined and first defined
in a study on the International Business Machines (IBM) corporation as a field of study that
gives computers the ability to learn without being explicitly programmed [26]. The popular-
ity of machine learning in recent years can be attributed to the incorporation of probability
and statistics into the algorithm that deals with traditional fixed rule-based models, which
require manual input [27]. Machine learning models, in general, are black boxes in nature,
but several studies conducted have shown their consistent reliability and accuracy in ETo
estimation applications compared to other established empirical models [15,22,23,28–30].
Among these machine learning models, the Support Vector Machine (SVM) and Extreme
Learning Machine (ELM) have generally exhibited better prediction accuracy in ETo esti-
mations in various studies worldwide, such as in India [31], China [32,33], and Spain [34].
The performance of machine learning models relies on the proper estimation of hyperpa-
rameters [35], and cross-validations and resampling, along with grid search, are good ways
to simultaneously optimize these hyperparameters [36,37]. The application of grid searches
in machine learning model development for Eto estimation can be observed in the works
of Bellido-Jiménez et al. [34], Seifi and Riahi [24], Patil and Deka [38], and Wen et al. [39].

Data-driven agricultural techniques, known collectively as precision agriculture, offer
a potential way to increase global food production because of their more efficient and
contextually appropriate agriculture management actions [40–42]. The recent expansion of
data-driven farming is due to advances in three key areas: (1) data generation from sources
such as field sensors and satellites, (2) data processing and predictive analytics using big data
stacks, machine learning and deep learning models, and (3) human–computer interactions
that create and improve the usability of insights and models [43]. Data-driven agricultural
technologies mostly require the monitoring of accurate meteorological variables such as
ETo [44]. For the past few decades, there has been an emerging trend of using machine
learning models for the estimation of important variables, especially in areas where these
data are insufficient, unavailable, or inaccessible [45].

To date, no study exists in the published peer-reviewed literature that explores the
application of SVM and ELM models in the estimation of daily ETo under the conditions
of the Philippines. The general objective of this study is to estimate daily ETo using SVM
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and ELM, with different input combinations of meteorological data collected at weather
stations in Region IV-A, Philippines. Specifically, this study seeks to compare the accuracy
of daily ETo estimation in the region (1) across the studied empirical models, (2) across
machine learning models, i.e., across input combinations and between SVM and ELM, and
(3) between the empirical models and machine learning models.

2. Materials and Methods
2.1. Study Area

Figure 1 shows the weather stations in Region IV-A, a region in the Philippines
considered in this study. Twenty years of observed daily data on precipitation (P, mm), air
temperature (Tmax and Tmin, ◦C), dew point temperature (Tdew, ◦C), relative humidity (RH,
%) and wind speed (Uz, m/s) were acquired from seven DOST-PAGASA weather stations
in Region IV-A through the agency’s online data acquisition platform ClimaDatPh. The
requested data underwent a series of reliable quality control procedures and subsequent
archiving, as described in the paper of Villafuerte et al. [46]. Based on the Modified Corona
Climate Classification of the Philippines, the region can be divided into three zones: Type
I, with a pronounced dry season from November to April, and wet during the rest of the
year, which includes the stations in UPLB, Sangley Point, and Ambulong; Type III, with a
relatively dry season from November to April, and wet during the rest of the year, which
includes the station in Tanay; and lastly, Type IV is characterized with more or less even
rainfall throughout the year, and it includes the stations in Infanta, Tayabas and Alabat.
Table 1 shows the mean annual values of meteorological data per station.

Solar climatic variables in the region are scarce. Out of seven DOST-PAGASA stations
in the region, only the UPLB station has available ground-based solar radiation data (Rs,
MJ/m2/day), with temporal records from 1977 to 2011 (35 years). For this reason, daily
Rs data from the Goddard Earth Observing System (GEOS) reanalysis datasets that can
be accessed through the National Aeronautics and Space Administration Prediction of
Worldwide Energy Resource (NASA POWER) website were used, given their relative
consistency with the Rs ground observations in the region [47]. Numerous publications
have also proven the consistency of NASA-POWER Rs values with the ground observations
in many areas around the world [48–51].
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Table 1. Temporal coverage of records and annual mean values of meteorological data of seven
stations in Region IV-A.

Province Station MASL
Meterological Variable Temporal Range

P Tmax Tmin Tdew RH Uz Devt Eval

Laguna UPLB 25 2069 31.91 25.54 24.58 80.53 2.8 1995–2009 2015–2019

Cavite
SangleyPoint 3 2089 31.83 23.12 23.84 81.63 0.94 1984–1998 1999–2003

Infanta 7 4171 30.58 23.63 23.79 84.35 2.01 1989–2003 2010–2014

Quezon
Alabat 5 3117 30.81 23.12 24.05 84.03 2.91 1992–2006 2012–2016

Tayabas 158 3113 30.14 23.02 23.24 85.29 1.87 1994–2008 2015–2019

Batangas Ambulong 11 1845 31.89 23.32 23.39 79.94 1.79 1987–2001 2015–2019

Rizal Tanay 650 3014 30.10 23.23 20.92 89.47 3.37 2000–2014 2015–2019

Units: MASL (meters above sea level)—m, P (precipitation)—mm/year, T (temperature)—◦C, RH (relative
humidity)—%, Uz (wind Speed)—m/s. Notes: Devt—model development, Eval—model evaluation.

The datasets of each station were partitioned into two categories: (1) model development
set for the development of machine learning models, and (2) model evaluation set for out-
sampled validation of the calibrated and developed models. A continuous 15 years daily
record (n~5475) was used as the model development set, and a 5 years daily record (n~1825)
as the model evaluation set (Table 1).

2.2. Empirical Models for ETo Estimation

The daily ETo (mm/day), estimated using FAO-56 PM (Equation (1)), was used as the
standard and reference value for the development and evaluation of the studied models.

ETo =
0.408 ∆ (Rn − G) + γ

900
T + 273

U2(es − ea)

∆ + γ(1 + 0.34 U2)
(1)

in which Rn is the net solar radiation (MJ/m2-day), G is the soil heat flux density (MJ/m2/day),
T is the mean air temperature (◦C), U2 is the wind speed at 2 m height (m/s) converted
from the wind speed measurement at 10 m height (U10) using a logarithmic wind speed
profile [1], es is the saturation vapor pressure (kPA), ea is the actual vapor pressure (kPa),
∆ is the slope of the vapor pressure curve (kPa/◦C), and γ is the psychometric constant
(kPa/◦C). The detailed procedures and the theory for calculation are discussed in the FAO
56 paper [1].

Five alternative empirical equations that have respective meteorological data inputs,
as shown in Table 2, were also employed to compute ETo per station. Detailed descriptions
of each of these empirical models can be found in the paper of Guo et al. [52].

Table 2. Empirical equations for reference evapotranspiration estimation.

ETo Model Equation

Temperature-based (T-based)

Hargreaves–Samani [17] ETo = 0.0135CHS
Ra
λ (∆T) 0.5 ∗ (Tave + 17.8)

Temperature and Solar Radiation-based (TS-based)

Makkink [18] ETo = 0.061
(

∆
∆+γ

Rs
2.45

)
− 0.12

Priestley–Taylor [19] ETo = αPT

(
∆

∆+γ
Ra
λ −

G
λ

)
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Table 2. Cont.

ETo Model Equation

Temperature, Solar Radiation and Wind Speed-based (TSW-based)

Matt–Shuttleworth [20] ETo = 1
λ

∆Ra+γ
ρacau2(VPD2)

r50
c

(
VPD50
VPD2

)
∆+γ

(
1+ (rs )cu2

r50
c

)
Temperature, Solar Radiation and Relative Humidity-based (TSR-based)

Turc [21] ETo = 0.013(23.88RS + 50)
(

Tave
Tave+15

)
+
(

1 + 50−RH
70

)
2.3. Machine Learning Models for ETo Estimation

Figure 2 shows the general methodology of the development of SVM and ELM for the
estimation of daily ETo using different available meteorological data as inputs.
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Figure 2. Methodology framework for developing SVM and ELM models for the estimation of daily
ETo. Image Sources: Schematic Diagram of SVM (Rhys, 2020), ELM (van Veen and Leijnen, 2019),
and grid search (Pilario et al., 2020).

2.3.1. Support Vector Machine

The SVM algorithm developed by Vapnik [53] is a supervised machine learning model
for pattern recognition and data analysis, and it has been widely employed for regression
and forecasting in the fields of agriculture, hydrology, meteorology, and environmental
studies. The SVM model estimates the regression based on a series of kernel functions,
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which can convert the original, lower-dimensional input data to a higher dimensional
feature space implicitly [22,23]. SVM works by transforming the input vector into a feature
space and maps the relationship with the output vector. In general, the SVM can be
expressed mathematically as:

Y = wϕ(X) + b (2)

in which Y is the output vector, w is the weight vector, ϕ is the kernel function, X is the
input vector, and b is the bias term. The weight factor w and bias term b are estimated by
minimizing the loss function as:

0.5 ‖ w ‖2 + C
1
2

n

∑
i=1

Lε

(
ypredicted, yactual

)
(3)

Lε

(
ypredicted, yactual

)
= f (x) =


0, i f

∣∣∣ypredicted − yactual

∣∣∣ < ε∣∣∣ypredicted − yactual

∣∣∣− ε, otherwise
(4)

where the term 0.5 ‖ w ‖2 is the regularization term, C is the penalty parameter, Lε is the
ε-insensitive error function, and ε is the margin of SVM.

The transformation of the input vector is dictated by the kernel function, which adds
an extra dimension to the SVM algorithm such that a linear hyperplane can separate the
classes into new and higher-dimensional space [54]. There are different kernel functions that
can be applied for the transformation of data suitable for finding linear decision boundaries
for different non-linearly separable data sets. The commonly used Radial Basis Function
(RBF) non-linear kernel function was used in this study due to its better performance in
ETo and estimations compared with other kernel functions [22,29], which is expressed as:

K (xn, xi) = exp
(
−γ ‖ xn − xi ‖ 2 + C

)
(5)

where xn and xi are the nth and ith terms of the input vector, while γ and C are the
hyperparameters in the SVM- RDF model.

