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Abstract: While multi-year and event-based landslide inventories are both commonly used in land-
slide susceptibility analysis, most areas lack multi-year landslide inventories, and the analysis results
obtained from the use of event-based landslide inventories are very sensitive to the choice of event.
Based on 24 event-based landslide inventories for the Shihmen watershed from 1996 to 2015, this study
established five event-based single landslide susceptibility models employing logistic regression,
random forest, support vector machine, kernel logistic regression, and gradient boosting decision tree
methods. The ensemble methods, involving calculating the mean of the susceptibility indexes (PM),
median of the susceptibility indexes (PME), weighted mean of the susceptibility indexes (PMW),
and committee average of binary susceptibility values (CA) of the five single models were then
used to establish four event-based ensemble landslide susceptibility models. After establishing nine
landslide susceptibility models, using each inventory from the 24 event-based landslide inventories
or a multi-year landslide inventory, we identified the differences in landslide susceptibility maps
attributable to the different landslide inventories and modeling methods, and used the area under the
receiver operating characteristic curve to assess the accuracy of the models. The results indicated that
an ensemble model based on a multi-year inventory can obtain excellent predictive accuracy. The
predictive accuracy of multi-year landslide susceptibility models is found to be superior to that of
event-based models. In addition, the higher predictive accuracy of ensemble landslide susceptibility
models than that of single models implied that these ensemble methods were robust for enhancing the
model’s predictive performance in the study area. When employing event-based landslide inventories
in modeling, PM ensemble models offer the best predictive ability, according to the Kruskal–Wallis
test results. Areas with a high mean susceptibility index and low standard deviation, identified using
the 24 PM ensemble models based on different event-based landslide inventories, constitute places
where landslide mitigation measures should be prioritized.

Keywords: landslide susceptibility analysis; event-based landslide inventory; ensemble model;
Shihmen watershed

1. Introduction

Under the impact of climate change, extreme rainfall events have caused frequent
landslides and debris flows in Taiwan’s mountainous areas. In order to effectively reduce
the losses caused by the landslides and debris flows, it is necessary to employ landslide sus-
ceptibility analysis to delineate those areas in watersheds that are susceptible to landslides
and use this information as a reference for overall watershed management plans. The chief
methods for landslide susceptibility analysis consist of heuristic, statistical, probability, and
deterministic methods [1]. Many types of machine learning methods have been broadly ap-
plied to landslide susceptibility analysis in recent years and have yielded excellent results;
machine learning algorithms can be classified as either parametric or nonparametric [2].

Parametric machine learning algorithms first select a form of the function and then
learn the function’s coefficients through a training process. The advantage of these algo-
rithms is that the methodology is easy to explain and understand, and the training process
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is short and does not require the collection of vast amounts of data; their limitation is
that the prior selection of a function often constrains the learning process, the method is
only suitable for simple problems, and the fit is often relatively poor. Parametric machine
learning algorithms may employ logistic regression and linear discriminant analysis, and
logistic regression, in particular, is often applied in landslide susceptibility analysis [3–7].
For their part, nonparametric machine learning algorithms do not require prior selection
of the functional form and may fit the function of any form through the training process.
The advantage of this approach is its versatility and ability to generate good performance
for training sample data; its limitation is its need for vast amounts of data, a slow training
process, and a higher chance of overfitting occurring [2]. When the training sample is
too small, the nonparametric algorithm inevitably leads to inadequate training, which
will reduce the accuracy [8]. The nonparametric machine learning algorithms most com-
monly used in landslide susceptibility analysis include the support vector machine [9–15],
random forest [8,9,12,15–18], kernel logistic regression [10,11,19], and boosted regression
tree [15–17].

When performing landslide susceptibility analysis, landslide inventories can be classi-
fied as either multi-year or event-based, depending on the length of data collection time
in the inventory. Apart from establishing a landslide susceptibility model based on a
multi-year landslide inventory [20–22], when the research area lacks a multi-year landslide
inventory, an event-based landslide inventory and triggering factors can be used to perform
susceptibility analysis [3]. When establishing an event-based landslide susceptibility model,
a landslide inventory for the event and data concerning the spatial distribution of triggering
factors must be available; triggering factors, such as rainfall or earthquake intensity, are
taken as independent variables in the model [6,23–25].

When establishing a landslide susceptibility model, the input sample data set is
usually divided into a training set and a testing set. After using the training set to establish
a model, the testing set is used to assess the performance of the model. The sample data set
commonly contains a 50:50 ratio of landslide and no-landslide samples [9,13,26,27], and the
ratio of the training set sample to the testing set sample is typically 70:30 [8,12,13,26,28,29].
Furthermore, when establishing a nonparametric machine learning model, the training set
is also used to perform hyperparameter optimization. During the optimization process,
fivefold cross-validation [9] and tenfold cross-validation [12,30] are often used to tune
the hyperparameters.

Because each modeling method has its own advantages and limitations, different
models can be used to perform landslide susceptibility analysis for the same research
area, but uncertainty associated with the results of these models may exist. The ensemble
method can then be used to aggregate the results of different models and can delineate
areas with high susceptibility and low uncertainty [16,31]. The five most commonly
used ensemble methods [32] involve the calculation of mean of landslide probabilities
(PM), confidence interval for the mean of landslide probabilities (CI), median of landslide
probabilities (PME), weighted mean of landslide probabilities (PMW), and committee
averaging (CA), respectively. The stacking ensemble method, which uses a meta-learning
algorithm to combine different single models [33], was also employed to establish ensemble
modes [34,35]. In this study, the landslide susceptibility models were constructed by
adopting the ensemble methods, such as PM, PME, PMW, and CA.

In order to assess the performance of different event-based ensemble landslide suscep-
tibility models, this study used event-based and multi-year landslide inventories for the
Shihmen watershed to establish single and ensemble landslide susceptibility models. To
assess the robustness of the ensemble methods, we used numerous landslide inventories,
rather than a single one, and compared the predictive accuracy of these single models and
ensemble modes, established using the same inventory. Additionally, the rainfall-triggering
factors were incorporated as independent variables into the landslide susceptibility models,
which contributes to the development and improvement of landslide early-warning sys-
tems. Apart from comparing the landslide susceptibilities in the different models, this study
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also located those areas with high landslide susceptibility within the research area, which
can provide a reference for decision-making when planning landslide mitigation measures.

2. Methods

This study first employed a logistic regression model and 4 nonparametric machine
learning models to establish single landslide susceptibility models; then, it used 4 ensemble
methods to establish ensemble landslide susceptibility models. In addition to establishing
an event-based landslide susceptibility model, based on an event-based landslide inven-
tory, we also combined 24 event-based landslide inventories, i.e., a multi-year landslide
inventory, to establish a multi-year landslide susceptibility model. We then use the receiver
operating characteristics (ROC) curve, Spearman’s rank correlation coefficient, the Mann–
Whitney test, and the Kruskal–Wallis test to assess the performance of different models.

