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Abstract: Due to population growth and human activities, water shortages have become an increas-
ingly serious concern in the North China Plain, which has become the world’s largest underground
water funnel. Because the yield per unit area, planting area of crops, and effective precipitation in
the region are uncertain, it is not easy to plan the amount of irrigation water for crops. In order
to improve the applicability of the uncertainty programming model, a hybrid LSTM-CPP-FPP-IPP
model (long short-term memory, chance-constrained programming, fuzzy possibility programming,
interval parameter programming) was developed to plan the irrigation water allocation of irrigation
system under uncertainty. The LSTM (long short-term memory) model was used to predict crop yield
per unit area, and CPP-FPP-IPP programming (chance-constrained programming, fuzzy possibility
programming, interval parameter programming) was used to plan the crop area and the effective
precipitation under uncertainty. The hybrid model was used for the crop production profit of winter
wheat and summer corn in five cities in the North China Plain. The average absolute error between
the model prediction value and the actual value of the yield per unit area of winter wheat and
summer maize in four cities in 2020 was controlled within the range of 14.02 to 696.66 kg/hectare.
It shows that the model can more accurately predict the yield per unit area of crops. The planning
model for the benefit of irrigation water allocation generated three scenarios of rainfall level and
four planting intentions, and compared the planned scenarios with the actual production benefits of
the two crops in 2020. In a dry year, the possibility of planting areas for winter wheat and summer
corn is optimized. Compared with the traditional deterministic planning method, the model takes
into account the uncertain parameters, which helps decision makers seek better solutions under
uncertain conditions.

Keywords: irrigation water allocation; fuzzy-boundary intervals; hybrid model; winter wheat;
summer corn; North China Plain

1. Introduction

The North China Plain is the main grain producing area in China. At the same time,
the contradiction between the demand for irrigation water and water supply in the area is
most prominent. Because the continuing development of irrigated agriculture has caused
the continued overexploitation of groundwater, the North China Plain has become the
world’s largest underground water funnel, which has also led to land subsidence, saltwater
intrusion, the shrinkage of rivers and wetlands, land degradation, and a series of ecological
and environmental problems [1]. For regional agricultural irrigation water distribution, the
main challenges in water resources allocation are the uncertainty of water supply caused by
climate change, the lack of consideration about the dynamic allocation of water resources,
and the lack of equitable water allocation, which may lead to intensified conflicts among
the different sectors of water users [2].
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Aiming at the problem of water resources conflict, extensive studies have been carried
out on the optimal management of irrigation water resources. For example, Fu et al. [3]
constructed a water resource allocation model based on game theory and multi-objective
optimization and studied the differences between the two models. By comparing historical
patterns of irrigation water requirements (IWRs) to rice planting records, Rivera et al. [4]
presented an example of characterizing patterns in irrigation water requirements and
quantifying the impact that shifting the planting date could have on reducing irrigation
water demands. Feng et al. [5] established a multi-objective dynamic programming optimal
water resources allocation model under uncertainties, which could be a resolution for water
disputes as it addresses simultaneously economic, social and environmental benefits. The
proposed model considers maximizing the minimum satisfaction degree of each water
sector, maximizing the utilization efficiency of water resources in the basin, and maximizing
economic benefits. Shen et al. [6] constructed a synergetic theory-based water resource
allocation model by investigating the synergetic principle of each link in the allocation
of water resources. The objective equation was established for determining the optimal
comprehensive benefit of the composite system. In fact, the allocation of water resources
involves many factors such as natural conditions, policies and regulations, and human
activity. During the planning process, there are many independent and dependent variables
of the system, and the relationship between variables is complicated.

Water planning and management programming that are effective for irrigation pur-
poses are required to ensure sustainable agriculture. There are a few developed models
that predict the suitability of water for irrigation purposes. Ali et al. [7] developed and
evaluated eight machine learning (ML) models to numerically predict the quality of water
irrigation parameters used for evaluating their suitability in agricultural purposes using
electrical conductivity and pH as input variables in the semi-arid region of Bou Regreg in
Morocco. Sundararajan et al. [8] proposed a more comprehensive and extensive review
of machine learning techniques for drought forecasting, especially reviewing feature se-
lection, feature extraction, and dimensionality reduction methods. Peng et al. [9] used
the collected environmental data to build a water demand prediction model based on
the back propagation (BP) neural network. Although drought, water quality and other
factors were predicted using machine learning; the irrigation system in a whole city is
complex and variable, and it is difficult to obtain all of the environmental information in
developing countries as it is laborious and expensive. The aim of this study is to develop
a prediction and planning model of the benefits of irrigation water allocation based on
machine learning and uncertain programming; the key point of the study is the relationship
between irrigation water consumption and production benefits under uncertain conditions.

In recent years, Li et al. [10] developed a multi-scale, multi-objective programming
model for the simultaneous optimal allocation of irrigation water and cropland to balance
conflicts between farmers’ income and the sustainable development of irrigation districts.
Li et al. [11] developed a simulation-based optimization model for the spatiotemporal
allocation of irrigation water, which integrated a distributed farmland water balance model
for simulating hydrological processes in farmland and an optimization model to maximize
irrigation and precipitation use efficiency. Hassan et al. [12] proposed a demand-driven
allocation scheme for surface water coupled with an auction-based pricing mechanism.
Imron et al. [13] used linear programming to optimize the allocation of irrigation water.
However, the relationship between decision variables and the planning model was gen-
eral very complex due to complicated processes of farmland water balance, crop growth
and yield under different climate, soil, and irrigation conditions. Previous correlational
studies either did not effectively handle the relationships between crop planting area and
yield per unit in a large irrigation system, or ignored the interrelation of the benefits of
irrigation water allocation and crop yield per unit. Uncertainty optimization methods
such as interval planning, chance-constrained planning, fuzzy possibility planning, and
secondary planning have provided a theoretical basis for solving uncertain parameters.
Interval mathematical programming (IMP) is a promising method for addressing such



Water 2022, 14, 689 3 of 27

an optimization framework by integrating the interval crop water production functions
and other interval parameters or variables. Fuzzy mathematical programming can be
effective for fuzzy uncertainties and constraint violation issues. Zhang et al. [14] proposed
a nonlinear inexact two-stage management (NITM) model which was proposed for optimal
agricultural irrigation water management problems under uncertainty conditions. More-
over, the model was derived from incorporating interval parameter programming (IPP),
two-stage stochastic programming (TSP), and quadratic programming (QP) within the agri-
cultural water management model. Zhang et al. [15] proposed an improved interval-based
fuzzy credibility-constrained programming approach for supporting optimal irrigation
water management under uncertainty. Cheng et al. [16] proposed an interval two-stage
stochastic programming model and applied it to account for the impacts of agricultural
water price reform and a water-saving technology subsidy in Heilongjiang Province, China.
Gong et al. [17] proposed an inexact programming model for optimizing irrigation water
resources based on crop water requirements in consideration of effective precipitation and
uncertainty. Yao et al. [18] proposed robust programming for basin-level water allocation
with uncertain water availability and a policy-driven scenario analysis. Xu et al. [19],
using a combination of an interpretative structural model (ISM) and an analytical net-
work process (ANP), developed a hierarchical structure model, that is, composed of direct
factors, indirect factors, and basic factors. Li et al. [20] developed a risk-based interval-
stochastic optimization modelling approach for agricultural water allocation in response
to the complexity arising from uncertainties and risk in agricultural water management
systems. Zhang et al. [21] developed a risk-averse stochastic quadratic model with recourse
for supporting irrigation water management in uncertain and nonlinear environments.
Cai et al. [22] developed an integrated prediction-optimization modeling approach for the
coupled risk management of water and energy nexus systems.