In this study, the hyperparameters C and γ were optimized simultaneously using a
grid search method with C ranging from 0.1 to 100 and ε ranging from 0.001 to 10, while a
default value of 0.1 was used for the parameter ε. The grid search eliminates the trial-and-
error method in tuning hyperparameters and has been proven to significantly improve the
model’s accuracy [36,55].

2.3.2. Extreme Learning Machine

The ELM model proposed by Huang et al. [56] is an extended single hidden layer
feedforward (FF) neural network wherein the weights and biases of the hidden layer are
randomly generated without the need for tuning iteratively, while the output parameters
are analytically calculated. ELM has a more favorable general capability with faster learning
speed; it does not require too much human intervention and can run much faster than the
conventional algorithms. ELM is an efficient algorithm with numerous advantages such as
ease of use, quick learning speed, higher performance, and suitability for many nonlinear
activation and kernel functions [29,57,58]. The basic theory of ELM can be given as follows:

For M arbitrary distinct inputs (xi, yi) with ∈ R and ∈ R, a standard single layer FF
with N hidden nodes and the activation function f can be modeled as the following sum:

N
∑
i=1

βi f
(
wixj + bi

)
, j ∈ {1, 2, 3, . . . , M} (6)
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where wi is the input weights to the ith neuron in the hidden layer, bi are the biases, and βi
is the output weights. In a case wherein a single-layer FF perfectly approximates the data,
the relation is

N
∑
i=1

βi f
(
wixj + bi

)
= yj, j ∈ {1, 2, 3, . . . , M} (7)

which can more efficiently be written as

Hβi = Y (8)

where

H =

 f (w1x1 + b1) · · · f (wnx1 + bN)
...

. . .
...

f (w1xM + b1) · · · f (wN xM + bN)

 (9)

β = (β1 . . . βN)
T (10)

Y = (y1 . . . yM)T (11)

The hidden layer output matrix H can be computed using the randomly generated first
layer of the ELM and the training inputs, while the output weight β can be solved by finding
the least square solution to the linear system defined in the hidden layer output matrix H.
This solution is given by β = HfY, where Hf is the Moore–Penrose generalized inverse of
the matrix H. The comprehensive derivation and description of the ELM algorithm can be
found in the original paper of Huang et al. [56].

The kind of activation function (sigmoid, linear, or tansig) and the number of neurons
in the hidden layer (ranging from 5 to 200 with an interval equal to 5) are the hyperparame-
ters that were simultaneously tuned when using the grid search method.

2.3.3. Machine Learning Model Development

As shown in Table 3, eight different input combinations were considered to evaluate
the effects of different meteorological variables on the estimation of daily ETo using machine
learning models. Eight combinations of different input variables were considered for the
SVM and ELM models. Model 1 has the same input combinations as the FAO-56 PM,
namely, Tmax, Tmin, RH, Rs and Uz. Model 2 has the same input combination as Model 1,
except that it uses extraterrestrial solar radiation (Ra, MJ/m2-day) instead of Rs. Model 3
does not have any solar radiation variable, and uses only Tmax, Tmin, RH and Uz. The input
variables considered in Models 4, 5, and 6 are set to be analogous with the inputs of the
TSR-, TSW-, and TS-based empirical equations, respectively. Model 7 only considers Tmax,
Tmin, and RH. Finally, Model 8 only handles air temperature data, comparably with the
T-based Hargreaves–Samani equation.

Table 3. The input combinations of meteorological variables used for the development of the SVM
and ELM models for ETo estimation.

Input Combinations
Machine Learning Models

SVM ELM

Tmax, Tmin, RH, Rs, Uz SVM ETo-Model 1 ELM ETo-Model 1
Tmax, Tmin, RH, Ra, Uz SVM ETo-Model 2 ELM ETo-Model 2

Tmax, Tmin, RH, Uz SVM ETo-Model 3 ELM ETo-Model 3
Tmax, Tmin, RH, Rs SVM ETo-Model 4 ELM ETo-Model 4
Tmax, Tmin, Rs, Uz SVM ETo-Model 5 ELM ETo-Model 5

Tmax, Tmin, Rs SVM ETo-Model 6 ELM ETo-Model 6
Tmax, Tmin, RH SVM ETo-Model 7 ELM ETo-Model 7

Tmax, Tmin SVM ETo-Model 8 ELM ETo-Model 8
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In developing both SVM and ELM models, the model development set was further
divided into a training subset and a validation subset for tuning the hyperparameters using a
growing window-forward cross validation (gwFV) scheme. The gwFV is the recommended
cross-validation scheme for machine learning models using time series data to preserve
the temporal dependencies of the data, and provides almost unbiased estimates of the
true error [59–61]. Four-folds gwFW were used for cross-validating the ETo model, a fixed
window of 3 years (n~1095).

Before putting the input and output variables into the machine learning models, raw
meteorological data were standardized to avoid convergence problems using the equation:

Xn =
Xi − µ

σ
(12)

where Xn is the standardized value, Xi is the measured value, µ is the mean, and σ is
the standard deviation. To reflect the real use of the models, the mean (µ) and standard
deviation (σ) were computed using only the data of the model development set.

2.4. Evaluation of Model Performance
2.4.1. Model’s Accuracy

The accuracy and performance of both the empirical and machine learning models
for ETo estimation were evaluated and compared using the statistical indicators shown in
Table 4. To compare or rank the studied model considering all statistical indicators, the
Global Performance Index (GPI) was computed:

GPIi =
j

∑
j=1

αj
(
ỹj − yij

)
(13)

where ỹj is the median of the scaled values of indicator j, yij is the scaled value of indi-
cator j for model I, and αj equals −1 for indicators R2, d and NSE, and equals 1 for the
other indicator.

Table 4. Statistical indicators used for the performance evaluation of machine learning and
empirical models.

Statistical
Indicator Formula Decision Rule

Coefficient of Determination R2 = ∑n
i=1(Xi−Yi)

2

∑n
i=1(Xi−X)

2 Higher values are preferred

Root Mean Square Error RRMSE =

√
∑n

i=1(Yi−Xi)
2

n

Lower values are preferred
Shows performance of short-term models

Relative RMSE RRMSE =

(√
∑n

i=1(Yi−Xi)
2

Xi

)
∗ 100

Excellent: RRMSE <10%
Satisfactory: 10% ≤ RRMSE <20%
Acceptable: 20% ≤ RRMSE <30%
Unsatisfactory: RRMSE ≥ 30

Percent Bias %Bias = 1
n

n
∑

i=1

Xi−Yi
Xi
∗ 100 Closer to 0 are preferred

Mean Error ME = ∑n
i=1(Yi−Xi)

n
Closer to 0 are preferred
Shows performance of long-term models

Mean Absolute
Error MAE = ∑n

i=1|Yi−Xi|
n Lower values are preferred

d Willmott d = 1−
(

∑n
i=1(Yi−Xi)

2

∑n
i=1(|Yi−X|+|Xi−X|)

)
Higher values are preferred
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Table 4. Cont.

Statistical
Indicator Formula Decision Rule

Nash–Sutcliffe
efficiency

NSE = 1−
(

∑n
i=1(Yi−Xi)

2

∑n
i=1(Xi−X)

2

) Excellent: 0.8 ≤ NSE < 1
Satisfactory: 0.65 ≤ NSE < 0.8
Acceptable: 0.5 ≤ NSE < 0.65
Unsatisfactory: NSE < 0.5

MAPE MAPE = 1
n

n
∑

i=1

∣∣∣Xi−Yi
Xi

∣∣∣ Lower values are preferred

Where n is the number of observations, Xi represents the FAO-56 ETo value, X is the mean of the FAO-56 ETo
value, Yi is the estimated ETo value, and Y is the mean of the estimated ETo value.

The concept of GPI indicates that if the scaled value of the indicator is far lower than
the median of the scaled values, the model is the most accurate compared to other models,
while if the scaled value of indicator is far higher than the median, the model is less accurate
compared to the other models [62]. A higher value of GPI results in a higher accuracy of
the model.

2.4.2. Machine Learning Model’s Run Time

The run time or the time used for the computation of the machine learning models
across models and between SVM and ELM were also compared in this study using a single
sample with 4-fold gwFV cross-validation.

3. Results and Discussions

Tables 5–11 show the results of statistical indicators for all studied models given
by the stations at UPLB, Sangley Point, Infanta, Alabat, Tayabas, Ambulong, and Tanay.
Additionally, the computed GPI values per model and stations are presented in Table 12.

3.1. Comparison across Empirical Models

Based on the different statistical indicators and the ranking of the computed GPI, the
TSR-based Turc equation performs the best among the studied empirical models in the
estimation of daily ETo for all stations, except in Tanay, where it ranked second after the
Makkink equation. On average, the estimated daily ETo of the Turc equation is only 6.0 to
15.2% divergent from the standard FAO-56 PM daily ETo. This fits with an R2 of 0.93–0.97,
an RMSE of 0.28–0.46 mm/day, an RRMSE of 7.5–15.1%, an MAE of 0.22–0.42 mm/day,
and an NSE of 0.79–0.94. The Turc equation is best used in places where there are no wind
speed data available. It is considered as one of the most accurate empirical models used to
estimate ETo under humid conditions [29]. Nevertheless, the T-based Hargreaves equation
gives the lowest accuracy across stations, with estimates that are 26.9–48.7% divergent from
the standard FAO-56 PM ETo, with an R2 of 0.19–0.35, an RMSE of 1.02–1.25 mm/day, an
RRMSE of 25.3–40.0%, an MAE of 0.77–0.098 mm/day, and an NSE of −0.46–0.27.