2.1. Single Landslide Susceptibility Model
2.1.1. Logistic Regression (LR) Model

Because the goal of landslide susceptibility analysis is to predict whether landslides
will occur in individual slope units, the dependent variables in this model consisted of the
binary response variables of “landslide” and “no-landslide”, and the logistic regression
developed by Menard [36] was used to establish a parametric machine learning model,
which took the form shown in Equation (1):

ln
(

pi
1− pi

)
= αi +

k

∑
j = 1

βijxij. (1)

Here, pi is the probability of landslide occurrence, αi, βij are the coefficients, xij is the
value of the susceptibility factor, i represents different events, and j represents different
susceptibility factors.

2.1.2. Random Forest (RF) Model

The random forest model proposed by Breiman [37] is a decision tree-based ensem-
ble method and establishes multiple decision trees via the random selection of variable
subsets. Because random forest models do not require any prior assumptions concerning
the relationship between the independent variables and the target variable, this type of
model is suitable for the analysis of large datasets with nonlinear correlations [38]. In the
process of establishing different decision trees, the re-sampling of the data and the random
selection of variable subsets increase the diversity of the decision trees [39]. According to
Chang et al. [12], there are three reasons for random forest models’ high performance: (1) it
is a form of nonparametric nature-based analysis; (2) it can determine the importance of
the variables used; and (3) it can provide an algorithm for estimating missing values. This
method has been extensively used in landslide susceptibility analysis in recent years, and
has yielded excellent results [8,9,12,16].

2.1.3. Support Vector Machine (SVM) and Kernel Logistic Regression (KLR) Models

Support vector machines, as proposed by Vapnik [40], constitute a supervised clas-
sification method. Their special property is their ability to simultaneously maximize the
geometric margin and minimize the empirical classification error, which is why they are
also referred to as maximum margin classifiers [41]. SVMs perform classification by finding
the hyperplane with the largest margin between two types of training data in a higher
dimensional space. A non-linear kernel function can be used to map the input data onto
a higher dimensional space, where a hyperplane classifying the data can be established.
Kernel logistic regression is a kernelized version of linear logistic regression [42]. This
method uses a kernel function to project the input data onto a higher dimensional feature
space, with the goal of finding a discriminant function of distinguishing the two categories
of landslide and no-landslide.
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In the two previous models, the most commonly utilized kernel functions consist of
linear kernel functions, polynomial kernel functions, radial basis kernel functions (RBF),
and sigmoid kernel functions. Of these types, radial basis kernel functions are the most
widely used [11] and offer the best predictive ability in most situations, especially in the
case of nonlinear data [14]. Radial basis kernel functions are also a very popular choice for
the establishment of landslide susceptibility models [43].

2.1.4. Gradient-Boosting Decision Tree (GBDT) Model

The gradient-boosting decision tree (GBDT) model proposed by Friedman et al. [44]
is similar to the gradient-boost regression tree (GBRT) and multiple additive regression
tree (MART) algorithms. GBDT models combine boosting and regression trees in a single
algorithm [41]. Boosting relies on the minimization of the loss function at each tree spilt
to improve the decision trees [45] and represents one of the learning methods offering
the greatest improvement of model accuracy [17]. Rather than being fitted without any
relationship with adjacent trees, GBDT trees are fitted on top of the previous trees.

2.2. Ensemble Landslide Susceptibility Model

Referring to Thuiller et al. [32], this study selected PM, PME, PMW, and CA as the
ensemble methods used to aggregate the results of the 5 single models, as shown in Table 1.
Among these methods, the PM ensemble model calculates the mean of the susceptibility
indexes of the single models; the PME ensemble model calculates the median of the
susceptibility indexes of the single models; and the PMW ensemble model calculates the
weighted mean of the susceptibility indexes of the single models. To set weights, this
study assigned weights to each single model, based on the accuracy calibrated by the
training-event data. Additionally, the CA ensemble model first identifies the threshold
value of each single model, converts the landslide susceptibility index to a binary value
(landslide or no-landslide), and calculates the committee average of binary values of the
5 single models.

Table 1. The ensemble methods to aggregate the results of the selected models.

Ensemble Methods Description

PM Mean of susceptibility indexes. The PM ensemble model calculates the mean of the susceptibility
indexes for the selected models.

PME Median of susceptibility indexes. The PME ensemble model calculates the median of the
susceptibility indexes for the selected models.

PMW
Weighted mean of susceptibility indexes. The PMW ensemble model calculates the relative

importance of the weights based on the accuracies of the selected models, and then calculates the
weighted mean of the susceptibility indexes for the models.

CA
Committee averaging. After identifying the threshold value of each selected model and converting

the susceptibility index to binary value, the CA ensemble model calculates the average of binary
values for the selected models.

2.3. Single Model Establishment Process
2.3.1. Logistic Regression (LR) Model

All slope units with landslides in each landslide inventory are included in the landslide
sample, and the no-landslide samples with the same sample number as the landslide sample
are also selected. A 10-fold cross-validation is then used to perform model validation. The
cross-validation process is repeated 5 times to reduce the error from the split subsets, which
yields the mean test accuracy for the models, established from that sample dataset. The
foregoing sampling process is repeated 10 times in order to reduce sampling error, and the
model with the best mean test accuracy is selected for use in subsequent analysis.
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2.3.2. Nonparametric Models (RF, SVM, KLR, GBDT)

Among nonparametric machine learning algorithms, hyperparameters must be set
manually before training. For example, two hyperparameters must be set in the RF model
used in this study: the number of trees to fit (numtree) and the number of variables for each
tree (mtry). In an SVM or KLR model employing an RBF kernel function, two hyperparam-
eters must be set: a penalty parameter (C) and an RBF parameter (γ). In a GBDT model,
three hyperparameters must be set: numtree, mtry, and learning rate. The grid search
method used to tune the hyperparameters in this study is a conventional optimization
method, using our preset hyperparameter subset to perform a comprehensive search. The
nonparametric models used in this study and the range of their hyperparameters are shown
in Table 2.

Table 2. Hyperparameter types and the range of nonparametric models.

Model Hyperparameter Range

RF
number of trees (numtree) 100–1500
number of variables (mtry) 3–14

SVM
penalty parameter (C) 0.001–1000

RBF parameter (γ) 0.001–1000

KLR
penalty parameter (C) 0.001–1000

RBF parameter (γ) 0.001–1000

GBDT
number of trees (numtree) 100–1000
number of variables (mtry) 5–14

learning rate 0.1–1

The modeling process involved the selection of all slope units with landslides in each
landslide inventory, to serve as the landslide sample, and the selection of a no-landslide
sample with the same sample number. All the sample data were then split into a training
set and testing set in a 70:30 ratio. The model training process began with hyperparameter
tuning, which involved the use of the training set data and 10-fold cross-validation to
perform an analysis of each hyperparameter subset, which yielded the mean training
accuracy of each hyperparameter subset. The next step consisted of establishing a model
using the tuned hyperparameter subset and training set data, and the testing set data were
then used to perform model validation, which yielded the test accuracy. The sampling
process was repeated 10 times, which yielded 10 tuned hyperparameter subsets and their
corresponding models, and the model with the best test accuracy was selected for use in
the subsequent analysis.