Yield prediction is of great significance for yield mapping, crop market planning,
crop insurance, and harvest management [23]. The crop yield processes and strategies
vary with time, they are profoundly non-linear naturally, and are intricate due to the
integration of a wide extent of correlated factors, characterized and impacted by non-
arbitrate runs and external factors [24]. Based on the study of various survey papers,
various deep learning, machine learning and ANN algorithms have been found in all of the
crop predictions and have been implemented to predict yield forecasts. These algorithms
have included regression tree, random forest, multivariate regression, association rule
mining, convolutional neural networks, recurrent neural networks, deep fully connected
neural networks, and long short-term memory (LSTM) [25–27]. There are several algorithms
that may not be bound by biases or require a huge manual effort in label creation in order to
derive the insights directly from the data, such as long short-term memory models, which
are essentially designed to tackle the long-term correlation issue that exists in recurrent
neural networks. Haider et al. and Alhnaity et al. [28] employed the LSTM to predict yield
and plant growth variation across two different scenarios—tomato yield forecasting and
Ficus benjamina stem growth—the results of which verify that those models achieve a
satisfying performance in terms of forecasting.

In view of the regional characteristics and uncertainties in the planning of irrigation
water allocation systems, it is not enough to only consider crop water consumption, crop
yields and the benefits of water allocation. At present, there are few studies on the research
of the benefits of irrigation allocation in a city based on uncertain programming and deep
learning. In order to promote farmers’ income and the applicability of the uncertainty plan-
ning model, this study developed a novel prediction and planning model for the benefits
of irrigation allocation (LSTM-CCP-FPP-IPP) based on deep learning and hybrid fuzzy
uncertainty optimization methods, including interval planning, opportunity-constrained
planning, deep learning technology, and the function of crop water production. The main
contributions of this study are the following: (1) We developed and tested DL (LSTM)
prediction models to predict crop yield per unit and growth in five cities of the North
China Plain for (a) winter wheat and (b) summer corn. (2) We developed a novel model
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for planning irrigation water allocation based on deep learning and uncertain program-
ming. The hybrid model is applied to five major grain-producing cities in the North China
Plain, which can handle uncertainties expressed as fuzzy-boundary intervals and random
variables. Major highlights of this study include using crop water production function
as a connection and integrating the crop yield per unit prediction model with uncertain
planning programming to allocate irrigation water to a city. The overview of the study area
and framework of the prediction and planning model were in the second part. The LSTM
prediction model and CCP-FFP-IPP planning programming and crop water production
function are in the third part of this article. The study objective is discussed in the following
section, and the last section of this article includes the result analysis and conclusions.

2. The Study System
2.1. Study Area

The North China Plain, one of the most important food production areas in China,
is the key to ensuring food security and maintaining social stability. The high yields
are maintained and increased over time through the large supplies of irrigation water.
However, this intensive production has caused a rapid decline in groundwater levels, an
increase in nitrate in groundwater, and other serious environmental consequences. At the
same time, the North China Plain has an arid and semi-arid climate, with the precipitation
from June to September accounting for about 65% to 85% of the annual precipitation,
and the precipitation from March to June accounting for about 20% to 30% of the annual
precipitation. The low precipitation and the inhomogeneity of the annual distribution do
not meet the water demand of major food crops in the growth period, so irrigation water
for food production in North China Plain is an important safeguard [29].

Winter wheat and summer corn are the main food crops grown in this area. This article
selects five major food production cities as the study areas, including Anyang City, Henan
Province, Zhengzhou City, Henan Province, Weifang City, Shandong Province, Jinan City,
Shandong Province, and Baoding City, Hebei Province. Figure 1 shows the location of the
studied cities in China. The geographic location and altitude information of these five cities
are shown in Table 1. The table shows that the annual average temperature of the five study
areas has little difference. Baoding City has the lowest average annual precipitation, and
Weifang City has the highest annual average precipitation.

Figure 1. Geographical location of five cities in China.

According to the Anyang, Zhengzhou, Weifang, Jinan, and Baoding Statistical Year-
book of the past twenty years [30–34], the data on the crop planting area and yield per unit
area of winter wheat and summer maize in the five studied cities are shown in Figure 2.
The figure shows that the yield per unit area of summer corn in Weifang and Baoding has
shown a downward trend year by year; the yield per unit area of winter wheat in Weifang
and Baoding City have been stable; and the yield per unit area of summer corn and winter
wheat in Anyang, Zhengzhou, and Jinan have also been in a stable state. The numerical
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range of yield per unit area of winter wheat in the five cities is from 3.32 ton (1000 kg) per
hectares to 6.78 ton per hectares, and the numerical range of yield per unit area of summer
crops in the five cities is from 3.99 ton per hectares to 7.18 ton per hectares; this shows that
the data of the yield per unit area of the two crops in the five cities have a relatively large
range in the past 20 years. The regions with planting areas for winter wheat, ranked from
high to low, are Baoding, Weifang, Anyang, Jinan and Zhengzhou, and the regions with
planting areas for summer maize, ranked from high to low, are Baoding, Weifang, Anyang,
Jinan and Zhengzhou.

Table 1. Geographical and meteorological information of the five studied cities.

Study City Longitude (◦) Dimension (◦)
Annual Average

Temperature
(◦C)

Annual
Precipitation

(mm)

Anyang 113◦38′~114◦59′ 35◦41′~36◦21′ 12.9 598.1
Zhengzhou 112◦42′~114◦14′ 34◦16′~34◦58′ 15.6 542.2

Weifang 118◦10′~120◦01′ 35◦41′~37◦26′ 12.9 605.8
Jinan 116◦21′~117◦93′ 36◦02′~37◦54′ 14.2 548.7

Baoding 113◦40′~116◦20′ 38◦10′~40◦00′ 13.4 498.9
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Figure 2. Planting areas and yield per unit hectare of winter wheat and summer maize in five cities. 
(a) Winter wheat in Anyang; (b) summer corn in Anyang; (c) winter wheat in Zhengzhou; (d) sum-
mer corn in Zhengzhou; (e) winter wheat in Weifang; (f) summer corn in Weifang; (g) winter wheat 
in Jinan; (h) summer corn in Jinan; (i) winter wheat in Baoding; and (j) summer corn in Baoding. 
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Figure 2. Planting areas and yield per unit hectare of winter wheat and summer maize in five cities.
(a) Winter wheat in Anyang; (b) summer corn in Anyang; (c) winter wheat in Zhengzhou; (d) summer
corn in Zhengzhou; (e) winter wheat in Weifang; (f) summer corn in Weifang; (g) winter wheat in
Jinan; (h) summer corn in Jinan; (i) winter wheat in Baoding; and (j) summer corn in Baoding.

