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Abstract: Soil erosion by water is a major cause of land degradation. Agricultural practices and
many other ecological environmental problems contribute to land degradation worldwide, especially
in arid and semi-arid areas. Miyun County, which is located in a mountainous region of North
China, is an important natural ecological zone and surface source of drinking water for Beijing and is
very vulnerable to soil erosion due to its thin soil layer and human activities. Landsat images from
2003 and 2013 were used to analyze the land-use and land-cover change (LULCC) over this period.
The revised universal soil loss equation (RUSLE) model integrated with Geographic Information
System (GIS) was used to quantify soil loss and to map erosion risk. In addition, the response of soil
erosion to LULCC was evaluated. The results showed that the areas under cropland, forest, and water
bodies increased over the study period by 66.03, 243.44, and 9.01 km2, respectively. The increase in
forested land indicated that the improved ground vegetation cover was due to the implementation of
active ecological measures. Between 2003 and 2013, light soil erosion increased by 587.46 km2, and
extremely severe soil erosion increased by 9.57 km2. The extents of slight, moderate, severe, and very
severe soil erosion, however, decreased by 8.02, 445.21, 142.69, and 1.11 km2, respectively. A total
of 57.5% of land with moderate soil erosion has been converted to light soil erosion, which could
be highly beneficial for the improvement of vegetation control of soil and water losses. In terms of
area, forestland exhibited the greatest increase, while moderate soil erosion exhibited the greatest
decrease over the study period. Land-use change led to an alteration in the intensity of soil erosion
due to changes or loss of vegetation. The conversion from high intensity soil erosion to low intensity
was attributed to the implementation of ecological environmental protection. The results generated
from this study may be useful for planners and land-use managers to make appropriate decisions for
soil conservation.

Keywords: soil erosion; RUSLE; remote sensing; GIS; Miyun Reservoir

1. Introduction

Soil erosion is a key problem resulting in the deterioration of the ecological envi-
ronment and has become a global environmental problem. It leads to soil productivity
reduction, flooding, and habitat losses [1], which seriously threaten food security, water
resources, biodiversity, and the sustainable development of resources and the environ-
ment [2]. Soil erosion is affected by a variety of factors, including LULCC, rainfall, and
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variations in the catchment surface (terrain, topography, and soil type) [3,4]. However,
among those related factors, human activities are the main factors affecting soil erosion [5],
primarily through changing the spatial distribution pattern of land-use and land-cover.
LULCC, such as land abandonment, deforestation, and afforestation, is one of the most
important factors for the occurrence and intensity of soil erosion [6]. It also changes the
cover of land use and vegetation, which have very important influences on runoff and
soil erosion [2]. It is reported that approximately 75 billion tons of fertile soil are lost from
agricultural systems globally each year [7]. Therefore, the impacts of LULCC on soil ero-
sion have attracted considerable attention, and it is very necessary to study soil erosion
processes and erosion hazards and define areas with high soil erosion potential as priority
areas for conserving the endangered erodible soil [8,9]. Meanwhile, in China, soil erosion is
one of the most severe environmental problems, with a total of 3 million km2 eroded by
water and wind [4], which equals approximately 32% of the territory of the country [10].
Therefore, monitoring and evaluating soil erosion have become particularly important [2].

Soil erosion risk varies from case to case, depending on the topography of the wa-
tershed, soil characteristics, local climatic conditions, land use, and land management
practices [11]. Such examples of soil erosion risk assessments are focused on the framework
of driving force-pressure-state-impact-response (DPSIR) and ecological-risk-assessment
(ERA) [12]. Traditional soil erosion assessments are limited by data quality and model
structure [13], especially in predicting soil risks over a large spatial extent (e.g., regional
scale) [14], and earlier studies on soil erosion risk heavily focused on current and static soil
erosion, paying little attention to future and dynamic losses [15]. On the contrary, the Uni-
versal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE), as
the most popular empirical models, have been developed to estimate soil erosion loss, and
they play an important role in the investigation of soil erosion and have been widely ap-
plied at watershed and catchment scales [16]. These models estimate the long-term average
annual soil loss on hill slopes by multiplying several factors: rainfall-runoff erosivity (R),
soil erodibility (K), slope length and steepness (LS), vegetation cover-management (C), and
conservation practice (P), usually obtained from filed measurements [17]. Generally, remote
sensing (RS) data have been commonly used to develop the vegetation cover-management
(C) and conservation practice (P) factors [18], especially for the Landsat TM/ETM/OLI
series, with a medium spatial resolution of 30 m. GIS has been used to derive the topo-
graphic factor (LS) using data from the digital elevation model (DEM) [19], interpolating
data on sample plots, and calculating and mapping soil erosion loss [20]. Many studies
have shown that the application of RUSLE model, GIS, and RS has been used to map and
assess the regional soil erosion risk at the scale of the watershed level [18]. Therefore, the
revised universal soil loss equation (RUSLE) model, combined with remote sensing data
and GIS, has been proven to be an effective method to assess and analyze the spatiotem-
poral distribution of erosion at the scale of the watershed level. However, no study has
yet reported at the county scale to analyze the relationships between the LULCC and soil
erosion of the Miyun Reservoir.