2.4. Model Performance Assessment
2.4.1. Receiver Operating Characteristic (ROC) Curve

The receiver operating characteristic (ROC) curve [46] method employs the use of
threshold values to classify prediction results into 4 types: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN). After calculating the true positive rate
(TPR) and false positive rate (FPR) for each threshold value, the resulting data points are
connected up to plot an ROC curve, where the area under the curve (AUROC) represents
the model’s performance and predictive accuracy. The closer the AUROC value is to 1, the
better the performance of the model.

2.4.2. Inferential Statistics

This study used the Mann–Whitney test and Kruskal–Wallis test to analyze the effect
of different model methods and landslide inventories on the predictive ability of the
established models.

The Mann–Whitney test, which is also known as the Wilcoxon rank sum test [47,48],
is a nonparametric test used to determine whether there is a difference in the dependent
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variables between two independent populations. The test statistic, U, is calculated using
Equation (2):

U = N1N2 +
N1(N1 + 1)

2
−∑ R1. (2)

Here, N1 and N2 are the sample sizes in sample 1 and sample 2, where the sample
with the greatest rank sum is taken as the first sample and has a rank sum of ∑ R1.

The Kruskal–Wallis test was first proposed by Kruskal and Wallis [49], and is a non-
parametric test that extends the two-sample Wilcoxon test in the situation where there are
more than two groups. The Kruskal–Wallis test does not assume a normal distribution of
the underlying data. It ranks the data from smallest to largest, and assigns a rank to the data
that is used to calculate the test statistic H, as shown in Equation (3). This test is used to
determine whether there is a difference between the medians of K independent populations.

H =
12

n(n + 1)

k

∑
i = 1

Ri
2

ni
− 3(n + 1) (3)

Here, n = n1 + n2 + . . . + nk, ni is the sample size of each sample, and Ri is the rank
sum of each sample.

2.4.3. Spearman’s Rank Correlation Coefficient

Spearman’s rank correlation coefficient, as proposed by Spearman [50], is a nonpara-
metric measure used to assess the strength and direction of the association between two
ranked variables, X and Y. Depending on the values of variables X and Y, this measure
ranks the data and establishes paired ranks, then calculates the difference in rank for each
pair, as shown in Equation (4); the value of this coefficient is between −1 and 1 [51]:

ρ = 1−
6 ∑ d2

i
n(n2 − 1)

(4)

where di is the difference in rank between the susceptibility index of slope units in the two
models, ρ is the Spearman’s rank correlation coefficient, and n is the sample size.

The model performance assessment methods employed in this study are summarized
in Table 3.

Table 3. Description and explanation of the model performance assessment methods.

Assessment Methods Description Explanation

Receiver operating
characteristic (ROC) curve

The area under the ROC curve
(AUROC) represented the model’s

performance and predictive accuracy.

AUROC ranges in value from 0 to 1. An excellent model has
an AUROC near 1, and a poor performance model has an

AUROC near 0.

Mann–Whitney test
The test was used to compare the
predictive accuracy of multi-year

model to that of event-based models.

A p-value < 0.05 indicates that the null hypothesis is
rejected and a statistically significant difference between the

predictive accuracy of multi-year model and that of
event-based models exists.

Kruskal–Wallis test
The test was used to compare the
predictive accuracy of different

modeling methods.

A p-value < 0.05 indicates that null hypothesis is rejected
and a statistically significant difference of the predictive

accuracy of 9 modeling methods exists.

Spearman’s rank
correlation coefficient

The coefficient was used for a
quantitative comparison on landslide

susceptibility maps.

The value ranges between −1 and 1. A coefficient close to
1 means small differences between the susceptibility map of

the optimal model and that of other models.

3. Research Area and Materials
3.1. Research Area and Topographic Factor

The Shihmen watershed, with an area of 75,243 ha, is located in the north part of Tai-
wan and is largely characterized by mountainous topography. Elevations in the area range



Water 2022, 14, 717 7 of 25

from 236 m to 3526 m, and a slope gradient ranging from 20◦ to 50◦ accounts for 77% of the
whole area (Figure 1). Because of the relatively well-defined topographic boundaries and
topographic meaning in the Shihmen watershed, slope units were employed as analytical
units for landslide susceptibility analysis. According to the subdivision method suggested
by Xie et al. [52], this watershed was divided into 9181 slope units (Figure 2).

Twelve topographic factors, such as maximum slope, average slope, slope roughness,
highest elevation, total slope height, terrain roughness, average elevation, distance from the
road, distance from the fault, distance from the river, average aspect, and lithology, were
selected as intrinsic susceptibility variables according to the previous study [6]. The values
of highest elevation, total slope height, terrain roughness, average elevation, maximum
slope, average slope, slope roughness, and average aspect of each slope unit were calculated
by employing ArcGIS programs and by utilizing 5 m digital elevation model produced by
the Ministry of the Interior. After obtaining the 1:5000 orthophoto base maps issued by the
Aerial Survey Office of the Forestry Bureau, the 1:50,000 geologic maps issued by the Central
Geological Survey and a road map overlay from the Soil and Water Conservation Bureau,
we calculated the horizontal distances of each slope unit from the river, fault, and road,
respectively. The lithologic types of each slope unit, such as argillite, quartzitic sandstone,
hard sandstone and shale, sandstone and shale, and terrace deposit and alluvium, were
analyzed utilizing the 1:50,000 geological maps. The distribution maps of 12 topographic
factors are presented in Appendix A.
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3.2. Landslide Inventory and Rainfall Factor

After collecting 24 sets of satellite images of the Shihmen watershed during the period
from 1996 to 2015, landslide inventories triggered by 24 typhoon events were mapped
according to the interpretation procedures proposed by Liu et al. [53]. The landslides
recorded in the 24 landslide inventories in each slope unit are shown in Figure 2. The
number of landslides for each landslide inventory ranged from 59 to 1350 and the total
landslide area ranged from 10.19 ha to 577.04 ha (Figure 3).
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Figure 3. Landslide inventory and rainfall statistics for 24 typhoon events.

Two rainfall factors, namely, maximum 1-h rainfall and maximum 24-h rainfall, were
selected as extrinsic triggering variables, according to the previous research [6]. The short-
duration rainfall and long-duration rainfall values reflect the rainfall pattern during the
typhoon event. After collecting rainfall data from 31 rain-gauge stations (Figure 1), the
maximum 1-h rainfall and maximum 24-h rainfall of each station during each typhoon
event were analyzed. Then, the rainfall values of each slope unit were calculated, after
using the Kriging method to estimate the spatial distribution of rainfall. The average
maximum 1-h rainfall and maximum 24-h rainfall for each typhoon event are shown in
Figure 3.