The book “National Science and Technology Basic Work Special Projects Atlas of
Growth Periods of Major Crops in China” [35] is a monograph that reflects the impact of
large-scale climate change on the growth periods of major crops in the country and the
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characteristics of changes in the growth periods of major crops. In accordance with the
book, the growth periods (daily numbers) of winter wheat and summer corn planted in the
five study areas are shown in Tables 2 and 3, respectively. Table 2 shows that the planting
date, jointing date, flowering date, and harvest date for winter wheat in five studied cities
were basically the same. Particularly, the sowing date, rejuvenation date, jointing date,
flowering date, and harvest date in Baoding City were ten days later than the other four
cities. It can be seen from Table 3 that the sowing and harvesting dates for summer corn
in Weifang City and Baoding City were later than other cities, and the jointing dates and
heading dates were basically the same in the five cities.

Table 2. The date and ordinal of winter wheat growing period planted in five cities.

Study City Sowing Date Overwinter Date Rejuvenation
Date Jointing Date Flowering

Date Harvest Date

Anyang 11 October (285) 11 December (346) 1 March (60) 1 April (91) 11 May (131) 11 June (162)
Zhengzhou 11 October (285) 11 December (346) 1 March (60) 21 March (80) 1 May (121) 11 June (162)

Weifang 11 October (285) 11 December (346) 11 March (70) 1 April (91) 11 May (131) 11 June (162)
Jinan 11 October (285) 11 December (346) 11 March (70) 1 April (91) 11 May (131) 11 June (162)

Baoding 1 October (275) 11 December (346) 11 March (70) 11 April (101) 21 May (141) 21 June (162)

Table 3. The date and ordinal of summer corn growing period planted in five cities.

Study City Sowing Date Jointing Date Heading Date Harvest Date

Anyang 11 June (162) 21 July (202) 11 August (223) 21 September (264)
Zhengzhou 11 June (162) 11 July (202) 11 August (223) 21 September (264)

Weifang 21 June (172) 21 July (202) 11 August (223) 1 October (274)
Jinan 21 June (172) 21 July (202) 11 August (223) 21 September (264)

Baoding 21 June (172) 1 August (213) 11 August (223) 1 October (274)

According to the growth dates and the daily ordinal numbers of winter wheat and
summer maize in the five cities, the cumulative precipitation for each growth stage was
calculated by summing the daily precipitation of each city, and the daily precipitation data
of the five study cities from 1980 to 2019 were from the National Meteorological Science Data
Center (http://data.cma.cn, accessed on 30 December 2019). The effective precipitation
calculation method recommended by the United States Department of Agriculture Soil
Conservation Service was used to calculate the effective precipitation [36]. The annual
effective precipitation during the full growth period of winter wheat and summer maize
in the five cities in the past 40 years is shown in Table 4. It can be seen from the table that
the annual effective precipitation of the two crops in the full growth period were random,
and the effective precipitation during the growth period of summer maize were all greater
than the effective precipitation during the growth period of winter wheat in the five cities.
The order of the average effective precipitation during the full growth period of winter
wheat was as follows: Anyang City, Zhengzhou City, Jinan City, Baoding City, and Weifang
City. The regions with the highest average effective precipitation during the full growth
period of summer maize were Anyang City, Jinan City, Zhengzhou City, Weifang City, and
Baoding City.

2.2. Prediction and Planning Model

The crop area, yield per unit area, the cost of irrigation water allocation, and the price
of crop product are the main factors considered during irrigation water allocation, as crop
area can indicate farmers’ willingness to plant this crop. Factors such as the prices of crop
product, precipitation, irrigation water costs, natural disasters, and farmers’ willingness
to plant can all lead to changes in crop area, so these factors are uncertain. Due to the
limitation of effective arable land and climatic conditions, the crop planting area of winter
wheat and summer maize in a city always varies within a certain range. The yield per

http://data.cma.cn
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unit area of crops is the main element to measure the benefits of irrigation water allocation.
It is easily affected by multiple factors such as crop planting technology, the irrigation
system, and field management. Due to the improvements in planting technology and at
the management level, the yield per unit area of winter wheat and summer maize has
time-series characteristics. At the same time, irrigation water sources for field crops can
be divided into natural precipitation and artificial irrigation, and natural precipitation
varies randomly. Therefore, not only the crop planting area should be considered when
calculating water distribution costs, but the random characteristics of natural precipitation
should be considered. The prices of international agricultural products are easily affected
by the world trading market. Based on China’s policy of maintaining stable prices of major
agricultural products, the purchase prices of agricultural products such as winter wheat
and summer corn are basically stable, so the price of winter wheat and summer corn were
considered constant.

Table 4. Annual effective precipitation (mm) during the growth period of winter wheat and summer
maize in the past 40 years.

Year
Effective Precipitation from September to May Effective Precipitation from June to September

Anyang Zhengzhou Weifang Jinan Baoding Anyang Zhengzhou Weifang Jinan Baoding

1981 36.7 69.2 82.6 87.5 31.7 300.6 256.5 202.7 144.5 198.9
1982 60. 6 131.3 87.5 106.4 24.2 389.4 287.0 301.9 269.8 332.2
1983 128.1 250.6 163.9 156.6 94.2 170.6 450.7 228.1 212.5 197.34
1984 153.3 105.9 144.6 107.7 70.3 363.2 420.7 285.7 184.8 143.2
1985 92.3 247.3 147.3 109.0 31.2 262.2 265.8 274.2 358.6 484.0
1986 99.0 138.9 87.4 65.1 43.2 100.5 122.6 175.1 177.5 180.2
1987 123.5 200.3 157.2 135.8 86.9 231.5 205.1 496.4 237.3 224.2
1988 153.4 144.1 105.7 99.5 120.3 292.4 209.2 337.4 253.4 472.6

* * * * * * * * * * *
2017 174.9 239.1 165.3 108.6 54.6 287.9 238.5 297.4 335.6 292.7
2018 129.4 163.2 145.3 165.2 162.4 338.2 244.9 477.3 464.6 219.2
2019 93.9 80.8 64.5 61.7 52.6 200.0 321.6 421.7 274.1 256.0

Average
Value 105.5 151.6 131.7 112.3 82.7 286.5 283.3 350.3 278.3 267.0

Standard
Deviation 36.08 55.10 45.24 37.12 42.46 95.35 87.49 120.96 93.95 112.24

* represent the omitted effective precipitation data, from 1989 to 2016 in five cities.