The ranking of the investigated empirical models according to GPI is the same for
the UPLB, Infanta, Alabat and Tayabas stations, i.e., Turc > Matt–Shuttleworth > Makkink
> Priestley–Taylor > Hargreaves–Samani. The ranking shows that incorporating relative
humidity (TSR-based) and wind speed (TSW-based), along with solar radiation and air
temperature, could improve the estimates of empirical models.
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Table 5. Statistical values of empirical and machine learning models in estimating daily ETo at UPLB Station.

MODEL
Model Development Model Evaluation

R2 RMSE RRMSE %Bias ME MAE d NSE MAPE R2 RMSE RRMSE %Bias ME MAE d NSE MAPE
Hargreaves-Samani 0.28 1.19 30.318 −26.7 0.46 0.93 0.62 0.15 35.335 0.28 1.06 26.236 −17 0.3 0.86 0.61 0.2 27.327
Makkink 0.95 0.67 17.036 17.6 −0.61 0.61 0.94 0.73 17.677 0.97 0.51 12.684 12.6 −0.47 0.47 0.95 0.81 12.664
Priestley-Taylor 0.95 0.79 20.228 −16.5 0.67 0.7 0.93 0.62 17.879 0.98 0.97 23.918 −21.9 0.9 0.9 0.88 0.34 22.171
Matt-Shuttleworth 0.93 0.61 15.636 13 −0.5 0.5 0.94 0.77 13.05 0.96 0.38 9.44 7.4 −0.3 0.3 0.97 0.9 7.476
Turc 0.95 0.32 8.151 −3.4 0.14 0.25 0.99 0.94 7.162 0.97 0.36 8.779 −7.5 0.29 0.31 0.98 0.91 8.313
SVM ETo Model 1 0.988 0.122 3.074 0 −0.009 0.089 0.998 0.991 2.704 0.985 0.117 2.861 −1.9 −0.018 0.088 0.998 0.99 4.603
SVM ETo Model 2 0.711 0.679 17.071 −4.9 0.03 0.524 0.916 0.723 15.868 0.664 0.749 18.384 5 −0.471 0.611 0.882 0.602 19.833
SVM ETo Model 3 0.691 0.702 17.653 −5.1 0.028 0.547 0.909 0.703 16.625 0.663 0.757 18.571 9.9 −0.485 0.618 0.88 0.594 15.388
SVM ETo Model 4 0.968 0.215 5.407 0 −0.013 0.153 0.993 0.972 4.445 0.97 0.167 4.089 −4.1 0.064 0.125 0.995 0.98 5.795
SVM ETo Model 5 0.985 0.135 3.393 0 −0.01 0.097 0.997 0.989 2.962 0.983 0.129 3.157 −1.9 −0.016 0.093 0.997 0.988 4.633
SVM ETo Model 6 0.959 0.238 5.981 0.2 −0.022 0.169 0.991 0.966 4.914 0.963 0.186 4.55 −4.3 0.084 0.145 0.994 0.976 5.908
SVM ETo Model 7 0.611 0.784 19.695 −5.5 0.012 0.62 0.879 0.631 18.475 0.647 0.724 17.753 1.5 −0.365 0.586 0.886 0.629 19.89
SVM ETo Model 8 0.584 0.81 20.35 −5.9 0.007 0.641 0.866 0.606 19.272 0.639 0.716 17.57 −1.3 −0.315 0.57 0.886 0.636 20.851
ELM ETo Model 1 0.99 0.121 3.032 −0.2 0 0.086 0.998 0.991 2.616 0.99 0.114 2.787 −1 0 0.082 0.998 0.991 3.2
ELM ETo Model 2 0.695 0.689 17.311 −4.3 0 0.537 0.911 0.715 16.194 0.654 0.771 18.917 10.9 −0.497 0.629 0.875 0.578 15.482
ELM ETo Model 3 0.685 0.701 17.604 −4.5 0 0.549 0.908 0.705 16.582 0.65 0.778 19.085 8.6 −0.503 0.636 0.873 0.571 17.469
ELM ETo Model 4 0.969 0.217 5.461 −0.5 0 0.158 0.993 0.972 4.658 0.966 0.179 4.392 −6.6 0.075 0.129 0.994 0.977 8.119
ELM ETo Model 5 0.988 0.135 3.4 −0.3 0 0.094 0.997 0.989 2.936 0.985 0.144 3.528 −5.2 0.002 0.089 0.996 0.985 7.624
ELM ETo Model 6 0.963 0.237 5.96 −0.7 0 0.173 0.991 0.966 5.173 0.958 0.198 4.862 −6.6 0.105 0.155 0.993 0.972 7.912
ELM ETo Model 7 0.615 0.777 19.536 −5.3 0 0.615 0.879 0.637 18.327 0.648 0.724 17.764 2.5 −0.37 0.586 0.886 0.628 18.956
ELM ETo Model 8 0.578 0.815 20.47 −5.6 −0.003 0.646 0.864 0.601 19.409 0.64 0.717 17.575 1.9 −0.318 0.575 0.886 0.636 17.993

Notes: (1) Best statistical indicators among each category (Empirical Model, SVM, and ELM) are marked in bold green, while least accurate are marked in bold red.
(2) R2, d and NSE are dimensionless; RRMSE, %Bias and MAPE are in percent; and RMSE, ME, and MAE are in mm/day.
(3) Highlight colors of models indicate the input or independent variables considered, i.e., f (T) f (T, Rs) f (T, Rs, Uz) f (T, RH, Rs) f (T, RH, Rs, Uz)
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Table 6. Statistical values of empirical and machine learning models used for estimating daily ETo at Sangley Point Station.

MODEL
Model Development Model Evaluation

R2 RMSE RRMSE %Bias ME MAE d NSE MAPE R2 RMSE RRMSE %Bias ME MAE d NSE MAPE
Hargreaves-Samani 0.19 1.25 28.627 −21.4 0.16 0.93 0.54 0.17 34.921 0.25 1.11 25.19 −15.6 0.18 0.84 0.61 0.22 27.561
Makkink 0.94 0.88 20.185 20.3 −0.81 0.81 0.89 0.59 20.292 0.93 1.08 24.46 24.4 −1.02 1.02 0.83 0.27 24.397
Priestley-Taylor 0.94 0.69 15.813 −13.2 0.56 0.61 0.95 0.75 14.457 0.91 0.52 11.674 −6.8 0.31 0.42 0.96 0.83 9.858
Matt-Shuttleworth 0.89 0.99 22.831 19.6 −0.86 0.86 0.86 0.47 19.597 0.86 1.16 26.205 23.7 −1.05 1.05 0.79 0.16 23.68
Turc 0.95 0.33 7.496 0.4 −0.04 0.24 0.98 0.94 6.078 0.93 0.43 9.693 5.5 −0.25 0.31 0.97 0.89 7.098
SVM ETo Model 1 0.99 0.086 1.966 0.4 −0.025 0.075 0.999 0.996 1.93 0.988 0.088 1.987 0.6 −0.031 0.074 0.999 0.995 1.805
SVM ETo Model 2 0.846 0.539 12.383 −4.4 0.056 0.388 0.957 0.845 12.175 0.811 0.598 13.509 −11.6 0.378 0.444 0.94 0.777 13.163
SVM ETo Model 3 0.815 0.581 13.36 −4.2 0.038 0.445 0.949 0.82 13.485 0.777 0.655 14.802 −12.3 0.399 0.513 0.927 0.732 14.775
SVM ETo Model 4 0.985 0.158 3.641 −0.1 −0.004 0.117 0.997 0.987 2.956 0.963 0.22 4.978 −1.1 0.045 0.164 0.993 0.97 3.907
SVM ETo Model 5 0.983 0.164 3.773 −0.1 −0.005 0.119 0.996 0.986 3.27 0.926 0.297 6.711 3.1 −0.142 0.18 0.986 0.945 4.204
SVM ETo Model 6 0.961 0.241 5.534 0.1 −0.023 0.173 0.992 0.969 4.399 0.905 0.349 7.88 2.9 −0.14 0.239 0.98 0.924 5.434
SVM ETo Model 7 0.797 0.606 13.935 −4.2 0.033 0.471 0.944 0.804 13.93 0.743 0.743 16.802 −14.3 0.496 0.599 0.912 0.655 16.506
SVM ETo Model 8 0.668 0.773 17.782 −7.5 0.041 0.594 0.896 0.681 18.826 0.664 0.75 16.958 −8.1 0.181 0.588 0.897 0.649 16.532
ELM ETo Model 1 0.997 0.066 1.523 0 0 0.051 0.999 0.998 1.335 0.993 0.08 1.809 0.2 −0.013 0.059 0.999 0.996 1.431
ELM ETo Model 2 0.835 0.535 12.307 −3.2 0 0.395 0.957 0.847 12.209 0.822 0.567 12.826 −10.7 0.341 0.425 0.946 0.799 12.608
ELM ETo Model 3 0.809 0.578 13.277 −3.5 0 0.447 0.949 0.822 13.453 0.772 0.65 14.701 −11.9 0.368 0.506 0.926 0.736 14.687
ELM ETo Model 4 0.986 0.157 3.614 −0.2 0 0.117 0.997 0.987 2.954 0.961 0.237 5.362 −0.8 0.029 0.168 0.991 0.965 3.951
ELM ETo Model 5 0.985 0.163 3.744 −0.3 0 0.119 0.996 0.986 3.27 0.938 0.263 5.945 2.8 −0.131 0.176 0.989 0.957 4.154
ELM ETo Model 6 0.967 0.239 5.491 −0.4 0 0.176 0.992 0.97 4.526 0.907 0.34 7.689 2.9 −0.143 0.234 0.981 0.928 5.371
ELM ETo Model 7 0.789 0.608 13.979 −3.7 0 0.475 0.943 0.803 14.058 0.72 0.758 17.125 −13.8 0.462 0.594 0.907 0.642 16.487
ELM ETo Model 8 0.665 0.769 17.677 −6.3 0 0.595 0.899 0.685 18.567 0.532 0.888 20.063 −5.6 0.05 0.632 0.855 0.508 17.101

Notes: (1) Best statistical indicators among each category (Empirical Model, SVM, and ELM) are marked in bold green, while least accurate are marked in bold red.
(2) R2, d and NSE are dimensionless; RRMSE, %Bias and MAPE are in percent; and RMSE, ME, and MAE are in mm/day.
(3) Highlight colors of models indicate the input or independent variables considered, i.e., f (T) f (T, Rs) f (T, Rs, Uz) f (T, RH, Rs) f (T, RH, Rs, Uz)



Water 2022, 14, 754 12 of 25

Table 7. Statistical values of empirical and machine learning models used for estimating daily ETo at Infanta Station.