4. Results of Analysis
4.1. Results of Single Models
4.1.1. Logistic Regression (LR) Model

This study used LR to establish a parametric landslide susceptibility model. In the
modeling process, 10-fold cross-validation was repeatedly used to assess model perfor-
mance. The repeated application of this process reduced the sampling error and enabled
the selection of the model with the best mean test accuracy for subsequent analysis. The
test accuracy of 24 event-based logistic regression models (i.e., the AUROC value of the test
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stage) ranged from 0.740 to 0.862, and the mean accuracy was 0.819 (Table 4). Additionally,
the test accuracy of the multi-year logistic regression model was 0.798.

Table 4. Performances of the LR models.

Event Test Accuracy Event Test Accuracy

1-Herb 0.825 14-Morakot 0.832
2-Xangsane 0.776 15-Parma 0.802

3-Toraji 0.740 16-Fanapi 0.815
4-Nari 0.760 17-Megi 0.859
5-Aere 0.824 18-Meari 0.798

6-Haitang 0.789 19-Nanmadol 0.862
7-Matsa 0.832 20-Talim 0.812
8-Talim 0.806 21-Saola 0.815

9-Longwang 0.859 22-Soulik 0.835
10-Shanshan 0.826 23-Matmo 0.835

11-Krosa 0.850 24-Soudelor 0.823
12-Nuri 0.842 Multi-year 0.798

13-Jangmi 0.849

The 24 event-based logistic regression models established in this study enabled the
spatial variation in each event’s landslide susceptibility index to be determined. The mean
values and standard deviations of the 24 landslide susceptibility indices for each slope
unit were then calculated (Figure 4). Similarly, the mean landslide susceptibility indices
and standard deviations were calculated for each slope unit in the multi-year logistic
regression model.

Water 2022, 14, x FOR PEER REVIEW 11 of 26 
 

 

7-Matsa 0.832 20-Talim 0.812 

8-Talim 0.806 21-Saola 0.815 

9-Longwang 0.859 22-Soulik 0.835 

10-Shanshan 0.826 23-Matmo 0.835 

11-Krosa 0.850 24-Soudelor 0.823 

12-Nuri 0.842 Multi-year 0.798 

13-Jangmi 0.849   

 

Figure 4. LR models: (a,b) the mean susceptibility index and standard deviation of 24 event-based 

models; (c,d) the mean susceptibility index and standard deviation of the multi-year model. 

4.1.2. Random Forest (RF) Model 

The hyperparameter tuning results for each event-based model, established using the 

RF algorithm, are shown in Table 5; it can be seen that the number of trees (numtree) ranged 

from 100 to 1000 and the number of variables (mtry) ranged from 7 to 14. The test accuracy 

of the 24 event-based models ranged from 0.772 to 0.944, and the mean was 0.842. 

Hyperparameter tuning for the multi-year RF model yielded a numtree: 400 and mtry: 14, 

and the model's test accuracy was 0.789.  

The spatial variation in each event's landslide susceptibility index could be obtained 

from the 24 event-based RF models. The mean values and standard deviations of the 24 

landslide susceptibility indices for each slope unit were then calculated (Figure 5). 

Similarly, the mean landslide susceptibility indices and standard deviations were 

calculated for each slope unit in the multi-year RF model. 

Table 5. The tuned hyperparameters and model performances for RF models. 

Event  

Hyperparameter 

Tuned 
Test  

Accuracy 
Event  

Hyperparameter 

Tuned 
Test  

Accuracy 
Numtree  Mtry Numtree  Mtry 

1-Herb 100 8 0.797 14-Morakot 300 13 0.815 

2-Xangsane 500 14 0.772 15-Parma 1000 14 0.820 

3-Toraji 700 11 0.851 16-Fanapi 600 14 0.848 

4-Nari 400 13 0.821 17-Megi 200 11 0.872 

5-Aere 1000 12 0.820 18-Meari 500 7 0.849 

6-Haitang 700 11 0.792 19-Nanmadol 600 14 0.913 

7-Matsa 700 12 0.845 20-Talim 600 13 0.824 

8-Talim 300 11 0.808 21-Saola 700 13 0.944 

9-Longwang 600 13 0.843 22-Soulik 500 11 0.846 

10-Shanshan 500 14 0.819 23-Matmo 900 13 0.883 

11-Krosa 700 12 0.855 24-Soudelor 400 13 0.827 

12-Nuri 1000 14 0.881 Multi-year 400 14 0.789 

Figure 4. LR models: (a,b) the mean susceptibility index and standard deviation of 24 event-based
models; (c,d) the mean susceptibility index and standard deviation of the multi-year model.

4.1.2. Random Forest (RF) Model

The hyperparameter tuning results for each event-based model, established using
the RF algorithm, are shown in Table 5; it can be seen that the number of trees (numtree)
ranged from 100 to 1000 and the number of variables (mtry) ranged from 7 to 14. The test
accuracy of the 24 event-based models ranged from 0.772 to 0.944, and the mean was 0.842.
Hyperparameter tuning for the multi-year RF model yielded a numtree: 400 and mtry: 14,
and the model’s test accuracy was 0.789.
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Table 5. The tuned hyperparameters and model performances for RF models.

Event
Hyperparameter Tuned Test

Accuracy Event
Hyperparameter Tuned Test

AccuracyNumtree Mtry Numtree Mtry

1-Herb 100 8 0.797 14-Morakot 300 13 0.815
2-Xangsane 500 14 0.772 15-Parma 1000 14 0.820

3-Toraji 700 11 0.851 16-Fanapi 600 14 0.848
4-Nari 400 13 0.821 17-Megi 200 11 0.872
5-Aere 1000 12 0.820 18-Meari 500 7 0.849

6-Haitang 700 11 0.792 19-Nanmadol 600 14 0.913
7-Matsa 700 12 0.845 20-Talim 600 13 0.824
8-Talim 300 11 0.808 21-Saola 700 13 0.944

9-Longwang 600 13 0.843 22-Soulik 500 11 0.846
10-Shanshan 500 14 0.819 23-Matmo 900 13 0.883

11-Krosa 700 12 0.855 24-Soudelor 400 13 0.827
12-Nuri 1000 14 0.881 Multi-year 400 14 0.789

13-Jangmi 900 13 0.855

The spatial variation in each event’s landslide susceptibility index could be obtained
from the 24 event-based RF models. The mean values and standard deviations of the
24 landslide susceptibility indices for each slope unit were then calculated (Figure 5).
Similarly, the mean landslide susceptibility indices and standard deviations were calculated
for each slope unit in the multi-year RF model.
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Figure 5. RF models: (a,b) the mean susceptibility index and standard deviation of 24 event-based
models; (c,d) the mean susceptibility index and standard deviation of the multi-year model.