In this paper, uncertain crop area and irrigation water allocation costs are considered
as interval parameters, randomly varying precipitation was treated as a chance-constrained
variable, and the yield per unit area of the two crops were considered as time-series
parameters. The fuzzy probability programming, opportunity-constrained programming,
and LSTM model were used to describe the three uncertain parameters, respectively. Based
on those planning methods, combined with the crop water production function and the
price of crop products, an irrigation water distribution benefit prediction and planning
model (LSTM-CCP-FPP-IPP) was constructed. The framework of the model is shown in
Figure 3.
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Figure 3. Schematic of the LSTM-CCP-FPP-IPP planning programming.

3. Methodology
3.1. LSTM Prediction Model

The LSTM-NN are now widely applied in various applications [37], the basic concept
of LSTM-NN is proposed in Figure 4,. LSTMs are especially suitable for predicting sequence
data because they address vanishing and exploding gradient problems of standard RNNs
through incorporating gating functions and state dynamics. LSTM-NN architecture is
based on gates, the function of which is to choose the data to keep and to discard. An
LSTM-NN cell consists of three gates: input gate, output gate, and forget gate. The input
gate gives new inputs to the cell, the output gate specifies the output of the cell, and the
forget gate is responsible for specifying the prior values that need to be retained for future
reference. The major components of a basic LSTM network consist of a sequence input
layer that is employed to input a sequence (time-series data) to the LSTM network, and
an LSTM model layer that is used for learning long-term reliance among the time-steps of
sequence (time-series) data [38].

Figure 4. A basic LSTM network architecture for regression problems.
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3.2. CCP-FFP-IPP Planning Programming

Fuzzy possibility planning can effectively characterize uncertain parameters with
fuzzy possibility distribution [39]. The expression of the FPP model is as follows:

Max f = CX (1)

Subject to:
AX ≥ B (2)

X ≥ 0 (3)

where C represents a fuzzy parameter with fuzzy probability distribution. In agriculture

irrigation water distribution planning, the planting area of crops changes within a certain
range, which is an uncertain parameter. Although the FPP model can characterize the fuzzy
probability distribution of this parameter, it is difficult to characterize the fuzzy probability
distribution. The interval programming (IPP) method can solve the problem of unknown
probability distribution and membership function of uncertain parameters. Therefore, IPP
and FPP are combined to construct a quantile interval planning method:

Max f± =
k

∑
j=1

c±
j

x±j +
n

∑
j=k+1

c±
j

x±j (4)

Subject to:
k

∑
j=1

a±ij x±j +
n

∑
j=k+1

a±ij x±j ≤ b±i , i = 1, 2, . . . , m (5)

x±j ≥ 0, j = 1, 2, . . . , n (6)

where a±ij ∈ {R
±}m×n, b±i ∈ {R

±}m×1, c±
j
∈ {R±}1×n, x±j ∈ {R

±}n×1. R± indicates the

interval of related parameters, x±j represents decision variables, and c±
j
(j = 1, 2, · · ·, k) and

a±ij (j = 1, 2, · · ·, k) represent the positive coefficients representing the model and constraints,

respectively. c±
j
(j = k + 1, k + 2, · · ·, n) and a±ij (j = k + 1, k + 2, · · ·, n) represent the neg-

ative coefficients of the model and constraints, respectively. c±
j

represents the interval

parameter that represents the fuzzy boundary. The boundary fuzzification of the interval
parameter can be realized by the fuzzy membership function. This paper uses the most
commonly used triangular fuzzy membership function, which can be determined by the
center cc and the distance from the boundary to the center, so it is fuzzy under the linear
condition. The parameters can be expressed as:

µC(x) =

{
0, i f x〈cc −v or x〉cc −v

1− |c
c−x|
v , i f cc −v ≤ x ≤ cc + v

(7)

where µC(x) represents the membership function representing fuzzy parameters. The
model can be equivalently converted to:

Max f± =

(
k

∑
j=1

cc±
j x±j +

n

∑
j=k+1

c′c±j x±j ,
k

∑
j=1

vj

∣∣∣x±j ∣∣∣+ n

∑
j=k+1

v′j

∣∣∣x±j ∣∣∣
)

(8)
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Based on the possibility measurement theory, the quantile method is used to solve the
objective of the smallest symmetrical triangular fuzzy parameter. Through the minimum
probability measurement level, the above formula can be transformed into:

Max f± =

(
k

∑
j=1

cc±
j x±j +

k

∑
j=1

λvj

∣∣∣x±j ∣∣∣+ n

∑
j=k+1

c′c±j x±j +
n

∑
j=k+1

λv′j

∣∣∣x±j ∣∣∣
)

(9)

where λ represents the possibility measurement level [40], which reflects the attitude of
decision makers on crop planting area, and the value is in the range of [0, 1]. The larger
the value, the larger the range of the interval parameter, which means that the decision
maker believes that the planting area is likely to fluctuate, and the smaller the value is, the
decision maker believes that the planting area is less likely to fluctuate.

The hybrid model of IPP and FPP can solve the problem of uncertainty and uncertainty
of the uncertain interval parameters, but it cannot deal with the precipitation and other
random variables in the irrigation water distribution forecasting plan. This paper introduces
the chance-constrained programming method (CPP) to solve the problem of probability
distribution of random variables. Therefore, CPP is introduced into the IPP-FPP hybrid
model, and the quantile interval chance-constrained programming model (IPP-FPP-CPP) is
obtained. It can be expressed as:

Max f± =

(
k

∑
j=1

cc±
j x±j +

k

∑
j=1

λvj

∣∣∣x±j ∣∣∣+ n

∑
j=k+1

c′c±j x±j +
n

∑
j=k+1

λv′j

∣∣∣x±j ∣∣∣
)

(10)

Subject to:
k

∑
j=1

a±ij x±j +
k

∑
j=k+1

a±ij x±j ≤ b(qi)±
i , i = 1, 2, . . . , m (11)

x±j ≥ 0, j = 1, 2, . . . , n (12)

Based on the interactive algorithm of the planning model, FICMP model customers
can be split into two deterministic models.