MODEL
Model Development Model Evaluation

R2 RMSE RRMSE %Bias ME MAE d NSE MAPE R2 RMSE RRMSE %Bias ME MAE d NSE MAPE
Hargreaves-Samani 0.29 1.24 35.571 −39.8 0.87 0.93 0.59 −0.41 40.923 0.36 1.21 34.27 −36.8 0.84 0.93 0.61 −0.25 38.645
Makkink 0.94 0.58 16.704 16.9 −0.52 0.52 0.93 0.69 16.892 0.95 0.57 16.296 15.7 −0.52 0.52 0.93 0.72 15.746
Priestley-Taylor 0.96 0.81 23.327 −20.3 0.72 0.75 0.89 0.39 21.59 0.96 0.83 23.558 −21.7 0.76 0.77 0.89 0.41 22.142
Matt-Shuttleworth 0.93 0.42 12.057 10 −0.32 0.32 0.96 0.84 9.974 0.94 0.42 11.955 9.8 −0.34 0.34 0.96 0.85 9.832
Turc 0.94 0.33 9.462 −5.9 0.2 0.28 0.98 0.9 9.151 0.95 0.32 9.179 −6.8 0.21 0.28 0.98 0.91 8.954
SVM ETo Model 1 0.989 0.07 2.004 0.3 −0.019 0.061 0.999 0.996 1.914 0.988 0.07 1.999 0.5 −0.024 0.061 0.999 0.996 1.859
SVM ETo Model 2 0.682 0.593 16.99 −6.7 0.076 0.426 0.901 0.679 15.727 0.629 0.642 18.211 −3.8 −0.005 0.479 0.889 0.647 15.834
SVM ETo Model 3 0.633 0.63 18.054 −6.9 0.061 0.476 0.883 0.637 17.333 0.616 0.651 18.461 −3.7 −0.016 0.507 0.881 0.637 16.563
SVM ETo Model 4 0.985 0.112 3.197 0 −0.009 0.08 0.997 0.989 2.656 0.981 0.114 3.23 0.4 −0.023 0.081 0.997 0.989 2.526
SVM ETo Model 5 0.983 0.128 3.656 −0.1 −0.005 0.085 0.996 0.985 3.082 0.976 0.148 4.198 −1.4 0.031 0.102 0.995 0.981 3.698
SVM ETo Model 6 0.967 0.172 4.941 0.4 −0.022 0.107 0.993 0.973 3.799 0.97 0.165 4.673 0.1 −0.017 0.112 0.994 0.977 3.844
SVM ETo Model 7 0.612 0.648 18.574 −7.5 0.066 0.495 0.873 0.616 18.204 0.639 0.638 18.099 −5.9 0.038 0.498 0.881 0.651 16.646
SVM ETo Model 8 0.549 0.695 19.906 −7.8 0.048 0.54 0.848 0.559 19.93 0.559 0.717 20.323 −8.9 0.084 0.571 0.834 0.56 19.957
ELM ETo Model 1 0.997 0.056 1.594 0 0 0.041 0.999 0.997 1.32 0.997 0.061 1.72 0 0 0.044 0.999 0.997 1.421
ELM ETo Model 2 0.659 0.595 17.043 −4.6 0 0.447 0.896 0.677 16.035 0.62 0.643 18.23 −1.9 −0.07 0.49 0.886 0.646 15.921
ELM ETo Model 3 0.618 0.63 18.053 −5.1 0 0.488 0.88 0.637 17.388 0.607 0.653 18.526 −2.1 −0.071 0.513 0.878 0.635 16.462
ELM ETo Model 4 0.988 0.108 3.104 −0.2 0 0.073 0.997 0.989 2.453 0.985 0.111 3.14 0.1 −0.011 0.075 0.997 0.99 2.362
ELM ETo Model 5 0.985 0.125 3.586 −0.3 0 0.081 0.996 0.986 3.004 0.976 0.147 4.156 −1.5 0.034 0.099 0.995 0.982 3.595
ELM ETo Model 6 0.972 0.17 4.862 −0.5 0 0.109 0.993 0.974 3.975 0.975 0.163 4.63 −0.6 0.001 0.113 0.994 0.977 3.955
ELM ETo Model 7 0.602 0.643 18.431 −5.4 0 0.499 0.873 0.622 17.861 0.621 0.644 18.277 −3.9 −0.027 0.506 0.876 0.644 16.478
ELM ETo Model 8 0.541 0.693 19.849 −6.5 0 0.544 0.844 0.561 19.812 0.552 0.714 20.253 −7.5 0.035 0.571 0.831 0.563 19.669

Notes: (1) Best statistical indicators among each category (Empirical Model, SVM, and ELM) are marked in bold green, while least accurate are marked in bold red.
(2) R2, d and NSE are dimensionless; RRMSE, %Bias and MAPE are in percent; and RMSE, ME, and MAE are in mm/day.
(3) Highlight colors of models indicate the input or independent variables considered, i.e., f (T) f (T, Rs) f (T, Rs, Uz) f (T, RH, Rs) f (T, RH, Rs, Uz)
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Table 8. Statistical values of empirical and machine learning models used for estimating daily ETo at Alabat Station.

MODEL
Model Development Model Evaluation

R2 RMSE RRMSE %Bias ME MAE d NSE MAPE R2 RMSE RRMSE %Bias ME MAE d NSE MAPE
Hargreaves-Samani 0.35 1.02 25.3 −18.4 0.26 0.77 0.62 0.27 28.185 0.34 1.06 27.47 −26 0.53 0.76 0.62 0.09 30.607
Makkink 0.96 0.6 14.789 16.3 −0.54 0.54 0.94 0.75 16.332 0.97 0.56 14.544 15.3 −0.52 0.52 0.94 0.74 15.268
Priestley-Taylor 0.98 0.9 22.459 −17.1 0.77 0.81 0.9 0.42 19.207 0.97 0.91 23.617 −20.8 0.83 0.84 0.88 0.33 21.297
Matt-Shuttleworth 0.95 0.63 15.589 15.9 −0.56 0.56 0.94 0.72 15.89 0.94 0.48 12.538 11.3 −0.4 0.4 0.95 0.81 11.345
Turc 0.96 0.36 9.006 −3.9 0.21 0.31 0.98 0.91 8.568 0.97 0.31 8.129 −5.9 0.23 0.27 0.98 0.92 7.714
SVM ETo Model 1 0.99 0.076 1.897 0.2 −0.02 0.067 0.999 0.996 1.863 0.987 0.089 2.322 0 −0.022 0.079 0.998 0.994 2.291
SVM ETo Model 2 0.653 0.71 17.636 −8.2 0.128 0.517 0.889 0.643 17.067 0.615 0.771 20.039 −13.1 0.351 0.547 0.878 0.516 18.286
SVM ETo Model 3 0.61 0.74 18.379 −7.1 0.072 0.568 0.874 0.612 18.074 0.604 0.805 20.927 −11.8 0.346 0.603 0.874 0.472 18.876
SVM ETo Model 4 0.986 0.127 3.144 −0.1 −0.007 0.092 0.997 0.989 2.899 0.981 0.134 3.493 −1.4 0.032 0.097 0.996 0.985 3.088
SVM ETo Model 5 0.988 0.115 2.847 0 −0.007 0.083 0.998 0.991 2.5 0.971 0.168 4.358 −2.8 0.066 0.124 0.994 0.977 4.195
SVM ETo Model 6 0.982 0.16 3.964 −0.1 −0.003 0.113 0.996 0.982 3.505 0.94 0.247 6.427 −5.6 0.159 0.19 0.987 0.95 6.451
SVM ETo Model 7 0.6 0.749 18.603 −7.4 0.074 0.573 0.869 0.603 18.403 0.622 0.776 20.163 −12.6 0.361 0.589 0.881 0.51 18.708
SVM ETo Model 8 0.564 0.783 19.44 −8.6 0.087 0.602 0.851 0.566 19.773 0.538 0.91 23.658 −21 0.564 0.712 0.818 0.325 24.538
ELM ETo Model 1 0.997 0.064 1.578 0 0 0.047 0.999 0.997 1.351 0.991 0.102 2.66 −0.7 0.007 0.073 0.998 0.991 2.362
ELM ETo Model 2 0.628 0.707 17.555 −5.2 0 0.543 0.884 0.646 17.291 0.659 0.696 18.084 −6.6 0.15 0.513 0.901 0.606 16.644
ELM ETo Model 3 0.6 0.734 18.228 −5.4 0 0.572 0.871 0.619 17.849 0.617 0.756 19.656 −11.3 0.302 0.57 0.881 0.534 18.32
ELM ETo Model 4 0.988 0.125 3.105 −0.2 0 0.088 0.997 0.989 2.831 0.966 0.165 4.285 −2.4 0.076 0.117 0.994 0.978 3.549
ELM ETo Model 5 0.99 0.112 2.787 −0.2 0 0.08 0.998 0.991 2.42 0.967 0.17 4.421 −3 0.079 0.123 0.994 0.976 4.151
ELM ETo Model 6 0.98 0.161 3.999 −0.4 0 0.114 0.995 0.982 3.619 0.947 0.229 5.952 −5.5 0.155 0.187 0.989 0.957 6.354
ELM ETo Model 7 0.586 0.746 18.543 −5.6 0 0.583 0.865 0.605 18.333 0.618 0.758 19.695 −10.9 0.301 0.569 0.883 0.532 18.096
ELM ETo Model 8 0.547 0.782 19.431 −6.3 0 0.612 0.846 0.567 19.622 0.553 0.859 22.34 −19 0.491 0.672 0.83 0.398 23.342

Notes: (1) Best statistical indicators among each category (Empirical Model, SVM, and ELM) are marked in bold green, while least accurate are marked in bold red.
(2) R2, d and NSE are dimensionless; RRMSE, %Bias and MAPE are in percent; and RMSE, ME, and MAE are in mm/day.
(3) Highlight colors of models indicate the input or independent variables considered, i.e., f (T) f (T, Rs) f (T, Rs, Uz) f (T, RH, Rs) f (T, RH, Rs, Uz)
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Table 9. Statistical values of empirical and machine learning models used for estimating daily ETo at Tayabas Station.