Many studies have been performed on the impact of land-use changes on hydrology,
water quality, and erosion at the watershed scale [21,22]. Other studies have focused on
the impact of land-use changes on runoff and sediment connectivity at the watershed
scale [23,24]. However, few studies have addressed the combined effects of land use on soil
erosion [25,26], especially at the county scale, and the effects of LULCC on soil erosion at
the county scale have received little attention. Miyun, a county situated in northeastern
Beijing, China, is a very important natural ecological zone as it provides a surface source of
drinking water. Moreover, the Miyun Reservoir, which is located in central Miyun County,
is the largest reservoir in North China and is the drinking water source for the 14.93 million
inhabitants of Beijing. However, the reservoir and its upstream areas are mostly covered by
hilly areas that are subject to severe soil erosion [18]. This erosion risk arises from the hilly
topography, soil condition that favor water erosion (i.e., fine texture, low organic matter
content, and poor plant coverage because of the semi-arid climate), and inappropriate
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agricultural practices (i.e., excessive soil tillage and cultivation of steep land) [27]. These
widespread problems not only affect the safety of Beijing’s drinking water supply, but also
threaten the local-scale sustainable management and conservation of agricultural areas [28].

According to Chinese soil taxonomy (the Chinese Soil Taxonomy Research Group,
1995) and research results (the Chinese River Sediment Bulletin, 2006), the Miyun County
region suffers from severe soil erosion. It is considered to be a priority area for soil conser-
vation in China in the twenty-first century [18]. Therefore, to improve the quantity and
quality of water in the Miyun Reservoir and protect the surface water source of Miyun
County, it is necessary to detect the spatiotemporal changes in the LULCC pattern and soil
erosion. However, relatively less attention has been paid to this region at the county level
in North China.

The objectives of this study were as follows: (1) to develop a methodology that
combined remote sensing data and GIS with RUSLE modeling to estimate the spatial
distribution of soil erosion and LULCC at the county level, (2) to reveal the significant
spatiotemporal change pattern of soil erosion by utilizing the temporal patterns of LULCC
of a small watershed (county scale) from 2003 to 2013, and (3) to evaluate the response of
soil erosion to the changing pattern of LULCC by applying a transition matrix between
LULCC and soil erosion.

2. Materials and Methods
2.1. Study Area

Miyun County (Lat. 40◦14′–40◦48′ N and Long. 116◦41′–117◦30′ E), which includes
17 towns, is situated in the mountainous region of Beijing and has an area of approximately
2230 km2, as shown in Figure 1. The local economic structure is composed of farming,
forestry, animal husbandry, and fishing. The land in the study area is dominated by forest
(73.63% of the land area) and commercial agriculture (cropping, agri-tourism, and charac-
teristic horticulture), which are the major sectors of employment for residents [29]. The
population expanded from 423,792 in 2003 to 476,000 in 2013, an increase of 12.26% [30].
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Figure 1. Location of the study area in China.

The Miyun Reservoir has a surface area of 188 km2 with a watershed area totaling
15,788 km2 and a capacity of 4.375 billion m3. The mountain region accounts for 79.47% of
the total area, which is located in the northwest of the study region. The plains are situated
in the southeast and account for 11.8% of the total area. The altitude varies between 400 and
1730 m above sea level.

The climate of the region is warm and semi-humid continental monsoon, with an
annual rainfall ranging between 407 mm in the northwest zones to 797 mm in the south-
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east. Precipitation occurs primarily between July and September with an average annual
precipitation of 600 mm, and approximately 80% of the rainfall occurs between June and
September [31]. The distribution of precipitation generally decreases from southeast to
northwest. The annual average temperatures in the upper and lower watersheds are 9 ◦C
and 25 ◦C, respectively [27].

Based on the Research Group on Chinese Soil Taxonomy (CRGCST) [32], the soil types
are mainly argosols, aridosols, and cambosols; namely, luvisols, cambisols, calcisols, and
gypsisols [28].

2.2. Data Processing and Acquisition
2.2.1. RUSLE Model

The RUSLE model was mainly introduced to improve the estimates for this mountain-
ous area [33,34]. The study area is a part of the mountainous region located in northern
Beijing. Therefore, the RUSLE model combined with GIS and RS methods was used to
estimate the spatial distribution of soil loss in Miyun County. The equation is as follows:

A = R × K × LS × C × P (1)

where A is the average soil loss (t ha−1 year−1), R is the rainfall erosivity factor
(MJ mm ha−1 h−1 year−1), K is the soil erodibility factor (t ha−1 MJ−1 mm−1), LS is the
topographic factor, C is the vegetation cover factor, and P is the erosion control practice
factor. Taking all factors of the RUSLE model in 2003 and 2013 into account, Equation (1)
was analyzed using GIS technology with a resolution of 30 m. The following steps explain
the processing of the P, R, K, C, and LS factors, which are shown in Figure 2.

Water 2022, 14, x FOR PEER REVIEW 4 of 18 
 

in the southeast and account for 11.8% of the total area. The altitude varies between 400 
and 1730 m above sea level. 