The lower models can be expressed as:

Max f− =

(
k

∑
j=1

cc−
j x−j +

k

∑
j=1

λv−j

∣∣∣x−j ∣∣∣+ n

∑
j=k+1

c′c−j x+j +
n

∑
j=k+1

λv′j
−
∣∣∣x+j ∣∣∣

)
(13)

Subject to:

k

∑
j=1

∣∣∣a±ij ∣∣∣+Sign
(

a±ij
)

x−j +
k

∑
j=k+1

∣∣∣a±ij ∣∣∣−Sign
(

a±ij
)

x+j ≤ (b(qi)
i )

−
, i = 1, 2, . . . , m (14)

x−j ≥ 0, j = 1, 2, . . . , k (15)

x+j ≥ 0, j = k + 1, k + 2, . . . , n (16)

The upper models can be expressed as:

Max f+ =

(
k

∑
j=1

cc+
j x+j +

k

∑
j=1

λv+
j

∣∣∣x+j ∣∣∣+ n

∑
j=k+1

c′c+j x−j +
n

∑
j=k+1

λv′j
+
∣∣∣x−j ∣∣∣

)
(17)

Subject to:

k

∑
j=1

∣∣∣a±ij ∣∣∣−Sign
(

a±ij
)

x+j +
k

∑
j=k+1

∣∣∣a±ij ∣∣∣+Sign
(

a±ij
)

x−j ≤ (b(qi)
i )

+
, i = 1, 2, . . . , m (18)
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x+j ≥ x−jopt, j = 1, 2, . . . , k (19)

x−jopt ≥ x−j , j = k + 1, k + 2, . . . , n (20)

3.3. Crop Water Production Function

The book “Water Requirements and Water Consumption Management of Main Crops
in Northern China” has systematically expounded the methods, laws, applications and
countermeasures of water requirements and the water consumption management of the
main crops in Northern China [41]. According to the book, the relationship between crop
yield and water consumption during the full growth period can be summarized into two
categories. Formula (21) is suitable for areas with medium and low yields, and Formula (22)
is suitable for areas with higher yields; in other words, the relationship between crop yield
and water consumption presents a quadratic parabola, and the highest point of the parabola
is the maximum yield of crops. The coefficients of the yield and water consumption of
winter wheat and summer maize in the five regions are shown in Table 5. Based on the crop
yield per unit area predicted by the LSTM model, the future water consumption per unit
area of crops can be obtained by using the functional relationship between yield and water
consumption, which provides parameter support for the water distribution benefit model.

Y = a0ET + b0 (21)

Y = c1 + b1ET + a1ET2 (22)

where Y represents the crop yield, and the unit is kg per hectare; ET represents the water
consumption, and the unit is mm. a0, b0, a1, b1 and c1 are the empirical coefficient.

Table 5. Crop water production function coefficients of winter wheat and summer maize in five cities.

Study City
Winter Wheat Summer Corn

a1 b1 c1 a1 b1 c1

Anyang −0.0293 32.9 −2674.5 −0.0657 53.6 −3302.5
Zhengzhou −0.0607 53.5 −4360.5 −0.1740 138.6 −21,426.0

Weifang −0.0333 36.1 −4245.0 −0.2293 186.0 −28,890.0
Jinan −0.0553 65.9 −1355.8 −0.0640 54.0 −4941.0

Baoding −0.0413 40.7 −4521.0 −0.1333 116.0 −14,838.0

4. Objective

Based on the hybrid prediction and planning model, and the complexity of the irriga-
tion water allocation system and the uncertainty of the related parameters, an irrigation
water allocation benefit objective function was developed. This function aims at maximiz-
ing the benefits of irrigation water allocation under uncertain parameters, including yield
per unit area of the crop, prices of the crop products, irrigation water allocation, and the
cost of water allocation and other parameters. The objective function is as follows:

Max f± =
2

∑
j=1

A±i YiPi −
2

∑
j=1

A±i
(
xi − Pe±i

)
G± (23)

Constraints:

1. Crop planting area constraints,

Smin ≤
2

∑
i=1

A±i ≤ Smax (24)
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2. Water distribution restriction,

Wmin ≤
2

∑
i=1

A±i xi ≤Wmax (25)

3. Effective precipitation constraints,

Pe =
{

0.6Pdaily − 0.3 Pdaily ≤ 2.3
0.8Pdaily − 0.8 Pdaily > 2.3

(26)

4. Variable non-negative constraints,

xi ≥ 0 (i = 1, 2) (27)

where xi represents the water consumption of the i crop (mm); A±i represents the interval
parameter of the crop areas; Smin and Smax represent the maximum and minimum available
planting area, respectively; Wmin and Wmax represent the maximum and minimum available
irrigation water, respectively; Pe represents the effective precipitation; Pdaily represents the
daily precipitation; and G± represents the interval parameter of crop prices.

From 1 January 2006, the agricultural tax was repealed in China. The abolition of the
agricultural tax has greatly promoted farmers’ willingness to plant crops. After 2006, the
planting area of major crops increased to a certain extent in China. Since winter wheat is
planted and harvested in different years, the time range of the area’s parameter analysis of
winter wheat and summer maize in this paper was from 2007 to 2019. The maximum and
minimum values in the dataset of the crop planting area were removed, and the maximum
and minimum values in the remaining data were set as the upper and lower boundaries
of the interval parameters, respectively. In order to better reflect the uncertainty of the
model, the standard deviation of the data of winter wheat and summer corn planting
areas was set as the distance between the center value and the boundary, and the fuzzy
interval parameters of the areas with the two crops in five studied cities are shown in
Tables 6 and 7, respectively.

Table 6. Fuzzy interval parameters and statistical description of winter wheat planting areas
(105 hectares) in five studied cities.

Study City Anyang Zhengzhou Weifang Jinan Baoding

Max value 3.20 1.76 3.87 2.16 4.01
Average value 3.08 1.73 3.58 2.12 3.69

Min value 3.00 1.63 3.33 2.07 3.34
Standard deviation 0.06 0.04 0.17 0.03 0.27

Interval parameter [2.94, 3.00, 3.07]
[3.14, 3.20, 3.27]

[1.58, 1.63, 1.67]
[1.71, 1.76, 1.81]

[3.15, 3.32, 3.49]
[3.69, 3.86, 4.03]

[2.04, 2.07, 2.10]
[2.13, 2.16, 2.19]

[3.06, 3.34, 3.62]
[3.73, 4.01, 4.29]

Table 7. Fuzzy interval parameters and statistical description of summer corn planting areas
(105 hectares) in five studied cities.