MODEL
Model Development Model Evaluation

R2 RMSE RRMSE %Bias ME MAE d NSE MAPE R2 RMSE RRMSE %Bias ME MAE d NSE MAPE
Hargreaves-Samani 0.29 1.23 35.626 −39.8 0.87 0.94 0.58 −0.44 41.167 0.34 1.12 31.018 −31.5 0.69 0.84 0.61 −0.1 34.382
Makkink 0.97 0.53 15.299 16.6 −0.5 0.5 0.94 0.73 16.582 0.96 0.54 14.975 15.6 −0.5 0.5 0.94 0.74 15.602
Priestley-Taylor 0.98 0.81 23.342 −20.7 0.74 0.75 0.89 0.38 21.223 0.97 0.85 23.476 −20.8 0.77 0.78 0.89 0.37 21.134
Matt-Shuttleworth 0.96 0.4 11.535 10.5 −0.34 0.34 0.96 0.85 10.543 0.95 0.45 12.357 11.4 −0.38 0.38 0.96 0.83 11.377
Turc 0.97 0.28 8.097 −5.9 0.21 0.24 0.98 0.93 7.562 0.97 0.3 8.211 −5.9 0.21 0.26 0.98 0.92 7.61
SVM ETo Model 1 0.989 0.07 2.015 0.3 −0.021 0.062 0.999 0.995 1.957 0.989 0.074 2.031 0.3 −0.021 0.063 0.999 0.995 1.91
SVM ETo Model 2 0.708 0.552 15.996 −5.8 0.056 0.409 0.912 0.71 15.158 0.68 0.591 16.323 −4.7 0.009 0.452 0.9 0.696 15.349
SVM ETo Model 3 0.677 0.575 16.681 −5.8 0.043 0.441 0.901 0.684 16.135 0.633 0.631 17.43 −4.3 −0.012 0.497 0.884 0.653 16.405
SVM ETo Model 4 0.99 0.089 2.592 0 −0.005 0.067 0.998 0.992 2.234 0.987 0.106 2.915 0.2 −0.011 0.075 0.998 0.99 2.363
SVM ETo Model 5 0.985 0.107 3.105 0.1 −0.011 0.076 0.997 0.989 2.611 0.976 0.148 4.094 −1.3 0.029 0.102 0.995 0.981 3.395
SVM ETo Model 6 0.983 0.126 3.667 0 −0.005 0.084 0.996 0.985 2.878 0.977 0.162 4.463 −0.6 0.008 0.106 0.994 0.977 3.521
SVM ETo Model 7 0.668 0.583 16.914 −6 0.043 0.45 0.897 0.676 16.558 0.644 0.623 17.217 −4.7 0.001 0.492 0.887 0.662 16.334
SVM ETo Model 8 0.587 0.652 18.887 −7.4 0.049 0.507 0.863 0.595 18.942 0.573 0.701 19.363 −8.9 0.09 0.545 0.846 0.572 19.341
ELM ETo Model 1 0.997 0.056 1.63 0 0 0.042 0.999 0.997 1.386 0.995 0.074 2.047 0 −0.001 0.051 0.999 0.995 1.595
ELM ETo Model 2 0.699 0.546 15.838 −4.2 0 0.416 0.912 0.715 15.108 0.661 0.601 16.617 −3 −0.046 0.468 0.897 0.685 15.412
ELM ETo Model 3 0.666 0.576 16.7 −4.6 0 0.449 0.899 0.684 16.183 0.624 0.636 17.585 −3.5 −0.034 0.501 0.883 0.647 16.327
ELM ETo Model 4 0.992 0.086 2.493 −0.1 0 0.063 0.998 0.993 2.109 0.986 0.116 3.211 0.2 −0.008 0.075 0.997 0.988 2.369
ELM ETo Model 5 0.988 0.11 3.185 −0.2 0 0.076 0.997 0.988 2.716 0.974 0.16 4.422 −1.4 0.03 0.106 0.994 0.978 3.65
ELM ETo Model 6 0.984 0.124 3.595 −0.2 0 0.084 0.996 0.985 2.916 0.972 0.175 4.831 −1 0.016 0.111 0.993 0.973 3.79
ELM ETo Model 7 0.655 0.586 16.983 −4.7 0 0.457 0.895 0.673 16.541 0.609 0.653 18.036 −3.8 −0.02 0.506 0.879 0.629 16.554
ELM ETo Model 8 0.577 0.651 18.862 −5.9 0 0.512 0.861 0.596 18.847 0.574 0.692 19.111 −7.6 0.052 0.54 0.849 0.583 18.944

Notes: (1) Best statistical indicators among each category (Empirical Model, SVM, and ELM) are marked in bold green, while least accurate are marked in bold red.
(2) R2, d and NSE are dimensionless; RRMSE, %Bias and MAPE are in percent; and RMSE, ME, and MAE are in mm/day.
(3) Highlight colors of models indicate the input or independent variables considered, i.e., f (T) f (T, Rs) f (T, Rs, Uz) f (T, RH, Rs) f (T, RH, Rs, Uz)
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Table 10. Statistical values of empirical and machine learning models used for estimating daily ETo at Ambulong Station.

MODEL
Model Development Model Evaluation

R2 RMSE RRMSE %Bias ME MAE d NSE MAPE R2 RMSE RRMSE %Bias ME MAE d NSE MAPE
Hargreaves-Samani 0.28 1.12 30.099 −30.9 0.68 0.81 0.61 −0.15 33.534 0.34 1.01 25.519 −22.1 0.48 0.73 0.65 0.14 26.88
Makkink 0.93 0.77 20.734 21.6 −0.72 0.72 0.88 0.46 21.585 0.89 0.88 22.264 22 −0.8 0.8 0.85 0.34 21.981
Priestley-Taylor 0.92 0.6 16.159 −11.2 0.44 0.52 0.93 0.67 14.032 0.88 0.64 16.123 −9.7 0.4 0.54 0.93 0.65 13.707
Matt-Shuttleworth 0.88 0.71 18.985 17 −0.61 0.61 0.89 0.54 17.056 0.82 0.85 21.625 18.7 −0.72 0.72 0.85 0.38 18.717
Turc 0.93 0.29 7.74 0.3 0.01 0.22 0.98 0.92 6.52 0.89 0.37 9.488 1.9 −0.06 0.26 0.97 0.88 7.191
SVM ETo Model 1 0.989 0.091 2.429 0.1 −0.009 0.071 0.998 0.993 2.255 0.951 0.215 5.441 0.9 −0.043 0.135 0.99 0.961 3.94
SVM ETo Model 2 0.789 0.479 12.842 −3.8 0.039 0.361 0.94 0.791 12.196 0.725 0.558 14.123 −4 0.012 0.424 0.914 0.735 13.308
SVM ETo Model 3 0.716 0.548 14.694 −3.9 0.016 0.435 0.917 0.727 14.163 0.68 0.596 15.101 −2.6 −0.056 0.465 0.896 0.697 14.062
SVM ETo Model 4 0.955 0.205 5.485 0.1 −0.017 0.145 0.99 0.962 4.344 0.889 0.332 8.397 3 −0.129 0.211 0.976 0.906 5.708
SVM ETo Model 5 0.975 0.152 4.07 −0.1 −0.008 0.104 0.995 0.979 3.451 0.962 0.2 5.071 −0.2 −0.007 0.141 0.991 0.966 4.294
SVM ETo Model 6 0.937 0.243 6.53 0.5 −0.033 0.168 0.986 0.946 5.119 0.886 0.339 8.591 1.9 −0.095 0.234 0.975 0.902 6.444
SVM ETo Model 7 0.702 0.56 15.027 −3.9 0.015 0.444 0.912 0.714 14.403 0.656 0.619 15.679 −1.7 −0.093 0.486 0.885 0.674 14.484
SVM ETo Model 8 0.667 0.596 15.996 −4.9 0.031 0.472 0.898 0.676 15.626 0.595 0.68 17.216 −5.6 0.033 0.524 0.862 0.606 16.419
ELM ETo Model 1 0.993 0.087 2.342 −0.1 0 0.065 0.998 0.993 2.115 0.95 0.221 5.609 0.8 −0.037 0.139 0.989 0.958 4.019
ELM ETo Model 2 0.785 0.472 12.672 −2.8 0 0.362 0.941 0.797 12.038 0.704 0.571 14.474 −2.4 −0.052 0.445 0.907 0.722 13.54
ELM ETo Model 3 0.719 0.541 14.506 −3.4 0 0.43 0.918 0.733 13.958 0.663 0.615 15.576 −2 −0.084 0.488 0.885 0.678 14.607
ELM ETo Model 4 0.961 0.201 5.392 −0.4 0 0.147 0.991 0.963 4.429 0.885 0.336 8.511 2.9 −0.136 0.22 0.975 0.904 5.927
ELM ETo Model 5 0.979 0.148 3.962 −0.3 0 0.1 0.995 0.98 3.357 0.96 0.208 5.262 −0.4 −0.003 0.144 0.991 0.963 4.362
ELM ETo Model 6 0.944 0.239 6.411 −0.7 0 0.172 0.986 0.948 5.363 0.891 0.332 8.415 0.8 −0.062 0.236 0.975 0.906 6.603
ELM ETo Model 7 0.699 0.561 15.035 −3.7 0 0.446 0.911 0.714 14.477 0.646 0.632 16.014 −1.2 −0.119 0.501 0.877 0.66 14.793
ELM ETo Model 8 0.661 0.595 15.961 −4.2 0 0.473 0.896 0.677 15.608 0.59 0.679 17.207 −4.6 −0.008 0.529 0.859 0.607 16.379

Notes: (1) Best statistical indicators among each category (Empirical Model, SVM, and ELM) are marked in bold green, while least accurate are marked in bold red.
(2) R2, d and NSE are dimensionless; RRMSE, %Bias and MAPE are in percent; and RMSE, ME, and MAE are in mm/day.
(3) Highlight colors of models indicate the input or independent variables considered, i.e., f (T) f (T, Rs) f (T, Rs, Uz) f (T, RH, Rs) f (T, RH, Rs, Uz)
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Table 11. Statistical values of empirical and machine learning models in estimating daily ETo at Tanay Station.