The climate of the region is warm and semi-humid continental monsoon, with an 
annual rainfall ranging between 407 mm in the northwest zones to 797 mm in the south-
east. Precipitation occurs primarily between July and September with an average annual 
precipitation of 600 mm, and approximately 80% of the rainfall occurs between June and 
September [31]. The distribution of precipitation generally decreases from southeast to 
northwest. The annual average temperatures in the upper and lower watersheds are 9 °C 
and 25 °C, respectively [27]. 

Based on the Research Group on Chinese Soil Taxonomy (CRGCST) [32], the soil 
types are mainly argosols, aridosols, and cambosols; namely, luvisols, cambisols, calcisols, 
and gypsisols [28]. 

2.2. Data Processing and Acquisition 
2.2.1. RUSLE Model 

The RUSLE model was mainly introduced to improve the estimates for this moun-
tainous area [33,34]. The study area is a part of the mountainous region located in northern 
Beijing. Therefore, the RUSLE model combined with GIS and RS methods was used to 
estimate the spatial distribution of soil loss in Miyun County. The equation is as follows: 

 A = R × K × LS × C × P (1) 

where A is the average soil loss (t ha−1 year−1), R is the rainfall erosivity factor (MJ mm ha−1 
h−1 year−1), K is the soil erodibility factor (t ha−1 MJ−1 mm−1), LS is the topographic factor, C 
is the vegetation cover factor, and P is the erosion control practice factor. Taking all factors 
of the RUSLE model in 2003 and 2013 into account, Equation (1) was analyzed using GIS 
technology with a resolution of 30 m. The following steps explain the processing of the P, 
R, K, C, and LS factors, which are shown in Figure 2. 

 
Figure 2. Erodibility factor maps of the RUSLE model in different periods. Figure 2. Erodibility factor maps of the RUSLE model in different periods.

2.2.2. Land Use/Cover Data (P)

The Landsat images (TM and OLI) from 24 August 2003 and 15 September 2013 were
georeferenced to the same map projection of the World Geodetic System 1984 Zone 50 N
using a first-order polynomial transformation with the nearest-neighbor algorithm and
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resampled to a 30 m spatial resolution. Second, all satellite images were composed using
red-green-blue (RGB) color composition with band 543 (Landsat TM 2003) and band 654
(Landsat OLI 2013). The images were enhanced by the linear contrast stretching and
histogram equalization methods [35].

Atmospheric correction is another important processing step [36]; therefore, in this
paper, the atmospheric correction was carried out using ENVI 5.3. According to the radia-
tion transfer model, the digital numbers (DN) of each spectral band were converted to the
spectral radiance values based on the gain and offset values obtained from the calibration
file in Equation (2). The gain and offset values can be obtained from the satellite data
header/metadata file of the study image. The FLAASH (Fast Line-of-sight Atmospheric
Analysis of Spectral Hypercubes) module in ENVI 5.3 was then employed to correct the
atmospheric effects in the reflectance image, as follows:

Ls, λ = DN × gain + o f f set (2)

where Ls refers to the satellite radiances, λ denotes the band wavelength, DN represents
the digital numbers of each spectral band, and gain and offset represent the radiometric
calibration for each band.

According to the land cover classification system in Northeast China and the field
survey data using a simple GPS instrument, the land use of the study region was categorized
into the following six groups: croplands, forest, grasslands, water bodies, built-up areas,
and unused lands. First, regions of interest (ROIs) were created by drawing a polygon, and
at least 20 pixels were included in each individual training site. The number of sample ROIs
(from visual interpretation, field data, and some high-resolution images) for croplands,
forest, grasslands, water bodies, built-up areas, and unused lands was 58, 136, 75, 37, 89,
and 64, respectively, and a total of 459 training sites were used for classification algorithms.
Using support vector machines in ENVI 5.3 software, the classification procedure was
performed on the images from 2003 and 2013. Finally, the 3 × 3 majority filter was applied
to the classified LULCC data to reduce the “salt and pepper” effect. Then, according to the
ground truth data, the generated classified land-use maps for 2003 and 2013 were verified
with a simple GPS instrument, topographic maps, and, in some cases, Google Earth. One
of the most popular measures of classification accuracy derived from the confusion matrix
is the percentage of cases correctly classified [37], including the overall accuracy, kappa
statistic, user’s accuracy, and producer’s accuracy. In this paper, the 190 random points for
accuracy assessment were chosen using the random stratified method to represent different
land cover classes, along with the 164 points from field data with GPS and the 26 points
from the referenced data. Accuracy assessments were generated from this reference and
classified data and are described in Tables 1 and 2 for 2003 and 2013, respectively. The
kappa indices for 2003 and 2013 were 0.8012 and 0.8524, respectively (Tables 1 and 2); the
land-use and land-cover maps during the two study periods with a spatial resolution of
30 × 30 m were generated in a grid format with ArcGIS10.6. The maps were then used to
analyze the spatiotemporal changes and determine P factors in the RUSLE model in the
next step.