Study City Anyang Zhengzhou Weifang Jinan Baoding

Max value 2.44 1.58 3.90 2.11 4.61
Average value 2.29 1.49 3.64 2.05 4.40

Min value 2.01 1.35 3.44 1.92 4.16
Standard deviation 0.14 0.07 0.15 0.06 0.17

Interval parameter [1.87, 2.01, 2.15]
[2.29, 2.43, 2.57]

[1.28, 1.35, 1.43]
[1.51, 1.58, 1.66]

[3.28, 3.44, 3.59]
[3.75, 3.90, 4.05]

[1.86, 1.92, 1.98]
[2.05, 2.11, 2.17]

[4.00, 4.16, 4.33]
[4.46, 4.61, 4.78]
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Generally, effective precipitation is a random variable, and random variables satisfy a
certain mathematical distribution. The effective precipitation of the five studied cites in the
past 40 years has been tested by Gaussian distribution, uniform distribution, and Pearson
distribution. For the full growth period of winter wheat in Anyang, Zhengzhou, Weifang,
Jinan, and Baoding, the significant indexes conforming to the Gaussian distribution of
effective precipitation were 0.781, 0.747, 0.639, 0.735, and 0.40, respectively. For the full
growth period of summer corn in Anyang, Zhengzhou, Weifang, Jinan, and Baoding, the
significant indexes conforming to the Gaussian distribution of effective precipitation were
0.991, 0.621, 0.765, 0.845, and 0.454, respectively. It can be seen that the effective precipitation
during the full growth period of the two crops in the five study cities in the past 40 years
were more in line with the Gaussian distribution. Therefore, the expected value and
standard deviation of the dataset can be used to construct a Gaussian distribution model of
precipitation throughout the full growth period of the five studied cities. According to the
amount of precipitation, Fu et al. [42] divided the years into dry years, normal years, and
humid years. The probability of the occurrence of dry years and wet years also was 0.2,
and the rate of normal years was approximately 0.6. Combining the Gaussian distribution
of effective precipitation and the probability of three types of precipitation years, this paper
calculates the range of the effective precipitation for the three types of years, and the results
are shown in Table 8.

Table 8. Chance-constrained interval parameter of effective precipitation in five study cities.

Study City
Winter Wheat (mm) Summer Corn (mm)

Dry Year Normal Year Wet Year Dry Year Normal Year Wet Year

Anyang [36.68, 75.22] (75.22, 135.83) [135.83, 183.72] [100.52, 206.43] (206.43, 366.61) [366.14, 553.48]
Zhengzhou [54.90, 105.34] (105.34, 197.90) [197.90, 279.66] [92.16, 209.85] (209.85, 356.83) [356.83, 450.70]

Weifang [51.12, 81.14] (81.14, 143.50) [143.50, 182.20] [66.98, 199.39] (199.39, 357.23) [357.23, 522.24]
Jinan [41.76, 93.71] (93.71, 169.71) [169.71, 277.48] [135.94, 248.73] (248.73, 451.94) [451.94, 623.82]

Baoding [22.04, 47.04] (47.04, 118.38) [118.38, 197.74] [108.42, 172.69] (172.69, 361.25) [361.25, 533.66]

According to the statistical yearbooks of the five studied cities, the cost of agricultural
irrigation and water allocation were basically controlled between USD 0.0314 per cubic
meter and USD 0.0628 per cubic meter. The purchase price of crop products was stable in
China, and there were no major fluctuations in prices, so the purchase price of winter wheat
and summer corn were USD 796.97 per ton and USD 848.99 per ton [43]. Based on the above
prediction model, planning method and objective function, crop area interval parameters,
effective precipitation, irrigation water allocation costs, the prices of crop product, and the
benefits of irrigation water allocation would be effectively planned.

5. Result Analysis
5.1. Forecast of Yield per Unit Area and Crop Water Consumption

Zhou et al. [44] proposed an LSTM model and applied it to the time-series forecast
of tomato production in Xinjiang, China. Based on the research, this study conducted a
time-series prediction model of the yield per unit of winter wheat and summer corn in
the five studied cities. Yield per hectare of winter wheat and summer corn in the five
cities for the years 2000 to 2019 were obtained from the statistics department, as shown
in Figure 2, which constituted a dataset, with the number of datasets totaling 200. The
dataset was divided into the training set and the validation set, with the training and
validation sets accounting for 70 percent and 30 percent of the total dataset, respectively,
and the crop yield per hectare was the test. According to the best parameters for RNN
and LSTM-NN forecasting models [38], the look back of the time step in the model was
set to two, the number of hidden layers was one, the number of neurons in the hidden
layer was 200, the number of neurons in the input and output layer were both one, and
the Adam optimization method was based on the principle of minimum root mean square
error, solved to obtain the trained model. Moreover, the learn rate drop period was set
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to 20, the batch size was set to 1, and the model was trained 500 times. Since the 2020
statistical yearbooks of the four studied cities have been publicly released, and the statistical
yearbooks of Baoding in 2020 and the five studied cities in 2021 and 2022 have not been
publicly released, this paper uses the 2020 crop yield data of the four cities as the test set.

The comparison prediction value and the true value of crop yield per hectare in the
five cities are shown in Figure 5. It can be seen from the figure that the trained prediction
model can also accurately predict the change trend and value of the two crops’ yields per
hectare in the five cities, so that the predicted value and the real value maintain a good
consistency. The city with a large error between the predicted value and the actual value of
winter wheat yield per unit area is Anyang City, and the city with a large error between the
predicted value and the actual value of summer corn yield per unit area is Weifang City. At
the same time, the mean absolute error (MAE) of the training set in the model is shown in
Table 9. It can be seen from the table that the MAE of the model was from 61.56 kg per ha to
231.62 kg per ha, indicating that the model has high prediction accuracy and can meet the
accuracy requirements of prediction and planning. Based on this model, the yield per unit
area of winter wheat and summer maize in the five studied cities from 2020 to 2022 were
predicted, and the MAE between the predicted value and the actual value of the validation
set are shown in Table 9; it can be seen that the yield per unit hectare in a city has little
difference in different years.

Table 9. Prediction accuracy and prediction results of yield per unit area (kg per hectare) in future.

Year
Anyang Zhengzhou Weifang Jinan Baoding

Wheat Corn Wheat Corn Wheat Corn Wheat Corn Wheat Corn

MAE 121.09 231.62 75.27 83.92 99.04 98.05 145.19 185.03 61.56 189.26

2020 6464.75 6600.20 4828.50 4842.59 6150.17 6407.73 6018.43 5927.71 6252.85 5784.50
2021 6574.71 6523.99 4832.67 4824.77 6013.05 6344.41 6025.69 5994.35 6287.26 5855.43
2022 6527.11 6485.03 4846.65 4807.97 6038.37 6424.87 5997.88 6020.74 6295.11 5884.25
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wheat and (b) summer corn.

The 2020 Baoding Statistical Yearbook has not yet been released, so the study counted
the predicted and actual values of the test set of the yield per unit area of the two crops in
the remaining four cities. The comparison between the prediction value and true value of
the crop yield per hectare in the four cities in 2020 is shown in Figure 6. It can be seen from
the figure that the trained prediction model can also accurately predict the change trend
and value of the two crops’ yields per hectare in the five cities. The MAEs of the predicted
value and the actual value of winter wheat’s yield per unit area in four cities are 696.67,
238.05, 231.84, and 302.97, respectively. The MAE of the predicted value and the actual
value of summer corn’s yield per unit area in four cities are 124.56, 193.57, 14.02, and 13.27,
respectively. In the five cities, the yield per unit area of winter wheat did not increase year
by year, and the yield per unit area of summer corn also showed the same characteristics.
The order of cities according to yield per unit area of winter wheat from high to low are
Anyang, Baoding, Weifang, Jinan and Zhengzhou, and the cities with yield per unit area
of summer corn, in the order from high to low, are Anyang, Weifang, Jinan, Baoding and
Zhengzhou. In general, Anyang is the city with the highest yield per unit area of winter
wheat and summer maize.