4.1.3. Support Vector Machine (SVM) Model

The hyperparameter tuning results for each event-based model, established using
the SVM algorithm, are shown in Table 6; it can be seen that the penalty parameter (C)
ranged from 0.029 to 754.312 and the RBF parameter (γ) ranged from 0.001 to 0.091. The
test accuracy of all event-based models ranged from 0.674 to 0.861, and the mean was 0.754.
Hyperparameter tuning for the multi-year SVM model yielded a penalty parameter (C) of
0.1 and an RBF parameter (γ) of 0.774, and the model’s test accuracy was 0.806.

The spatial variation in each event’s landslide susceptibility index could be obtained
from the 24 event-based SVM models. The mean values and standard deviations of
the 24 landslide susceptibility indices for each slope unit were then calculated (Figure 6).
Similarly, the mean landslide susceptibility indices and standard deviations were calculated
for each slope unit in the multi-year SVM model.
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Table 6. The tuned hyperparameters and model performances for SVM models.

Event
Hyperparameter Tuned Test

Accuracy Event
Hyperparameter Tuned Test

AccuracyC γ C γ

1-Herb 2.683 0.017 0.721 14-Morakot 0.029 0.029 0.768
2-Xangsane 79.060 0.007 0.717 15-Parma 2.024 0.052 0.766

3-Toraji 0.494 0.091 0.759 16-Fanapi 3.556 0.029 0.772
4-Nari 0.655 0.029 0.755 17-Megi 0.121 0.017 0.786
5-Aere 4.715 0.013 0.732 18-Meari 2.024 0.029 0.787

6-Haitang 33.932 0.001 0.729 19-Nanmadol 1.151 0.017 0.797
7-Matsa 754.312 0.001 0.757 20-Talim 4.715 0.002 0.674
8-Talim 2.024 0.069 0.758 21-Saola 10.985 0.091 0.861

9-Longwang 14.563 0.005 0.754 22-Soulik 19.307 0.002 0.712
10-Shanshan 138.950 0.002 0.741 23-Matmo 1.151 0.017 0.739

11-Krosa 2.024 0.007 0.758 24-Soudelor 0.373 0.007 0.728
12-Nuri 3.556 0.022 0.754 Multi-year 0.1 0.774 0.806

13-Jangmi 184.207 0.001 0.769
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Figure 6. SVM models: (a,b) the mean susceptibility index and standard deviation of 24 event-based
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4.1.4. Kernel Logistic Regression (KLR) Model

The hyperparameter tuning results for each event-based model established using the
KLR algorithm are shown in Table 7; it can be seen that the penalty parameter (C) ranged
from 0.017 to 244.205 and the RBF parameter (γ) ranged from 0.002 to 0.281. The test
accuracy of every event-based model ranged from 0.712 to 0.833 and the mean was 0.754.
Hyperparameter tuning for the multi-year KLR model yielded a penalty parameter (C) of
1.0 and an RBF parameter (γ) of 0.1; the model’s test accuracy was 0.812.

The spatial variation in each event’s landslide susceptibility index could be obtained
from the 24 event-based KLR models. The mean values and standard deviations of the
24 landslide susceptibility indices for each slope unit were then calculated (Figure 7).
Similarly, the mean landslide susceptibility indices and standard deviations were calculated
for each slope unit in the multi-year KLR model.
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Table 7. The tuned hyperparameters and model performances for KLR models.

Event
Hyperparameter Tuned Test

Accuracy Event
Hyperparameter Tuned Test

AccuracyC γ C γ

1-Herb 244.205 0.005 0.712 14-Morakot 0.017 0.039 0.729
2-Xangsane 59.636 0.005 0.712 15-Parma 2.683 0.017 0.771

3-Toraji 1.151 0.052 0.781 16-Fanapi 33.932 0.013 0.784
4-Nari 10.985 0.017 0.775 17-Megi 2.024 0.069 0.815
5-Aere 1.151 0.022 0.760 18-Meari 33.932 0.007 0.725

6-Haitang 1.526 0.029 0.717 19-Nanmadol 8.286 0.003 0.829
7-Matsa 244.205 0.002 0.747 20-Talim 1.151 0.069 0.712
8-Talim 1.526 0.069 0.744 21-Saola 14.563 0.281 0.833

9-Longwang 3.556 0.039 0.765 22-Soulik 244.205 0.001 0.730
10-Shanshan 0.494 0.029 0.745 23-Matmo 1.526 0.039 0.737

11-Krosa 33.932 0.004 0.746 24-Soudelor 8.286 0.005 0.737
12-Nuri 59.636 0.029 0.723 Multi-year 1.0 0.1 0.812

13-Jangmi 3.556 0.029 0.767
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4.1.5. Gradient-Boosting Decision Tree (GBDT) Model

The hyperparameter tuning results for each event-based model established using the
GBDT algorithm are shown in Table 8, and it can be seen that the number of trees (numtree)
ranged from 100 to 1000, the number of variables (mtry) ranged from 6 to 14, and the
learning rate ranged from 0.1 to 1.0. The test accuracy of the 24 event-based models ranged
from 0.772 to 0.861 and the mean was 0.820. Hyperparameter tuning for the multi-year
GBDT model yielded a numtree of 900, an mtry of 7, and a learning rate of 0.1; the model’s
test accuracy was 0.804.

The spatial variation in each event’s landslide susceptibility index could be obtained
from the 24 event-based GBDT models. The mean values and standard deviations of
the 24 landslide susceptibility indices for each slope unit were then calculated (Figure 8).
Similarly, the mean landslide susceptibility indices and standard deviations were calculated
for each slope unit in the multi-year GBDT model.
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Table 8. The tuned hyperparameters and model performances for GBDT models.

Event
Hyperparameter Tuned Test

Accuracy Event
Hyperparameter Tuned Test

AccuracyNumtree Mtry Learning Rate Numtree Mtry Learning Rate

1-Herb 100 8 0.1 0.800 14-Morakot 200 8 0.1 0.833
2-Xangsane 700 13 0.9 0.772 15-Parma 300 13 0.5 0.823

3-Toraji 100 8 0.1 0.777 16-Fanapi 100 13 0.5 0.815
4-Nari 300 11 0.6 0.807 17-Megi 1000 13 0.8 0.848
5-Aere 600 14 0.3 0.821 18-Meari 1000 14 0.4 0.788

6-Haitang 200 11 0.7 0.772 19-Nanmadol 1000 10 0.7 0.852
7-Matsa 100 12 1.0 0.837 20-Talim 100 13 0.7 0.807
8-Talim 100 9 0.3 0.817 21-Saola 100 7 0.3 0.832

9-Longwang 200 6 0.1 0.845 22-Soulik 200 6 0.2 0.839
10-Shanshan 200 6 0.9 0.815 23-Matmo 100 6 1.0 0.843

11-Krosa 200 11 0.5 0.841 24-Soudelor 100 6 0.1 0.811
12-Nuri 1000 9 0.3 0.827 Multi-year 900 7 0.1 0.804

13-Jangmi 100 12 0.1 0.861
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4.2. Results of Ensemble Models

After establishing the single models, this study used the PM, PME, PMW, and CA
ensemble methods to aggregate the landslide susceptibility indices of each single model for
each event, yielding the landslide susceptibility indices of the 4 ensemble models.