2.2.3. Rainfall Erosive Factor (R)

The rainfall erosivity index (R) is a potential driving force of rain erosion, which is
a major factor used to define the type of erosion caused by rainfall and runoff on the
soil surface of a specific location [38]. In this study, rainfall data were collected from the
meteorological bureau of the local government from 2003 to 2013 and produced by kriging
interpolation in ArcGIS10.6. The data were used to determine the R-factor in the RUSLE
model [39]. R was calculated as follows:

R =

[
4.17 ×

12

∑
i=1

(
Pi

2

P

)]
−152 (3)
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where Pi is the monthly average rainfall for month i (mm) and P represents the annual
average rainfall (mm).

Table 1. Error matrix for the classification method in 2003.

Class Name Cropland Forest Grassland Water
Body

Built-Up
Land

Unused
Land Total User’s

Accuracy

Cropland 25 2 0 0 2 1 30 0.8333

Forest 1 41 2 0 0 2 46 0.8913

Grassland 5 2 29 0 0 2 38 0.7632

Water body 0 0 1 18 0 1 20 0.90

Built-up land 2 1 0 0 19 3 25 0.76

Unused land 1 1 1 0 1 27 31 0.871

Total 34 47 33 18 22 36 190

Producer’s
accuracy 0.7353 0.8723 0.8788 100 0.8636 0.75

Overall classification accuracy = 83.68%; kappa statistics = 0.8012.

Table 2. Error matrix for the classification method in 2013.

Class Name Cropland Forest Grassland Water
Body

Built-Up
Land

Unused
Land Total User’s

Accuracy

Cropland 26 1 0 1 2 0 30 0.8667

Forest 0 43 2 0 0 1 46 0.9348

Grassland 2 1 33 0 0 2 38 0.8684

Water body 0 0 0 18 1 1 20 0.9000

Built-up land 1 1 0 0 21 2 25 0.8400

Unused land 0 2 2 0 1 26 31 0.8387

Total 29 48 37 19 25 32 190

Producer’s
accuracy 0.8966 0.8958 0.8919 0.9474 0.8400 0.8125

Overall classification accuracy = 87.89%; kappa statistics = 0.8524.

2.2.4. Soil Erodibility Factor (K)

The soil erodibility factor K represents the average long-term soil and soil profile
response to the erosive power associated with rainfall and runoff [17]. The soil map was
derived from the CRGCST (2001). The soil property data related to the soil types were
obtained from the Miyun soil database and used to calculate the K value. An estimate of
the K-factor can be obtained based on the following equation:

K =

[
2.1 × M1.14 × 10−4 × (12 − SOM) + 3.25× (s − 2) + 2.5× (p − 3)

]
100

× 0.1318 (4)

where M is the factor calculated as the product of the soil particle size fractions between
0.002 and 0.1 mm, SOM corresponds to the soil organic matter content (%), S represents the
soil structure code, and p is the soil permeability code.

2.2.5. Vegetation Cover-Management Factor (C)

Vegetation is the most sensitive factor influencing soil erosion, and soil loss is sig-
nificantly related to vegetation coverage in a negative exponential relationship, whose
turning point is approximately 78.3% [40]. Vegetation coverage (fg) was described by using
the normalized difference vegetation index (NDVI) to indicate the seasonal growth of
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vegetation conditions of the study region. The equation for the C factor is expressed as
follows:

C =


1

0.6508− 0.3436Lg fg
0

fg= 0
0 < f g ≤ 0.783

fg > 0.783
(5)

In this equation, the fg data were derived from the NDVI that was calculated from the
Landsat image by the following equations:

fg =
NDVI − NDVIsoil

NDVImax − NDVIsoil
(6)

NDVI =
NIR − R
NIR + R

(7)

where NDVImax represents the NDVI value for pixels completely covered by vegetation,
NDVIsoil is the NDVI value for totally bare soil pixels, NIR represents the reflectance value
in the near-infrared band, and R is the reflectance value in the visible red band.

2.2.6. Topographic Factor (LS)

The LS factor describes both slope steepness and slope length and thus reflects the
relationship between the slope length and the slope gradient associated with erosion [41].
The LS factor was calculated and obtained from DEM raster data developed using topo-
graphic maps with a scale of 1:50,000. The LS factor was computed in the ArcGIS 10.6 raster
calculator module. The equation is expressed as follows:

LS =

(
(Flowaccumulation)× (Cellsize)

22.13

)0.6
×
(

sin(slope)
0.0896

)1.3
(8)

The slope (◦) was extracted from the DEM with a cell size of 30 × 30 m, and the flow
accumulation was also derived from the DEM after conducting fill and flow direction
processes in ArcGIS 10.6 with the ArcHydro Tool module.

2.2.7. Classification of Soil Erosion in China

The Chinese national professional standard of SL190-96 Standards for Classification
and Gradation of Soil Erosion (the Ministry of Water Resources of China 1997) [27] is shown
in Table 3. According to the standards of water and soil erosion density in SL190-96, the soil
erosion severity in the study region was classified into the following six levels: slight, light,
moderate, severe, very severe, and extremely severe, and the erosion risk map distribution
of soil loss in the Miyun reservoir watershed was prepared in ArcGIS 10.6.

Table 3. Soil erosion risk level and intensity.