Based on the predicted yields per unit area of winter wheat and summer corn in the
five studied cities, and the crop water production function, the water consumption per
unit area of the crop could be calculated. At the same time, the probability distribution
in different effective precipitation levels was considered. The amount of irrigation water
required per unit area of crops under three different precipitation opportunity conditions is
shown in Figure 7. It can be seen from the figure that the irrigation amount of winter wheat
from 2020 to 2022 in the five studied cities was greater than that of summer corn. When the
year was humid, the amount of irrigation water of summer corn in the five studied cities
was very small, which means that natural precipitation in wet years can meet the water
requirements of summer corn. In general, the variation range of the amount of summer
corn irrigation water under the three probability conditions were, in descending order:
Weifang, Zhengzhou, Jinan, Anyang, and Baoding. Predicting and planning the irrigation
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water volume of summer corn is more important for Weifang and Zhengzhou than other
cities. It can be seen from the figure that for winter wheat, it is necessary to allocate
irrigation water under three different types of years in five cities. There was little difference
in the full irrigation amount of winter wheat under different probability conditions in the
five cities. The variation range of the amount of winter wheat irrigation water under the
three probability conditions was, in descending order: Jinan, Weifang, Baoding, Anyang,
and Zhengzhou. The five studied cities all need to consider the planning of winter wheat
irrigation and water allocation every year.

Figure 6. The comparison of predicted value and true value of test set in the model.

5.2. Production Value of the Two Crops

The production value of a crop can be obtained by multiplying the crop area, the yield
per unit area, and the unit price of crop products. According to farmers’ willingness to
plant crops and the theory of possibility measure, this paper sets four possibility levels, 1,
0.9, 0.8, and 0.7, which fuzzy the boundaries of the interval of the crop area. The production
value of winter wheat and summer maize under different possibilities of planting areas in
the five studies cities from 2021 to 2023 is shown in Table 10. In general, a higher probability
level will lead to a larger range in production value. On the contrary, a lower probability
level will lead to a smaller range in production value. The greater the probability, the less
certainty the decision makers have about the future acreage.

The results show that there is a trade-off between the possibility level of crop area
and crop production value. If decision-makers have more information about the crop
planting area, the accuracy of the selection possibility level will be higher. In the case of
insufficient information, the decision-makers need to choose a higher probability level so
that the production value of the decision will be obtained. The smaller the error between
the range and the actual output value range, the higher the accuracy of the planning and
forecasting model.
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Figure 7. Interval parameters for the prediction of irrigation water allocation in five cities. (a) Lower
bound of irrigation water allocation in 2020; (b) upper bound of irrigation water allocation in 2020;
(c) lower bound of irrigation water allocation in 2021; (d) upper bound of irrigation water allocation
in 2021; (e) upper bound of irrigation water allocation in 2022; and (f) upper bound of irrigation
water allocation in 2022.
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Table 10. Interval parameters of production value of winter wheat and summer maize in five cities
under different possibility conditions.

Site Year
Wheat ($ 108) Corn ($ 108)

1 0.9 0.8 0.7 1 0.9 0.8 0.7

A
ny

an
g 2021 [7.74, 8.25] [7.75, 8.23] [7.77, 8.22] [7.78, 8.20] [5.63, 6.83] [5.67, 6.79] [5.71, 6.75] [5.75, 6.71]

2022 [7.87, 8.39] [7.89, 8.38] [7.90, 8.36] [7.92, 8.34] [5.56, 6.75] [5.60, 6.71] [5.64, 6.67] [5.68, 6.63]
2023 [7.81, 8.33] [7.83, 8.32] [7.85, 8.30] [7.86, 8.28] [5.53, 6.71] [5.57, 6.67] [5.61, 6.63] [5.65, 6.59]

Z
he

ng
zh

ou 2021 [3.14, 3.39] [3.15, 3.38] [3.16, 3.37] [3.16, 3.36] [2.78, 3.25] [2.80, 3.24] [2.82, 3.22] [2.83, 3.20]

2022 [3.14, 3.39] [3.15, 3.39] [3.16, 3.38] [3.17, 3.37] [2.77, 3.24] [2.79, 3.23] [2.80, 3.21] [2.82, 3.20]

2023 [3.15, 3.41] [3.16, 3.40] [3.17, 3.39] [3.18, 3.38] [2.77, 3.23] [2.80, 3.22] [2.80,3.20] [2.81,3.19]

W
ei

fa
ng 2021 [8.16, 9.47] [8.20, 9.43] [8.24, 9.39] [8.28, 9.35] [9.34, 10.62] [9.38,10.57] [9.43,10.53] [9.47,10.49]

2022 [7.97, 9.26] [8.02, 9.22] [8.06, 9.18] [8.10, 9.14] [9.25, 10.51] [9.29, 10.47] [9.33, 10.43] [9.37, 10.39]
2023 [8.00, 9.30] [8.05, 9.26] [8.09, 9.22] [8.13, 9.18] [9.37, 10.64] [9.41, 10.60] [9.45, 10.56] [9.49, 10.52]

Ji
na

n

2021 [4.96, 5.19] [4.97, 5.18] [4.98, 5.17] [4.98, 5.17] [4.84, 5.31] [4.85, 5.30] [4.87, 5.28] [4.88, 5.27]
2022 [4.97, 5.19] [4.97, 5.19] [4.98, 5.18] [4.99, 5.17] [4.89, 5.37] [4.91, 5.35] [4.92, 5.34] [4.93, 5.33]
2023 [4.94, 5.17] [4.95, 5.16] [4.95, 5.16] [4.97, 5.15] [4.91, 5.40] [4.92, 5.38] [4.94, 5.37] [4.96, 5.35]

Ba
od

in
g 2021 [8.33, 9.99] [8.39, 9.92] [8.47, 9.85] [8.54, 9.78] [10.23, 11.33] [10.27, 11.29] [10.31, 11.24] [10.35, 11.20]

2022 [8.38, 10.04] [8.44, 9.97] [8.51, 9.90] [8.58, 9.83] [10.34, 11.47] [10.39, 11.43] [10.43, 11.38] [10.48, 11.34]
2023 [8.38, 10.05] [8.45, 9.99] [8.52, 9.91] [8.59, 9.85] [10.40, 11.52] [10.44, 11.48] [10.48, 11.44] [10.53, 11.40]

5.3. Production Profit of Winter Wheat

Considering the crop production value under different possible crop areas, and the
irrigation water allocation cost under different effective precipitation probabilities, the
lower and upper parameters of winter wheat production’s profit in the five studied cities
were calculated, and the results are shown in Table 11. The larger the probability value
of the crop area, the smaller the lower boundary value of its winter wheat production
profit, and the larger the upper boundary value. The lower and upper boundary values
of winter wheat production’s profits were sorted by cities from small to large, as follows:
Zhengzhou City, Jinan City, Anyang City, Weifang City, and Baoding City. When the
planting area and effective precipitation were determined, the difference between the upper
and lower bounds of winter wheat production’s profits in the five cities are, in descending
order: Baoding City, Weifang City, Anyang City, Jinan City and Zhengzhou City. When
the effective precipitation was determined, the change in the range of the lower and upper
boundaries of winter wheat’s production profit between the possible values of adjacent
crop areas are, in descending order: Baoding City, Weifang City, Anyang City, Zhengzhou
City and Jinan City.