MODEL
Model Development Model Evaluation

R2 RMSE RRMSE %Bias ME MAE d NSE MAPE R2 RMSE RRMSE %Bias ME MAE d NSE MAPE
Hargreaves-Samani 0.34 1.23 40.001 −47.1 0.9 0.98 0.6 −0.46 48.677 0.37 1.1 33.497 −35.6 0.68 0.85 0.63 −0.06 39.055
Makkink 0.95 0.3 9.903 7.9 −0.2 0.24 0.98 0.91 9.426 0.95 0.36 11.051 9.4 −0.27 0.3 0.97 0.89 10.332
Priestley-Taylor 0.95 0.97 31.666 −30.9 0.91 0.91 0.84 0.09 31.112 0.94 0.92 28.026 −26.8 0.84 0.85 0.87 0.26 27.118
Matt-Shuttleworth 0.93 0.41 13.484 9.9 −0.31 0.32 0.96 0.83 10.433 0.9 0.56 17 13.4 −0.44 0.45 0.93 0.73 13.629
Turc 0.95 0.46 15.171 −14.6 0.41 0.42 0.95 0.79 15.232 0.95 0.42 12.776 −11.6 0.35 0.37 0.96 0.85 12.518
SVM ETo Model 1 0.989 0.07 2.3 0.2 −0.014 0.062 0.999 0.995 2.303 0.992 0.072 2.19 0.1 −0.01 0.061 0.999 0.995 2.161
SVM ETo Model 2 0.798 0.443 14.472 −4.4 0.017 0.344 0.945 0.809 14.293 0.822 0.445 13.55 −4.5 0.034 0.347 0.95 0.827 13.366
SVM ETo Model 3 0.792 0.448 14.621 −3.8 0.006 0.348 0.944 0.805 14.256 0.822 0.442 13.463 −4 0.025 0.348 0.951 0.83 13.245
SVM ETo Model 4 0.989 0.1 3.253 −0.2 0 0.075 0.998 0.99 2.838 0.99 0.097 2.961 0 −0.003 0.074 0.998 0.992 2.525
SVM ETo Model 5 0.965 0.177 5.778 −0.2 −0.008 0.124 0.992 0.97 4.754 0.937 0.226 6.868 2.1 −0.078 0.161 0.989 0.956 5.414
SVM ETo Model 6 0.962 0.186 6.079 −0.4 −0.005 0.132 0.991 0.966 5.099 0.94 0.221 6.716 1.9 −0.07 0.159 0.989 0.958 5.361
SVM ETo Model 7 0.781 0.461 15.042 −4.4 0.01 0.358 0.94 0.794 14.905 0.814 0.449 13.661 −3.8 0.018 0.355 0.95 0.824 13.465
SVM ETo Model 8 0.672 0.568 18.528 −6.7 0.023 0.44 0.902 0.687 18.632 0.616 0.638 19.41 −1.9 −0.112 0.509 0.887 0.646 18.765
ELM ETo Model 1 0.996 0.062 2.031 −0.1 0 0.048 0.999 0.996 1.806 0.995 0.07 2.143 0 0.001 0.053 0.999 0.996 1.869
ELM ETo Model 2 0.799 0.438 14.304 −3.7 0 0.339 0.946 0.814 13.981 0.8 0.462 14.071 −3.6 0.008 0.362 0.946 0.814 13.557
ELM ETo Model 3 0.786 0.452 14.756 −3.9 0 0.352 0.942 0.802 14.559 0.81 0.45 13.691 −3.3 0.002 0.355 0.949 0.824 13.398
ELM ETo Model 4 0.989 0.1 3.274 −0.2 0 0.075 0.998 0.99 2.84 0.99 0.101 3.062 0 −0.003 0.075 0.998 0.991 2.561
ELM ETo Model 5 0.967 0.177 5.76 −0.5 0 0.124 0.992 0.97 4.803 0.938 0.224 6.808 1.9 −0.074 0.16 0.989 0.956 5.397
ELM ETo Model 6 0.964 0.185 6.026 −0.6 0 0.132 0.992 0.967 5.088 0.941 0.219 6.679 1.7 −0.066 0.158 0.989 0.958 5.34
ELM ETo Model 7 0.781 0.458 14.93 −4.1 0 0.356 0.941 0.797 14.799 0.805 0.456 13.886 −3.6 0.007 0.363 0.947 0.819 13.661
ELM ETo Model 8 0.669 0.566 18.454 −6 0 0.44 0.901 0.69 18.518 0.608 0.645 19.625 −1.1 −0.14 0.516 0.883 0.638 18.797

Notes: (1) Best statistical indicators among each category (Empirical Model, SVM, and ELM) are marked in bold green, while least accurate are marked in bold red.
(2) R2, d and NSE are dimensionless; RRMSE, %Bias and MAPE are in percent; and RMSE, ME, and MAE are in mm/day.
(3) Highlight colors of models indicate the input or independent variables considered, i.e., f (T) f (T, Rs) f (T, Rs, Uz) f (T, RH, Rs) f (T, RH, Rs, Uz)
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Table 12. Computed GPI (and ranking) for different empirical and machine learning models used for the estimation of daily ETo.

MODEL Model Development Model Evaluation

UPLB Sangley Infanta Alabat Tayabas Ambulong Tanay UPLB Sangley Infanta Alabat Tayabas Ambulong Tanay
Hargreaves-Samani −4.36 (21) −4.74 (21) −4.85 (21) −3.63 (21) −5.08 (21) −4.99 (21) −5.44 (21) −4.62 (21) −4.14 (21) −4.72 (21) −4.04 (21) −4.68 (21) −4.36 (21) −5.05 (21)
Makkink −0.15 (11) −1.66 (19) −0.14 (11) 0.04 (10) −0.14 (11) −1.67 (20) 0.54 (9) −0.07 (11) −2.82 (19) 0 (11) 0.15 (11) −0.07 (11) −2.22 (20) 0.42 (9)
Priestley-Taylor −0.88 (16) −0.77 (16) −1.43 (20) −1.61 (19) −1.6 (20) −0.74 (14) −2.93 (20) −2.69 (20) 0.28 (10) −1.47 (20) −1.94 (18) −1.86 (20) −0.49 (12) −2.82 (20)
Matt-Shuttleworth 0.26 (10) −2.11 (20) 0.67 (10) −0.06 (11) 0.52 (10) −1.23 (19) 0.16 (10) 0.81 (10) −3.26 (20) 0.77 (10) 0.68 (10) 0.5 (10) −1.94 (19) −0.53 (17)
Turc 1.52 (9) 0.91 (9) 0.91 (9) 1.47 (9) 0.91 (9) 0.96 (9) −0.32 (14) 0.88 (9) 0.84 (9) 1.06 (9) 1.52 (9) 1.12 (9) 1.38 (9) 0.04 (10)
SVM ETo Model 1 2.39 (2) 1.79 (2) 2.01 (2) 2.91 (2) 1.79 (2) 1.89 (2) 1.43 (2) 2.04 (2) 2.18 (2) 2.15 (2) 2.62 (1) 2.17 (2) 2.38 (2) 1.73 (2)
SVM ETo Model 2 −0.41 (12) −0.15 (11) −0.48 (12) −0.98 (13) −0.5 (13) −0.21 (11) −0.27 (12) −1.68 (17) −0.48 (12) −0.76 (12) −1.65 (15) −0.64 (12) −0.21 (10) −0.16 (12)
SVM ETo Model 3 −0.57 (15) −0.4 (13) −0.77 (14) −1.25 (16) −0.68 (14) −0.71 (13) −0.3 (13) −1.67 (16) −0.86 (14) −0.87 (16) −1.89 (17) −0.95 (15) −0.52 (13) −0.15 (11)
SVM ETo Model 4 2.03 (5) 1.55 (4) 1.88 (4) 2.7 (6) 1.73 (4) 1.41 (6) 1.34 (3) 1.8 (5) 1.64 (3) 2.01 (4) 2.41 (3) 2.06 (3) 1.76 (5) 1.65 (3)
SVM ETo Model 5 2.34 (4) 1.53 (6) 1.82 (6) 2.76 (4) 1.67 (5) 1.65 (4) 1.06 (6) 2 (3) 1.49 (6) 1.87 (6) 2.21 (6) 1.89 (5) 2.39 (1) 1.08 (8)
SVM ETo Model 6 1.93 (7) 1.26 (7) 1.67 (8) 2.56 (7) 1.61 (8) 1.24 (7) 1.02 (8) 1.71 (7) 1.22 (7) 1.82 (8) 1.72 (8) 1.85 (6) 1.64 (7) 1.1 (6)
SVM ETo Model 7 −1.12 (18) −0.53 (15) −0.9 (17) −1.33 (17) −0.74 (16) −0.79 (15) −0.37 (17) −1.55 (15) −1.42 (17) −0.79 (14) −1.73 (16) −0.89 (14) −0.7 (15) −0.19 (13)
SVM ETo Model 8 −1.3 (19) −1.52 (18) −1.25 (18) −1.66 (20) −1.21 (18) −1.07 (18) −1.03 (19) −1.51 (13) −1.37 (16) −1.39 (19) −3.02 (20) −1.48 (19) −1.33 (18) −1.49 (18)
ELM ETo Model 1 2.4 (1) 1.86 (1) 2.07 (1) 2.98 (1) 1.85 (1) 1.91 (1) 1.47 (1) 2.08 (1) 2.22 (1) 2.2 (1) 2.6 (2) 2.2 (1) 2.34 (4) 1.75 (1)
ELM ETo Model 2 −0.49 (13) −0.05 (10) −0.54 (13) −0.82 (12) −0.5 (12) −0.16 (10) −0.24 (11) −1.78 (18) −0.04 (11) −0.78 (13) −0.86 (12) −0.72 (13) −0.31 (11) −0.27 (16)
ELM ETo Model 3 −0.56 (14) −0.29 (12) −0.8 (15) −1.04 (14) −0.7 (15) −0.66 (12) −0.32 (15) −1.84 (19) −0.53 (13) −0.89 (17) −1.32 (14) −0.98 (16) −0.68 (14) −0.2 (14)
ELM ETo Model 4 2.01 (6) 1.56 (3) 1.9 (3) 2.72 (5) 1.75 (3) 1.41 (5) 1.34 (4) 1.73 (6) 1.62 (4) 2.03 (3) 2.29 (4) 2.04 (4) 1.72 (6) 1.63 (4)
ELM ETo Model 5 2.35 (3) 1.53 (5) 1.84 (5) 2.78 (3) 1.67 (6) 1.66 (3) 1.06 (5) 1.93 (4) 1.52 (5) 1.88 (5) 2.27 (5) 1.84 (7) 2.36 (3) 1.09 (7)
ELM ETo Model 6 1.93 (8) 1.25 (8) 1.68 (7) 2.56 (8) 1.62 (7) 1.23 (8) 1.02 (7) 1.62 (8) 1.18 (8) 1.82 (7) 1.92 (7) 1.8 (8) 1.63 (8) 1.11 (5)
ELM ETo Model 7 −1.08 (17) −0.44 (14) −0.89 (16) −1.15 (15) −0.77 (17) −0.8 (16) −0.35 (16) −1.54 (14) −1.14 (15) −0.84 (15) −1.32 (13) −1.08 (17) −0.8 (16) −0.25 (15)
ELM ETo Model 8 −1.34 (20) −1.32 (17) −1.26 (19) −1.46 (18) −1.22 (19) −1.06 (17) −1.02 (18) −1.49 (12) −1.92 (18) −1.38 (18) −2.18 (19) −1.42 (18) −1.32 (17) −1.54 (19)