Erosion Risk Level Intensity Soil Loss (t ha−1 Year−1)

Very low Slight <10

Low Light 10–25

Moderate Moderate 25–50

Severe Severe 50–80

Very severe Very severe 80–150

Extremely severe Extremely severe >150

3. Results
3.1. Land-Use Change Analysis

The LULCC patterns of the study region from 2003 to 2013 are shown in Figure 3. The
land-use structure was mainly characterized by forest, cropland, and grassland, which
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accounted for more than 69% of the total area in the two study years (Table 4). This result
indicates that the land-use structural characteristics comprised forestry, agricultural and
animal husbandry production. Moreover, 48.24% and 59.18% of the total area was covered
by forest in 2003 and 2013, respectively, and forest coverage was mainly distributed in the
western and northwest mountain regions, with only a small amount distributed in the
eastern hilly region. This indicates that forest coverage increased by 10.94% during the study
period. The study by Li et al. [42] demonstrated that ecological projects such as the Three-
North Shelterbelt project and Grain for Green promoted the expansion and development
of forests in this region. The increase in forest coverage is due to the construction of
Beijing’s ecological environment, including the Beijing-Tianjin sandstorm source control
project and the construction of key shelterbelts. During the tenth five-year plan period, the
Beijing Ecological Environment Construction Plan was fully implemented, and the goal
was to reach 48% of the city’s forest coverage rate, including 25% in plain areas, 70% in
mountainous areas, and 40% in urban areas [43]. Furthermore, 54.74% of unused land
(224.03 km2) and 37.85% of grassland (97.79 km2) were converted to forest (Table 5). The
conversion of unused land to forest indicates the implementation of the Grain for Green
project (GGP) by the local government. However, the conversion of grassland reveals
certain complications of the change in land use. The transformation from forest to cropland
occurred in some slope regions, with an area of 1.93% (20.73 km2), showing that land type
shifts are more likely to occur in areas with high human activities. Hu et al. [44] showed
that the decrease of cropland is related to urban expansion, especially the expansion of
Beijing, at the cost of decreased cropland.
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Table 4. Land-use changes from 2003 to 2013 in the study region.

Land-Use Types
2003 2013

Area Change (km2)
Area (km2)

Proportion of
Total (%) Area (km2)

Proportion of
Total (%)

Cropland 206.56 9.28 272.59 12.25 66.03

Forest 1073.93 48.24 1317.37 59.18 243.44

Grassland 258.35 11.61 120.19 5.40 −138.16

Water body 100.98 4.53 109.99 4.94 9.01

Built-up land 176.99 7.95 158.55 7.12 −18.44

Unused land 409.27 18.39 247.39 11.11 −161.88

2226.09 100 2226.09 100 –
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Table 5. Transition matrix of different land-use types from 2003 to 2013 (%).

2003
2013

Cropland Forest Grassland Water Body Built-Up Land Unused Land

Cropland 53.72 14.65 10.34 0.59 10.83 9.87

Forest 1.93 88.56 2.88 0.41 0.39 5.83

Grassland 28.80 37.80 13.85 0.96 3.71 14.88

Water body 0.44 4.28 0.04 90.41 0.81 4.02

Built-up land 13.60 3.75 2.20 2.29 61.26 16.90

Unused land 10.04 54.74 7.14 1.96 2.95 23.17

Cropland and grassland were mainly found in the low elevation and flat regions.
Furthermore, cropland was distributed along the river in the east and northeast hill regions.
Grassland near the Miyun Reservoir showed a gathered-distribution pattern. The cropland
area increased by 2.97%, whereas grassland declined by 6.21%. Grassland is the major con-
version source for cropland, followed by unused land, accounting for 28.80% or 74.40 km2,
and 10.04% or 41.09 km2 of the total cropland, respectively. The conversion of cropland is
caused by many factors, the most important of which are population growth and economic
development [30]. Niu et al. [45] showed that with socioeconomic development, cropland
was displaced by built-up land, and a growing population needed more food. To meet
demand, farmers must occupy other green lands to maintain the necessary amount of
arable land, which ultimately leads to irrational land use. However, the conversion of
cropland to unused land has attributed to overgrazing, which accounts for 20.39 km2. In
addition, farmers have been using more pesticides and fertilizers to boost crop produc-
tion. Huang et al. [46] showed that the loss due to agricultural chemicals and chemical
fertilizer accounted for 50–70% of the surface water pollution source, especially nitrogen
(N) and phosphorous (P). It was estimated by the local government that the annual N
and P losses accounted for 7.84 × 105 kg and 2.57 × 104 kg every year from 1998 [47],
respectively. Furthermore, both N and P are mainly transported with sediments, which
have become the primary factor impacting the water quality of the Miyun Reservoir and are
considered an agricultural nonpoint source pollution [46]. Effective land-use management
appears to decrease cropland intensity and reduce fertilizer use per area to control water
eutrophication [48].

Built-up land is located in the southern region of Miyun County, which is on a gentle
slope, whereas cropland is concentrated in the flat area, but has become one of the pollution
sources impacting the water quality of the Miyun Reservoir through rural waste discharge.