The spatial variation in each event’s landslide susceptibility index could be obtained
from the 24 event-based PM ensemble models. The mean values and standard deviations
of the 24 landslide susceptibility indices for each slope unit were then calculated (Figure 9).
The mean landslide susceptibility indices and standard deviations that were calculated
for each slope unit in the multi-year PM ensemble model are shown in Figure 9. Similarly,
the mean susceptibility index and the standard deviation of the 24 event-based models,
obtained using the PME, PMW, and CA ensemble methods, are shown in Figures 10–12.
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4.3. Assessment of Model Accuracy

After establishing all the above-mentioned models, this study assessed the predictive
ability of each model established using a specific landslide inventory by examining that
model’s ability to predict the remaining landslide events. For the sake of clarity, the section
below will employ the terminology ai,j,k to indicate the accuracy of the various models
established using different landslide inventories and different modeling methods. Here,
i = 1–25 indicate the individual landslide inventories used in modeling, where 1–24 are
event-based landslide inventories, and 25 is the multi-year landslide inventory; j = 1–24
indicate the predicted events; and k = 1–9 indicate the different modeling methods.

The accuracy of each PM ensemble model is shown in Table 9; AUROC > 75% is
indicated in green, AUROC 75–50% is indicated in yellow, and AUROC < 50% is indicated
in red. The average predictive accuracy of event-based models (i = 1–24, j = 1–24, i 6= j,
k = 6) ranged from 70.9% to 77.9% and the mean was 74.8%; the average predictive accuracy
of the multi-year model (i = 25, j = 1–24, k = 6) was 91.1%. The average predictive accuracy
of the LR models (k = 1), RF models (k = 2), SVM models (k = 3), KLR models (k = 4), GBDT
models (k = 5), PME ensemble models (k = 7), PMW ensemble models (k = 8), and CA
ensemble models (k = 9) were also obtained.

The average predictive accuracy of the 5 event-based single landslide susceptibility
models (k = 1–5) with regard to the other landslide events is shown in Figure 13. In
Figure 13, from top down, the various symbols represent the maximum, third quartile,
median, first quartile, and minimum of a box plot of average predictive accuracy. This
figure also shows the predictive accuracy distribution of the multi-year single landslide
susceptibility models. In particular, the average predictive accuracy of the event-based
LR models (i = 1–24, j = 1–24, i 6= j, k = 1) ranged from 48.8% to 76.1%, and the mean was
71.2%; the multi-year LR model had a mean predictive accuracy of 78.8%. Similarly, the
average predictive accuracy of event-based RF models ranged from 57.9% to 74.7%, and
the mean was 69.5%; the multi-year RF model had a mean predictive accuracy of 79.5%.
The average predictive accuracy of event-based SVM models ranged from 50.0% to 76.1%,
and the mean was 68.1%; the multi-year SVM model had a mean predictive accuracy of
88.0%. The average predictive accuracy of event-based KLR models ranged from 50.0% to
76.4% and the mean was 67.4%; the multi-year KLR model had a mean predictive accuracy
of 88.6%. The average predictive accuracy of event-based GBDT models ranged from 69.2%
to 76.3%, while the mean was 72.8%; the multi-year GBDT model had a mean predictive
accuracy of 94.3%.

The average predictive accuracy of the 4 event-based ensemble landslide suscepti-
bility models (k = 6–9) with regard to the other landslide events is shown in Figure 13,
which also shows the predictive accuracy distribution of the multi-year ensemble landslide
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susceptibility models. In Figure 13, the average predictive accuracy of event-based PME
models (i = 1–24, j = 1–24, i 6= j, k = 7) ranged from 67.0% to 77.5% and the mean was
73.8%; the multi-year PME model had a mean predictive accuracy of 89.2%. The average
predictive accuracy of event-based PMW models ranged from 70.9% to 77.8%, and the
mean was 74.7%; the multi-year PMW model had a mean predictive accuracy of 91.6%. The
average predictive accuracy of event-based CA models ranged from 72.7% to 77.1%, while
the mean was 74.8%; the mean predictive accuracy of the multi-year CA model was 89.0%.
These results indicate that the event-based ensemble models all had an AUROC > 50% with
regard to other landslide events (i = 1–24, j = 1–24, i 6= j, k = 6–9).

Table 9. AUROCs (%) of each PM ensemble model for the calibration or prediction of other landslide
events. AUROC > 75% is indicated in green, AUROC 75–50% is indicated in yellow.

Event for Calibration or Prediction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 90 71 70 67 79 67 75 74 76 77 75 77 78 75 76 75 78 76 78 73 74 69 76 67
2 74 90 75 78 71 74 70 76 81 79 78 78 75 73 79 79 83 76 81 75 80 73 78 77
3 70 75 92 75 71 74 73 74 78 78 76 74 79 75 77 77 81 74 81 72 78 76 78 74
4 71 75 72 92 65 71 67 70 77 76 78 75 77 69 77 76 79 68 79 70 80 69 73 72
5 80 77 74 74 91 74 81 78 81 82 78 79 83 79 77 78 83 78 82 74 73 75 80 72
6 67 73 69 74 70 90 76 82 75 77 78 78 78 76 76 72 79 76 77 74 79 76 75 72
7 72 73 68 69 79 76 91 78 77 76 79 77 78 77 76 72 76 72 77 70 76 72 72 70
8 64 70 65 65 73 74 72 91 75 74 76 78 70 73 72 67 68 75 77 72 65 72 72 68
9 76 75 72 75 78 75 76 78 93 79 82 80 78 74 78 77 78 78 84 75 79 78 80 79
10 76 75 74 75 80 72 76 75 82 90 80 80 81 77 79 77 84 77 79 73 77 76 79 73
11 74 74 67 74 74 74 76 77 81 79 92 74 79 77 78 71 79 73 69 68 75 67 69 71
12 71 70 70 71 72 70 72 72 75 73 73 90 74 71 74 77 79 73 76 70 77 72 76 72
13 77 77 74 76 78 75 80 79 78 79 82 75 92 79 77 75 75 74 76 71 82 79 77 64
14 72 70 66 68 78 72 79 78 76 78 78 78 77 90 74 69 76 77 70 71 69 68 73 65
15 69 76 72 77 69 69 68 68 80 81 78 82 74 69 91 77 84 73 82 75 77 67 77 77
16 67 71 71 69 74 66 72 63 71 74 74 72 70 69 73 93 81 69 69 67 77 63 76 74
17 72 73 73 74 76 63 71 69 79 79 72 79 71 75 78 78 93 74 81 73 70 73 76 78
18 72 71 69 69 68 72 70 74 79 77 71 78 73 71 76 72 74 89 80 75 79 77 79 78
19 72 72 70 74 74 74 76 74 78 77 72 79 74 72 78 74 81 73 93 74 83 79 80 77
20 69 70 63 68 71 73 72 73 76 73 71 79 72 70 70 72 75 75 79 89 80 74 76 74
21 66 74 70 72 69 74 73 75 76 77 74 79 80 73 76 74 80 73 81 73 91 79 77 75
22 72 72 67 72 75 73 74 76 77 77 71 80 80 76 74 72 78 80 85 75 83 92 81 79
23 72 73 70 71 76 71 72 73 79 78 73 79 76 75 75 76 80 77 82 74 75 80 92 81
24 74 74 69 72 75 75 75 77 82 80 77 81 77 77 78 76 83 80 82 76 80 81 82 89