Notes: (1) Numbers inside the parenthesis indicate the ranking from best to least model for station (along column).
(2) Highlight colors of models indicate the input or independent variables
considered, i.e., f (T) f (T, Rs) f (T, Rs, Uz) f (T, RH, Rs) f (T, RH, Rs, Uz)
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3.2. Comparison across Machine Learning Models
3.2.1. Comparison of Models across Input Combinations

Overall, models with Rs data as the input variable, such as Models 1, 4, 5, and 6,
performed best both in SVM and ELM, with excellent results based on their values of
RRMSE and NSE. Rs data represent the solar resources in a specific location available to
vaporize water, which is considered an important factor, together with air temperature,
for the occurrence of ETo [1]. In particular, the estimates of Model 1 perfectly fitted the
actual value of FAO-56 PM, with the R2 ranging from 0.95 to 0.99, an RMSE of 0.07 to
0.22 mm/day, an RRMSE of 1.72 to 5.44%, an MAE of 0.04 to 0.13 mm/day, and an NSE of
0.95 to 0.99. On average, the estimates of Model 1 are only 1.4 to 4.0% divergent from the
standard FAO-56 PM daily ETo. On the other hand, Model 2, which has the same input
combination as Model 1, except that it has Ra instead of Rs, performed satisfactorily, with
an R2 of 0.62–0.82, RMSE of 0.45 to 0.77 mm/day, RRMSE of 12.82 to 20.03%, MAE of 0.35 to
0.62 mm/day, and NSE of 0.51 to 0.82. The estimates of Model 2 are 12.61 to 19.83% on
average divergent from the standard FAO-56 PM daily ETo. This shows the importance of
Rs in the estimation of ETo, which cannot be replaced with extraterrestrial solar radiation
Ra, even with the presence of both RH and Uz data.

TSR-based Model 4 and TSW-based Model 5 show relatively comparable performances
based on the average statistical indicators. On average, the estimated daily ETos of Model
4 and Model 5 are only 2.4 to 8.1% and 3.4 to 7.6% divergent from the standard FAO-56
PM daily ETo, respectively. Model 4 fitted with R2 ranging from 0.89 to 0.99, an RMSE
of 0.10 to 0.33 mm/day, an RRMSE of 2.9 to 8.5%, an MAE of 0.07 to 0.22 mm/day, and
an NSE of 0.91 to 0.99, while Model 5 fitted with R2 ranges 0.92 to 0.98, an RMSE of
0.12 to 0.29 mm/day, an RRMSE of 3.2 to 6.8%, an MAE of 0.09 to 0.18 mm/day, and an
NSE of 0.95 to 0.98. When compared to Model 1, Models 4 and 5 RMSE decreased by
44.4%, or 0.06 mm/day, and MAE decreased by 38.9% or 0.04 mm/day. Nevertheless,
considering the GPI ranking, Model 5 performed better than Model 4 at the UPLB, Alabat,
and Ambulong stations, while the opposite was observed for the other stations.

3.2.2. Comparison of Models between SVM and ELM

Based on the computed statistical indicators, the SVM developed using the RBF kernel
and the ELM model generally exhibited identical performances in estimating daily ETo for
all stations and all input combinations, during both the model development and evaluation
phases, with average differences in RMSE of 0.002 mm/day and in MAE of 0.003 mm/day.
In terms of GPI ranking, ELM performed better than SVM for most stations and model
inputs, especially in the model evaluation phase. This observation shows that during the
model evaluation phase, the ELM model tends to overfit the data, as evidenced by the
almost negligible values of ME.

Table 13 presents the average run time, or the time used for the computation, of the
SVM and ELM models for ETo estimation. The time needed for running the SVM models
ranged from 79.21 to 223.62 s, while the ELM models displayed a lower range, from 83.99 to
98.94 s. For the SVM models, it can be observed that the models with higher accuracy, such
as Models 1, 4, 5, and 6, have a relatively faster run time compared to the other models. This
can be attributed to the lower time spent in the optimization of hyperparameters through
grid searching. Overall, running an ELM model for ETo estimation is almost two times
faster than running SVM models. Given that SVM and ELM models can achieve identical
accuracy in ETo estimation in the region, ELM is preferred when run time is considered.



Water 2022, 14, 754 19 of 25

Table 13. Average run time (in seconds) of SVM and ELM under different input combinations in the
estimation of daily ETo.

Model Input Combinations SVM ELM

Model 1 Tmax, Tmin, RH, Rs, Uz 79.21 96.61
Model 2 Tmax, Tmin, RH, Ra, Uz 211.14 98.94
Model 3 Tmax, Tmin, RH, Uz 209.93 92.88
Model 4 Tmax, Tmin, RH, Rs 130.37 87.08
Model 5 Tmax, Tmin, Rs, Uz 116.71 87.01
Model 6 Tmax, Tmin, Rs 169.29 87.10
Model 7 Tmax, Tmin, RH 223.62 86.00
Model 8 Tmax, Tmin 169.07 83.99

3.3. Comparison between Empirical and Machine Learning Models

In general, the accuracy of SVM and ELM models in estimating daily ETo is much
better compared to empirical models. This is apparent from the ranking of the computed
GPIs of all studied models across stations in Table 12. When comparing models with inputs
of only air temperature, we see that Model 8 of the machine learning model achieves better
performance than the Hargreaves–Samani equation, with an average increase in R2 of
44.4%, RMSE of 33.5% or 0.37 mm/day, and MAE of 30.7% or 0.26 mm/day. Based on the
values of both RRMSE and NSE, the Hargreaves–Samani equation has a poor modeling
capability, while Model 8 is concluded to be acceptable. On the average, estimates of
Model 8 are 16.4 to 24.5% divergent from the actual values, which is relatively better than
the 26.9 to 39.1% of the Hargreaves–Samani equation.

Empirical models with Rs as one of the inputs (TSR-, TSW-, and TS-based) proved to
have an acceptable to satisfactory modeling capability, based on the computed average
RRMSE and NSE across stations. With the same input combinations, machine learning
models provided an improved performance with excellent results (RRMSE < 10% and
NSE > 0.8). Compared to the best TS-based model, Model 6 of the machine learning models
improved the RMSE by 62% or 0.41 mm/day, and MAE by 71.0% or 0.42 mm/day. The
estimates of Model 6 deviate by 3.5 to 8.0% on average from the actual values, which is
relatively better than the 9.85 to 24.4% of TS-based models. On the other hand, Model 5,
when compared to its analogous TSW-based Matt–Shuttleworth equation, achieves an
average increase in accuracy of 76.5% or 0.46 mm/day in terms of RRMSE, and 75.2% or
0.39 mm/day in terms of MAE. The estimates of Model 5 are on average deviant from the
actual value by 3.4 to 7.6%, which is better than the Matt–Shuttleworth equation, which is
off by 7.4 to 23.7%. Lastly, when Model 4 of both SVM and ELM models is compared to the
TSR-based Turc equation which is the best performing empirical model for this study, a
significant improvement can still be observed, as there is an average increase in RRMSE of
57.5% or 0.2 mm/day, and in MAE of 58.2% or 0.17 mm/day. The estimates of Model 4 are
off by only 2.4 to 8.2%, while the Turc estimate is off by 7.1 to 12.5%. The results show the
ability of machine learning models to handle complex nonlinear relationships between
independent variables and dependent variables when estimating daily ETo [23,32].