The major water body is Miyun Reservoir and its associated river, which is located
in the central region of the study area. The unused land, which is mainly composed of
bare land and idle land, was distributed along the northern coast of the Miyun Reservoir
and scattered on the top of every mountain area, with the total area decreasing by 7.28%
(161.88 km2). This area is the major contribution region of soil and water losses.

Over the entire study period, forest was the main land-use type, with scattered patches
of other land-use types. The increased area of forest was the largest, followed by cropland,
accounting for 243.44 and 66.03 km2, respectively. In contrast, the areas of unused land,
grassland, and built-up land declined by 161.88, 138.16, and 18.44 km2, respectively.

3.2. Soil Erosion Change Analysis

The spatiotemporal distribution of the soil erosion results is presented in Figure 4.
The characteristics of soil erosion are shown in Table 6. The total areas of slight, light,
and moderate soil erosion were dominant, accounting for 91.59% in 2003 and 97.62%
in 2013. In 2003, moderate soil erosion covered the largest area, followed by slight soil
erosion, accounting for 45.55% and 24.48%, respectively. Over the period from 2003–2013,
light soil erosion dominated, followed by moderate erosion, accounting for 47.95% and
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25.55%, respectively. Extremely severe soil erosion accounted for 0.07% and 0.50% of the
areas in 2003 and 2013, respectively. The light soil erosion increased to the largest area
(587.46 km2), which mostly originated from moderate soil erosion (Table 7). These findings
suggest that the situation of soil erosion in Miyun County has markedly improved over the
past few decades. The change from high to low soil erosion grades indicates that the eco-
environmental quality of the region has gradually improved. The area of high habitat quality
in the watershed increased from 58.22% in 2005 to 60.29% in 2015 due to the implementation
of the GGP [49]. The increased area of extremely severe soil erosion was 9.57 km2, located
in some steeply sloping regions and mostly converted from severe soil erosion. Although
the GGP has been carried out since 1999 by the Chinese government, local residents have
shifted their financial sources from producing crops. For instance, according to the good
ecological natural environment and excellent geographical position, ecological tourism,
ecological agriculture, and other ecological activities are carried out to increase the income
of the local populace [50]. Driven by economic interests, deforestation and reclamation of
cropland still occur, especially in land with slopes of >25◦, which restricts the intensity and
scope of human activities, especially cultivation. This phenomenon indicates that human
activities have accelerated the intensity of regional soil erosion. Moreover, gully erosion
has worsened as the vegetation status has changed [51]. From 2003 to 2013, moderate
soil erosion covered the largest decreased area, which accounted for 445.21 km2, followed
by severe, slight, and very severe soil erosion, which accounted for 142.69, 8.02, and
1.11 km2, respectively.

The areas of severe and very severe soil erosion that were converted to moderate
erosion accounted for 78.08% and 33.77%, respectively. The transformation from higher
intensities to lower intensities of soil erosion was due to the implementation of ecological en-
vironment protection, especially that of the Natural Forest Protection Program (NFPP) [52].
In the tenth five-year plan for ecological environment construction, 2100 square kilometers
of soil erosion control area and 200,000 mu of windbreak sand-fixing forest are planned to
be added [43]. As a result, the vegetation coverage has improved, and the soil’s physical
and chemical properties have improved. These changes altered the water cycle of the region,
increased evapotranspiration, and reduced surface runoff. In general, the area of light and
extreme soil erosion increased, whereas the others decreased, indicating that the regional
eco-environmental quality gradually improved.
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Table 6. Soil erosion changes from 2003 to 2013 in the study region.

Soil Erosion Types
2003 2013

Area Change (km2)
Area (km2)

Proportion of
Total (%) Area (km2)

Proportion of
Total (%)

Slight 544.95 24.48 536.93 24.12 −8.02

Light 479.95 21.56 1067.41 47.95 587.46

Moderate 1013.98 45.55 568.77 25.55 −445.21

Severe 155.38 6.98 12.69 0.57 −142.69

Very severe 30.27 1.36 29.16 1.31 −1.11

Extremely severe 1.56 0.07 11.13 0.50 9.57

Sum 2226.09 100 2226.09 100

Table 7. Transition matrix of different land-use types from 2003 to 2013 (%).

2003
2013

Slight Light Moderate Severe Very Severe Extremely Severe

Slight 96.31 3.56 0.14 0.00 0.00 0.00

Light 1.40 94.44 4.15 0.00 0.01 0.00

Moderate 0.56 57.56 41.09 0.25 0.46 0.09

Severe 0.03 6.51 78.08 0.34 14.75 0.30

Very severe 0.03 0.67 33.77 31.18 5.37 28.98

Extremely
severe 0.00 0.00 1.68 5.32 0.40 92.60

3.3. Soil Erosion and LULCC Overlay Analysis

The transformation of land use is considered the primary cause of the change in soil
erosion. To determine the role of each land-use type in the different types of erosion in
the study area, the soil erosion maps were overlain by the different LULC maps for 2003
and 2013 by using the spatial analyst module in ArcGIS10.6 and ArcGIS zonal statistics.
The statistical values of each land-use type and the soil erosion were specified, and the
relationship between LULCC and soil erosion was revealed to estimate the soil erosion
response to LULCC. The area percentage of land use under different soil erosion types is
presented in Figure 5.
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A slight soil erosion level was found for water bodies (approximately 71.75% and
67.10% in 2003 and 2013, respectively), followed by built-up land and cropland. However,
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cropland and forest occupied the largest areas of 120.31 km2 in 2003 and 151.89 km2 in 2013.
Water bodies and grassland covered the smallest areas, accounting for 72.45 km2 in 2003
and 24.58 km2 in 2013.