M
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25 90 88 89 90 92 89 92 90 92 91 91 94 93 90 91 89 94 91 95 91 92 93 92 89
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Figure 13. Box plot of the average predictive accuracy of single and ensemble models in the prediction
of other landslide events: (a) blue, green, and red represent LR, RF, and SVM, respectively; (b) blue,
green, and red represent KLR, GBDT, and PM, respectively; (c) blue, green, and red represent PME,
PMW, and CA, respectively.
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5. Discussion
5.1. Comparison of the Performance of Single and Ensemble Models

It can be seen from Figure 13 that the predictive accuracy of the ensemble models is
superior to that of single models under most circumstances. In particular, the four ensemble
models established on the basis of event-based landslide inventories 1, 3, 4, 9, 10, 17, and
21, as well as the multi-year landslide inventory all had greater predictive accuracy than
any single models. In addition, the four ensemble models established on the basis of
the event-based landslide inventories 2, 5, 7, 11, 12, 13, 15, 16, 18, 20, and 22 had greater
predictive accuracy than at least any four single models. In other words, when establishing
a model using the same landslide inventory, most ensemble models will offer superior
predictive accuracy.

The mean predictive accuracy of different modeling methods (k = 1–9) are compared
in Table 10. It can be seen that the mean predictive accuracy of ensemble models (k = 6–9)
ranged from 0.738 to 0.748 and was higher than the accuracy range of 0.674–0.728 for single
models (k = 1–5). Since the Kolmogorov–Smirnov test indicated that not all datasets were
normally distributed, the Kruskal–Wallis test was used to compare the predictive accuracy
of different modeling methods (Table 11). The post hoc test indicated that the predictive
accuracy of ensemble models is consistently superior to that of single models. Furthermore,
the coefficient of variation (CV) of the predictive accuracy of ensemble models ranged from
0.047 to 0.063, which was lower than the CV range for single models. In summary, our
results show that ensemble landslide susceptibility models offer superior predictive ability
and relatively low uncertainty.

Table 10. Performance assessment of the different modeling methods.

Inventory Type Metric LR(1) RF(2) SVM(3) KLR(4) GBDT(5) PM(6) PME(7) PMW(8) CA(9)

Event-based

Mean training accuracy 0.813 0.878 0.833 0.856 0.977 0.909 0.883 0.912 0.923
CV of training accuracy 0.038 0.028 0.054 0.037 0.011 0.013 0.017 0.013 0.019

Mean predictive accuracy 0.712 0.695 0.681 0.674 0.728 0.748 0.738 0.747 0.748
CV of predictive accuracy 0.118 0.104 0.146 0.142 0.059 0.055 0.063 0.055 0.047

Multi-year Mean predictive accuracy 0.788 0.795 0.880 0.886 0.943 0.911 0.892 0.916 0.890
CV of predictive accuracy 0.040 0.029 0.026 0.021 0.014 0.019 0.022 0.018 0.022

Table 11. Kruskal–Wallis test of the predictive accuracy of different modeling methods.

N Mean Rank d.f. H p Post Hoc Test

LR(1) 576 2481.79 8 514.142 0.000 >2–4
RF(2) 576 2013.05 -

SVM(3) 576 2080.67 -
KLR(4) 576 1924.60 -

GBDT(5) 576 2571.61 >2–4
PM(6) 576 3134.95 >1–5

PME(7) 576 2873.52 >1–5
PMW(8) 576 3120.86 >1–5

CA(9) 576 3131.45 >1–5

Prior studies have demonstrated that the predictive ability of the landslide suscep-
tibility models established by different ensemble methods was superior to that of single
landslide susceptibility models [16,31,34,35]. In accordance with the previous study results,
we found that most ensemble models were superior in terms of predictive accuracy to the
single models developed with the same inventory. Moreover, this study used 24 invento-
ries to establish the corresponding ensemble models. The higher predictive ability of the
ensemble models for each inventory implied that the PM, PME, PMW, and CA ensemble
methods were robust for enhancing the predictive performance of landslide susceptibility
models in the study area.
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Among the single models, while LR models had the lowest mean training accuracy
(i = 1–24, j = 1–24, i = j, k = 1), their mean predictive accuracy of 0.712 (i = 1–24, j = 1–24,
i 6= j, k = 1) was higher than that of the RF, SVM, and KLR models. Although the RF, SVM,
and KLR models had very good mean training accuracy, their mean predictive accuracy
was poor; this may be because these nonparametric models require a greater quantity of
data for training and are prone to overfitting [2,8].

5.2. Comparison of the Performance of Event-Based and Multi-Year Models

It can be seen from Figure 13 that among the nine modeling methods, the predictive
accuracy of multi-year models is consistently superior to that of the 24 event-based models.
Table 10 also reveals that the mean predictive accuracy of multi-year models (i = 25, j = 1–24)
ranged from 0.788 to 0.943, which was higher than the values of 0.674–0.748 in the event-
based models (i = 1–24, j = 1–24, i 6= j). The results of the Mann–Whitney U test (Table 12)
indicate that among the nine modeling methods, the predictive performance of models
established based on multi-year landslide inventories is uniformly superior to that of
event-based models. Furthermore, the CV of the multi-year models’ predictive accuracy
(0.014–0.040) was lower than that of event-based models. In summary, multi-year landslide
susceptibility models offer excellent predictive performance and low uncertainty.

Table 12. Mann–Whitney U test of the predictive accuracy of models, based on different types of
landslide inventories.