3.4. Comparison of the Average Monthly ETo: The Case of UPLB and Tanay Stations

The plots of the monthly average values, computed via the simulated daily ETo for all
empirical and machine learning models, are shown in Figures 3 and 4 for the UPLB and
Tanay stations, respectively. Among the studied empirical models, the average monthly
daily estimates of the Turc equation excellently resemble the FAO-56 PM for the UPLB
station (RMSE of 0.129 MJ/m2/day and NSE of 0.969). In the case of the Tanay station, the
Makkink equation performed best (RMSE of 0.216 MJ/m2/day and NSE of 0.869). For both
stations, the average monthly daily ETo computed via the Matt–Shuttleworth equation
tended to be below the FAO-56 PM ETo, while the Priestley–Taylor equation overshot it.
The T-based Hargreaves equation tended to overestimate the FAO-56 PM monthly and
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daily average ETo for the Tanay station throughout the whole year, but it only did so during
the rainy seasons (JJA and SON) at the UPLB stations.
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The average monthly ETo based on daily values computed via the SVM and ELM
models, with any input combinations, proved to have a relatively high level of accuracy
with NSE > 0.8, which showed a closely reflected behavior of the monthly values based on
FAO56-PM daily ETo. This proves that even with minimum inputs of air temperature data
(Model 8), machine learning models can reliably and satisfactorily estimate ETo on a daily,
monthly, and seasonal basis. The daily record of ETo is important in irrigation scheduling
and hydrologic modeling, while monthly or seasonal estimates are necessary baseline data
for irrigation system and reservoir designs, as well as water right determination [3].

4. Conclusions

Reliable data are key to forming good hydrological models and engineering designs.
In particular, accurate estimates of ETo are important in irrigation planning and design, irri-
gation scheduling, reservoir management among other applications. This study developed
models based on SVM with an RBF non-linear kernel function, and on ELM, for estimating
daily reference crop evapotranspiration in Region IV-A, Philippines, using limited meteo-
rological input data. The machine learning models developed were compared with five
other established empirical models in terms of accuracy in daily ETo estimation. The results
show that the calibrated SVM and ELM models, with at least Tmax, Tmin and Rs as inputs,
provide the best daily ETo estimates. When compared to empirical models with analogous
data inputs, the ELM and SVM models achieved higher accuracies, with RMSE values of at
least 0.2 mm/day, and MAE values of 0.17 mm/day. Overall, the ELM and SVM models
achieved similar modeling performances, although the former exhibited shorter run times
than the latter. These machine learning models, with proper simulations and optimization,
could achieve excellent performance in terms of accuracy.

Author Contributions: A.T.T.J. and V.B.E. developed the concept and methodology. A.T.T.J. per-
formed model simulation from the model development and evaluation and wrote the initial draft.
V.B.E., R.M.L. and C.E.R. improved the content and structure of the final paper. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was carried out with the support of Department of Science and Technology—
Engineering Research and Development Technology (DOST-ERDT) scholarship of the correspond-
ing author and the Commission on Higher Education–Philippine–California Research Institutes
(CHED-PCARI).

Data Availability Statement: Restrictions apply to the availability of the ground-based datasets.
Data obtained from the DOST-PAGASA Central Station and the National Solar Radiation Center
were requested through the online platform ClimaDatPh, while datasets from DOST-ASTI and DA-
BSWM are available upon request from the agency (Retamar, A.E., et al. (2021). Meteorological Data
Acquisition Stations for Information Dissemination (PCT/PH2021/050022)). NASA Power Rs data are
available and can be accessed here: https://power.larc.nasa.gov/data-access-viewer/. (Last accessed:
17 January 2022).

Acknowledgments: This study was supported by the DOST-ERDT and by the CHED-PCARI WiSEIr
Project. The authors would like to thank the DOST-PAGASA, DOST-ASTI, DA-BSWM and NASA-
POWER for providing the data used in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56 Crop Evapotranspiration (Guidelines for

Computing Crop Water Requirements); Food and Agriculture Organization (FAO): Rome, Italy, 1998.
2. Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water

Manag. 2015, 147, 4–20. [CrossRef]
3. UPLB-AMTEC. PAES 217: Determination of Irrigation Water Requirements; University of the Philippines Los Banos—Agricultural

Machinery Testing and Evaluation Center: Los Baños, Philippines, 2017; ISBN 6506035.
4. Ghiat, I.; Mackey, H.R.; Al-Ansari, T. A review of evapotranspiration measurement models, techniques and methods for open and

closed agricultural field applications. Water 2021, 13, 2523. [CrossRef]

https://power.larc.nasa.gov/data-access-viewer/
http://doi.org/10.1016/j.agwat.2014.07.031
http://doi.org/10.3390/w13182523


Water 2022, 14, 754 23 of 25

5. Ella, V.B. Simple hydrologic model for predicting streamflow in small watersheds for irrigation system planning. Int. Agric. Eng.
J. 2016, 25, 1–13.

6. Ricard, S.; Sylvain, J.D.; Anctil, F. Asynchronous Hydroclimatic Modeling for the Construction of Physically Based Streamflow
Projections in a Context of Observation Scarcity. Front. Earth Sci. 2020, 8, 556781. [CrossRef]

7. Birhanu, D.; Kim, H.; Jang, C.; Park, S. Does the complexity of evapotranspiration and hydrological models enhance robustness?
Sustainability 2018, 10, 2837. [CrossRef]

8. Mendicino, G.; Senatore, A. The Role of Evapotranspiration in the Framework of Water Resource Management and Planning
Under Shortage Conditions. In Evapotranspiration—Remote Sensing and Modeling; Irmak, A., Ed.; InTech: Rijeka, Croatia, 2012;
ISBN 978-953-307-808-3. [CrossRef]

9. Zamora, D.; Rodríguez, E.; Jaramillo, F. Hydroclimatic effects of a hydropower reservoir in a tropical hydrological basin.
Sustainability 2020, 12, 6795. [CrossRef]

10. Ella, V.B. Simulating the Hydraulic Effects of Climate Change on Groundwater Resources in a Selected Aquifer in the Philippines Using a
Numerical Groundwater Model; SEARCA: Los Baños, Philippines, 2011; ISBN 9788420548470.

11. Liu, W.; Yang, L.; Zhu, M.; Adamowski, J.F.; Barzegar, R.; Wen, X.; Yin, Z. Effect of elevation on variation in reference evapotran-
spiration under climate change in northwest china. Sustainability 2021, 13, 151. [CrossRef]

12. Mu, X.; Wang, H.; Zhao, Y.; Liu, H.; He, G.; Li, J. Streamflow into Beijing and its response to climate change and human activities
over the period 1956–2016. Water 2020, 12, 622. [CrossRef]

13. Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized
precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [CrossRef]

14. Tian, L.; Leasor, Z.T.; Quiring, S.M. Developing a hybrid drought index: Precipitation Evapotranspiration Difference Condition
Index. Clim. Risk Manag. 2020, 29, 100238. [CrossRef]

15. Mehdizadeh, S.; Mohammadi, B.; Pham, Q.B.; Duan, Z. Development of boosted machine learning models for estimating daily
reference evapotranspiration and comparison with empirical approaches. Water 2021, 13, 3489. [CrossRef]

16. Peng, L.; Li, Y.; Feng, H. The best alternative for estimating reference crop evapotranspiration in different sub-regions of mainland
China. Sci. Rep. 2017, 7, 5458. [CrossRef] [PubMed]

17. Hargreaves, G.; Samani, Z. Reference crop evapotranspiration from ambient air temperature. Am. Soc. Agric. Eng. 1985, 1, 96–99.
[CrossRef]

18. De Bruin, H. The determination of (reference crop) evapotranspiration from routine weather data. Comm. Hydrol. Res. 1981, 28,
25–37.

19. Priestley, C.; Taylor, R. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev.
1972, 100, 81–92. [CrossRef]

20. Shuttleworth, W.; Wallace, J. Calculating the water requirements of irrigated crops in Australia using the Matt-Shuttleworth
approach. Trans. ASABE 2009, 52, 1895–1906. [CrossRef]

21. Turc, L. Estimation of irrigation water requirements, potential evapotranspiration: A simple climatic formula evolved up to date.
Ann. Agron. 1961, 12, 13–49.

22. Chia, M.Y.; Huang, Y.F.; Koo, C.H. Support vector machine enhanced empirical reference evapotranspiration estimation with
limited meteorological parameters. Comput. Electron. Agric. 2020, 175, 105577. [CrossRef]

23. Ferreira, L.B.; da Cunha, F.F.; de Oliveira, R.A.; Fernandes Filho, E.I. Estimation of reference evapotranspiration in Brazil with
limited meteorological data using ANN and SVM—A new approach. J. Hydrol. 2019, 572, 556–570. [CrossRef]

24. Seifi, A.; Riahi, H. Estimating daily reference evapotranspiration using hybrid gamma test-least square support vector machine,
gamma test-ann, and gamma test-anfis models in an arid area of iran. J. Water Clim. Chang. 2020, 11, 217–240. [CrossRef]

25. Torres, A.F.; Walker, W.R.; McKee, M. Forecasting daily potential evapotranspiration using machine learning and limited climatic
data. Agric. Water Manag. 2011, 98, 553–562. [CrossRef]

26. Samuel, A.L. Some Studies in Machine Learning. IBM J. Res. Dev. 1959, 3, 210–229. [CrossRef]
27. Subasi, A. Practical Machine Learning for Data Analysis Using Python; Elsevier: London, UK, 2020; ISBN 9780128213797. [CrossRef]
28. Feng, Y.; Cui, N.; Zhao, L.; Hu, X.; Gong, D. Comparison of ELM, GANN, WNN and empirical models for estimating reference

evapotranspiration in humid region of Southwest China. J. Hydrol. 2016, 536, 376–383. [CrossRef]
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