The forested areas dominate light soil erosion, with a net increase area of 478.07 km2,
which mainly comes from the reclamation of cropland in the hill region located in the
western and north western parts of the study area. This change led to an increase in the
area and density of vegetation cover, which changed the processes of runoff generation and
convergence [52]. Soil and water conservation was carried out by reducing surface runoff
in intercepting falling raindrops, controlling soil erosion, and improving soil conservation.
Hence, the local eco-environmental quality has been gradually improved [53]. This result
indicates that the ecological measures of the local region have been working well. Water
bodies occupied the smallest area and increased by 12.5 km2 (10.39%) in the light soil
erosion level; however, this is generally too minor to affect soil erosion.

In moderate soil erosion regions, forests showed the greatest area and were decreased
by 26.34% (205.84 km2). Unused land covered the second-largest area and decreased
by 136.34 km2. Therefore, priority must be given to the protection of forests and the
afforestation of unused land to reduce the impact of erosivity on soil loss. Furthermore,
the moderate soil erosion of the largest area decreased by 445.21 km2, which is the major
conversion source to light soil erosion. This transformation could be highly beneficial to
improving vegetation and the control of soil and water losses [54].

The proportion of severe soil erosion decreased from 9.77% in 2003 to 0.73% in 2013
because of the major conversion of cropland in steep terrain regions to forest by changing
the type, extent, and quantity of land-use cover. These changes not only increased forest
area, but also reduced local soil erosion in cropland regions by reducing surface runoff.
Lands with good vegetation cover are very susceptible to gullying erosion [55]. This finding
indicates that ecological measures have made positive contributions, and the deterioration
of soil erosion has been controlled.

In contrast, for very severe and extremely severe soil erosion, forest areas dominated,
followed by unused land. The areas of forest and unused land decreased by 1.3 and 1.6 km2

under the very severe soil erosion level. However, these areas increased by 6.14 and 1.1 km2

in the extreme soil erosion level, respectively. The survey data show that the deforestation
of cropland occurred in some regions with slope gradients > 25◦, where the expansion of
cultivated land worsened erosion intensity. Land-use activities, such as the reclamation
of cropland, are not only irrational but also reduce vegetation cover, change soil structure,
accelerate soil erosion intensity, and deteriorate the local and regional eco-environment
quality. Therefore, areas shown to remain at an extremely severe soil erosion level in 2013
should be considered for soil conservation measures.

4. Discussion

There have been many investigations on various aspects of soil erosion either in pilot
or the upper Chaobaihe River catchment in this region [31,56] that used the RUSLE re-mote-
sensing technique and GIS technology to map the soil erosion risk in Miyun Watershed.
These studies found that the annual average soil loss for the upper watershed of the Miyun
Reservoir was 9.86 t ha−1 yr−1 in 2005. Li et al. [31] used the UUSLE to assess the spatial
distribution and dynamic properties of soil loss with GIS and RS technologies, and the
results showed that an average annual soil loss in the upper stream of the Miyun Reservoir
of 25.68, 21.04, and 16.80 t ha−1 yr−1 was estimated for 1990, 2000, and 2010, respectively.
Using RS, Niu et al. [45] concluded that the changes in fractional vegetation cover and
climate regimes were the primary factors for soil erosion in the Miyun Reservoir Basin.
Zhou and Wu [56] found that sediment yield decreased in the upper Chaobaihe River
catchment of the study region from 2001 to 2002. Compared with previous studies, few
studies have focused on the changes in soil erosion caused by LULCC in the study region,
and the effects of LULCC on soil erosion in this region have not been further revealed.
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Therefore, according to this study, the effects of LULC on soil erosion can be catego-
rized into three types.

The first type is about the transformation from forest and grassland to cropland,
as well as orchard land and unused land, which increases the erosion intensity and has
a negative impact on soil erosion. The changes of land-use structures and vegetation
cover that mostly occurred in the north, northeast, and southeast regions of the Miyun
Reservoir and were driven by economic interests were the main influences on soil erosion.
According to the pilot and demonstration construction plan of main functional zones in
Miyun County, Beijing as shown in Figure 6 [57], this area belongs to ecological protection
zone (Gaoling Town, Gubeikou Town, Xinchengzi Town, Taishitun Town, Dachengzi Town,
and Beizhuang Town), and is dominated by low and middle high mountains, hills, and
valleys with gentle slopes. The main soil types in this area are cinnamon, leached cinnamon,
and brown soils, which are in the main fruit-producing areas in Miyun County. Our data
showed inappropriate agricultural practices, such as excessive soil tillage and cultivation
of steep lands, after 2013 in the northern mountain region of Miyun County, which has
increased regional soil erosion. Therefore, to reduce the risk of soil erosion and improve
the water quality of the Miyun Reservoir, ecological measures should continue to be
taken in this region, followed by strict controls of development intensity, increasing the
forestry land area, developing the suitable forest area for fruit industry, and restoring the
local vegetation.
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Agricultural development areas are mainly concentrated in Xitiangezhuang Town,
Henanzhai Town, East Shaoqu Town, and Jugezhuang Town. The major soil types are
cinnamon, aquic, and coarse-grained soils. The cropland that is flat and has good soil
quality. The deep soil layer is important for grains, vegetables, fruit, and animal husbandry.
On the basis of strengthening and upgrading to the first level of windbreak and sand-
fixation forest, as well agricultural and forestry shelterbelt in the plain, this area is strictly
protected for basic cropland, accelerating the adjustment of agricultural structure and
expanding the ecological function of agriculture.