Modeling
Method

Inventory
Type N Mean

Rank Sum of U p

LR (1) Event-based 552 279.95 154,531.00 1903.000 0.000
Multi-year 24 485.21 11,645.00

RF (2) Event-based 552 277.78 153,332.00 704.000 0.000
Multi-year 24 535.17 12,844.00

SVM (3) Event-based 552 276.50 152,629.00 1.000 0.000
Multi-year 24 564.46 13,547.00

KLR (4) Event-based 552 276.50 152,628.00 0.000 0.000
Multi-year 24 564.50 13,548.00

GBDT (5) Event-based 552 276.50 152,628.00 0.000 0.000
Multi-year 24 564.50 135,48.00

PM (6) Event-based 552 276.50 152,628.00 0.000 0.000
Multi-year 24 564.50 13,548.00

PME (7) Event-based 552 276.50 152,628.00 0.000 0.000
Multi-year 24 564.50 13,548.00

PMW (8) Event-based 552 276.50 152,628.00 0.000 0.000
Multi-year 24 564.50 13,548.00

CA (9) Event-based 552 276.50 152,628.00 0.000 0.000
Multi-year 24 564.50 13,548.00

The findings of the current study that the relatively excellent predictive performance
and low uncertainty of the landslide susceptibility models established using multi-year
landslide inventories verifies the advantage of using a combination of event-based invento-
ries and confirms the previous study results. The relatively high predictive abilities of the
landslide susceptibility models, built by the combination of different event-based landslide
inventories, have been thought to be related to their bigger landslide sample size and the
wider numerical range of rainfall parameters in the training sample [23,54,55], or to their
lower concentration of landslides in areas with the same lithology and a lower collinearity
between rainfall parameters and lithology [56,57].

It can also be seen from Figure 13 that when applying the same modeling method, the
predictive accuracy of event-based models depends on the choice of event. For example,
in terms of the average predictive accuracy of the 24 event-based LR models, a maximum
of 76.1% appeared when employing the event in Jangmi, and a minimum of 48.8% was
obtained when using the event in Nuri, while the range is 27.30%. Similarly, the ranges
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of the average predictive accuracy of the 24 event-based RF, SVM, KLR, GBDT, PM, PME,
PMW, and CA models are 16.80%, 26.10%, 26.40%, 7.10%, 7.00%, 10.50%, 6.90%, and 4.40%,
respectively. These results confirmed the findings of previous studies that the choice of
event has an influence on the predictive ability of the event-based landslide susceptibility
model established [22–24], which may correlate with the event’s rainfall intensity range [3]
and the event’s spatial concentration degree of landslides [56,57].

5.3. Correlations between the Susceptibility Maps of the Optimal Model and Other Models

It can be seen from Figures 4–12 that when a specific modeling method is used, the
high susceptibility areas in landslide susceptibility maps, based on multi-year models, are
similar to those created using the mean susceptibility indices of 24 event-based models.
Nevertheless, there are significant differences in the landslide susceptibility index range
and standard deviation among the different modeling methods. Because PM ensemble
models have optimal predictive accuracy (Table 11) and multi-year models are superior to
event-based models (Table 12), this study considered the multi-year PM ensemble model to
be the optimal landslide susceptibility model. This model’s landslide susceptibility map is
the most representative and can best reflect the probabilities of landslides in different slope
units of the research area.

We also compared these landslide susceptibility maps, in order to analyze the cor-
relations in the spatial distribution of susceptibility index between the multi-year PM
ensemble model and other models. Rather than performing the mutual subtraction algo-
rithm [6,58–60] or the histogram matching method [55,56], we calculated the Spearman’s
rank correlation coefficient to assess the degree of difference between the susceptibility
maps of the optimal model and other models. As shown in Table 13, the correlation coef-
ficient of the single models ranged from 0.811 to 0.946, with an average of 0.912, which
was lower than the 0.940–1.00 correlation coefficient range of the ensemble models. This
indicates that there are only relatively small differences between the susceptibility maps of
the optimal model and other ensemble models. In addition, when a multi-year landslide
inventory is not available, the fact that the average correlation coefficient of the single
models was lower than the average correlation coefficient of the ensemble models indicates
that ensemble models can effectively reduce the discrepancies between the susceptibility
maps of the established models and the optimal model.

Table 13. Degree of difference between the susceptibility maps of the multi-year PM ensemble model
and other models.

Susceptibility Map Spearman’s Rank
Correlation Coefficient Susceptibility Map Spearman’s Rank

Correlation Coefficient

Event-based LR model 0.924 Multi-year LR model 0.928
Event-based RF model 0.917 Multi-year RF model 0.913

Event-based SVM model 0.938 Multi-year SVM model 0.811
Event-based KLR model 0.946 Multi-year KLR model 0.864

Event-based GBDT model 0.938 Multi-year GBDT model 0.936
Event-based PM ensemble model 0.962 Multi-year PM ensemble model 1.000

Event-based PME ensemble model 0.954 Multi-year PME ensemble model 0.990
Event-based PMW ensemble model 0.963 Multi-year PMW ensemble model 1.000
Event-based CA ensemble model 0.940 Multi-year CA ensemble model 0.950

6. Conclusions

This study collected 24 event-based landslide inventories for the Shihmen watershed
and employed logistic regression, random forest, support vector machine, kernel logistic
regression, and gradient boosting decision tree methods to establish event-based single
landslide susceptibility models. We also used four ensemble methods to aggregate the
results of single models, to establish event-based ensemble models. In addition, the 24 event-
based landslide inventories were combined to form a multi-year landslide inventory, which
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was used to establish multi-year single landslide susceptibility models and multi-year
ensemble models.

As shown in Tables 10–12, the current study found that an ensemble model based on a
multi-year inventory can achieve excellent predictive accuracy. Compared with event-based
models, multi-year landslide susceptibility models offer superior predictive ability and
lower uncertainty; compared with single models, ensemble landslide susceptibility models
have higher predictive ability and lower uncertainty for each inventory, implying that the
four ensemble methods are robust for enhancing the model’s predictive performance in the
study area.

When relying on an event-based landslide inventory instead of a multi-year inventory
to establish a model, the predictive accuracy of single models has considerable uncertainty
due to differences in the predicted landslide events. The ensemble models can both reduce
uncertainty and achieve better predictive accuracy, while the established PM ensemble
models are the most effective of all. The susceptibility map created using the 24 PM
ensemble models, based on different event-based landslide inventories, revealed areas
where landslides are likely to occur. High-priority landslide mitigation measures should
be implemented in places with a high mean susceptibility index and a low variation in
susceptibility index to effectively reduce the losses caused by the landslides.

We recommend that other modeling methods, such as neural networks and deep
learning, be further employed to establish landslide susceptibility models. When there
are large numbers of single models, other ensemble methods, such as the confidence
interval of the mean susceptibility index, may be used to establish even more effective
ensemble landslide susceptibility models. Finally, due to the influence of the choice of
event on the predictive ability of an event-based model and the better predictive ability of
the models built by the combination of different event-based landslide inventories, future
research can investigate possible improvements in predictive ability by combining two
different event-based inventories to create an ensemble model when researchers are lacking
a multi-year inventory.
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