The transformation from cropland and forestland to urban development increases
erosion intensity and has a negative impact on soil erosion. The urban development areas
mainly include Miyun Town, Shilibao Town, Jugezhuang Town, Xiwengzhuang Town, and
Mujiayu Town. Most of the human population and industrial production are concentrated
in these areas. The soil types are mostly cinnamon and brown soils. These areas are
restricted on disturbance of human activities, optimizing the territorial space development
pattern, and building the landscape for urban development.
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The second type, including the conversion of cropland and unused land to forest,
reduces soil intensity and has a positive impact on soil erosion. This type is mainly situated
in the northwest mountain region of the study area that is associated with the ecological
protection of the Shichengzi, Fengjiayu, and Bulaotun townships, and belonging to the Yun-
meng Mountain region. The land in these areas has steep slopes, narrow valleys, thin soil
layers, and bare rock, and shows serious soil erosion. The soil types are mainly brown and
cinnamon soil. This area should strictly limit unadjusted human activities, and focus on wa-
ter source protection of the forest and soil water conservation. The ecological conservation
and water source protection should be strengthened in this area. The natural vegetation
with water conservation functions such as pine oak forest, poplar, birch forest, or shrub herb
should be strictly protected. Over-exploitation, over-grazing, over-reclamation, and other
production activities seriously harmful to water source protection should be prohibited.
Meanwhile, the natural environmental conditions with elevations above 1000 m and slope
gradients > 25◦, all of which restrict the intensity and scope of human activities [53].

At the same time, the forest cover of the secondary water source reserve accounts for
more than 90% of the area of Yunmeng Mountain National Geopark, Yunfeng Mountain
Nature Reserve, Yunmeng Mountain Forest Park, etc. The soil type is mainly brown soil.
In this area, interference activities caused by human disturbance should be restricted, and
original forest vegetation should be protected.

The third type, including the transitions between water bodies and forest (grassland),
is distributed alongside the water body. This occurred under natural conditions and showed
no obvious impacts on soil erosion.

However, our current work has some limitations. First, we did not have sufficient
information to explore changing intensity and fertilizer use in cropland. In this paper, the
nutrient data, such as those on N and P, depended on the local statistical data and previ-
ous research, which were available from an existing database [58]. Fertilizer control and
management should be implemented in cultivation areas to control water eutrophication.
Furthermore, there was a lack of detailed information on other pollution sources, such as
the rural waste discharge from built-up land at the countryside scale. Second, due to the
field data of the monitoring site, the spatial characteristics of sediment yields were not
taken into consideration in this study. A previous study indicated that incorrect land-use
activities could accelerate soil erosion and result in large increases in sediment inflow into
streams [7], such as deforestation, grazing and unscientific agricultural practices. Therefore,
more efforts are needed to consider all aspects of land use and quantify their impacts on
water quality [58].

5. Conclusions

This study used remote sensing data from different periods and GIS in combination
with empirical RUSLE modeling to analyze the spatiotemporal changes in LULCC and
its consequences on regional soil erosion in a mountainous watershed at the county level
from 2003 to 2013. In particular, the changing relationships between the transformation of
different land uses and soil erosion were revealed.

Forest and light soil erosion showed remarkable increases over areas of 243.44 and
587.46 km2, respectively. This result indicates that the regional eco-environment quality has
improved under the implementation of ecological protection measures. The increasing area of
forest reflects the development of vegetation cover, the change in land-use structure, reduction
in soil erosion, and rehabilitation of degraded land. However, extremely severe soil erosion
increased by 8.01 km2 over the study period, particularly in regions with slope gradients of
>25◦ due to the conversion of forest to cropland. The extent of unused land and moderate soil
erosion decreased by 161.88 km2 (7.27%) and 445.21 km2 (20.00%), respectively.

These findings suggest that integrating RS, GIS technology, and the RUSLE model is
a feasible way to estimate the changing relationship between soil erosion and LULCC at
the county level around the Miyun Reservoir. Moreover, since the Miyun Reservoir is the
primary drinking water source for Beijing, the local government should carry out rational
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land-use activities by optimizing the land-use structure, improving the efficiency of land
use, and guaranteeing local ecological safety. We should conscientiously continue imple-
menting the GGP and NFPP to restore the ecological environment and make appropriate
soil conservation decisions.
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