In general, under the conditions of a higher possibility level of a planting area and the
effective precipitation probability in a year, the range between upper and lower boundaries
of the production profit of winter wheat is larger. This is due to the large range of effective
precipitation and crop area changes in the year. It can be seen from the figure that when the
effective precipitation was the same, the upper and lower boundaries of the production
profit of winter wheat were different with different conditions of crop area possibility. When
the crop area possibility was the same, the upper and lower boundaries of the production
profit of winter wheat were different with different conditions of effective precipitation.
The larger the probability value of the effective precipitation, the larger the lower boundary
value and the upper boundary value of its winter wheat production profit. Under the
conditions of the same effective precipitation and crop planting area in different years, the
correlation between winter wheat production profit and unit area yield is the greatest. For
example, when the probability is 0.9, the profit range of winter wheat in the Anyang area is
(44.31,50.56) if the normal precipitation year is 2022, and the profit range of the region in
a drought year is (44.03,49.98) when the probability is 0.7, and the profit range has been
reduced by 4.8%.
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Table 11. Interval parameters of production value of winter wheat in five cities under different
possibilities and precipitation.

City λ

2020 ($ 108) 2021 ($ 108) 2022 ($ 108)

Dry Year Normal
Year Wet Year Dry Year Normal

Year Wet Year Dry Year Normal
Year Wet Year

A
ny

an
g 1 [6.87, 7.83] [6.94, 7.90] [7.05, 7.94] [6.89, 7.92] [6.96, 7.98] [7.08, 8.03] [6.90, 7.89] [6.97, 7.95] [7.08, 8.00]

0.9 [6.88, 7.82] [6.95, 7.88] [7.07, 7.93] [6.90, 7.90] [6.98, 7.96] [7.09, 8.01] [6.91, 7.87] [6.98, 7.93] [7.10, 7.98]
0.8 [6.89, 7.80] [6.97, 7.86] [7.08, 7.91] [6.92, 7.88] [6.99, 7.95] [7.11, 7.99] [6.93, 7.86] [7.00, 7.92] [7.11, 7.97]
0.7 [6.91, 7.79] [6.98, 7.85] [7.10, 7.90] [6.93, 7.87] [7.01, 7.93] [7.12, 7.98] [6.94, 7.84] [7.01, 7.90] [7.13, 7.95]

Z
he

ng
zh

ou 1 [2.96, 3.33] [3.01, 3.38] [3.11, 3.40] [2.96, 3.33] [3.01, 3.38] [3.11, 3.40] [2.97, 3.34] [3.02, 3.39] [3.12, 3.41]
0.9 [2.97, 3.32] [3.02, 3.37] [3.11, 3.39] [2.97, 3.32] [3.02, 3.37] [3.12, 3.39] [2.98, 3.33] [3.03, 3.38] [3.13, 3.40]
0.8 [2.97, 3.31] [3.03, 3.36] [3.12, 3.38] [2.98, 3.31] [3.03, 3.36] [3.13, 3.38] [2.99, 3.32] [3.04, 3.37] [3.13, 3.39]
0.7 [2.98, 3.30] [3.04, 3.35] [3.13, 3.37] [2.99, 3.30] [3.04, 3.35] [3.13, 3.37] [3.00, 3.31] [3.05, 3.36] [3.14, 3.38]

W
ei

fa
ng

1 [7.14, 8.93] [7.20, 9.00] [7.33, 9.05] [6.96, 8.72] [7.02, 8.79] [7.15, 8.84] [6.99, 8.76] [7.05, 8.83] [7.19, 8.88]
0.9 [7.18, 8.89] [7.24, 8.96] [7.37, 9.01] [6.99, 8.68] [7.06, 8.75] [7.19, 8.80] [7.03, 8.72] [7.09, 8.79] [7.22, 8.84]
0.8 [7.21, 8.85] [7.28, 8.92] [7.41, 8.97] [7.03, 8.64] [7.09, 8.71] [7.22, 8.76] [7.06, 8.68] [7.13, 8.75] [7.26, 8.80]
0.7 [7.25, 8.81] [7.31, 8.88] [7.45, 8.93] [7.07, 8.60] [7.13, 8.67] [7.26, 8.72] [7.10, 8.64] [7.16, 8.71] [7.30, 8.76]

Ji
na

n

1 [4.29, 4.88] [4.36, 4.93] [4.46, 5.00] [4.29, 4.88] [4.36, 4.93] [4.46, 5.01] [4.28, 4.86] [4.35, 4.91] [4.45, 4.99]
0.9 [4.30, 4.87] [4.36, 4.92] [4.46, 4.99] [4.30, 4.87] [4.37, 4.93] [4.46, 5.00] [4.28, 4.86] [4.35, 4.91] [4.45, 4.98]
0.8 [4.30, 4.86] [4.37, 4.91] [4.47, 4.99] [4.31, 4.87] [4.37, 4.92] [4.47, 4.99] [4.29, 4.85] [4.36, 4.90] [4.46, 4.97]
0.7 [4.31, 4.86] [4.38, 4.91] [4.48, 4.98] [4.31, 4.86] [4.38, 4.91] [4.48, 4.99] [4.30, 4.84] [4.37, 4.89] [4.47, 4.97]

Ba
od

in
g 1 [7.35, 9.44] [7.40, 9.53] [7.55, 9.63] [7.40, 9.50] [7.45, 9.59] [7.60, 9.69] [7.41, 9.51] [7.46, 9.60] [7.61, 9.70]

0.9 [7.41, 9.37] [7.47, 9.46] [7.62, 9.56] [7.46, 9.43] [7.51, 9.52] [7.66, 9.62] [7.47, 9.44] [7.52, 9.53] [7.67, 9.63]
0.8 [7.47, 9.31] [7.53, 9.40] [7.68, 9.50] [7.52, 9.36] [7.57, 9.45] [7.73, 9.55] [7.53, 9.38] [7.58, 9.47] [7.74, 9.56]
0.7 [7.53, 9.24] [7.59, 9.33] [7.74, 9.43] [7.58, 9.30] [7.64, 9.39] [7.79, 9.48] [7.59, 9.31] [7.65, 9.40] [7.80, 9.50]

5.4. Production Profit of Summer Corn

Similarly, considering the crop production value under different possible crop areas,
and the irrigation water allocation cost under different effective precipitation probabilities,
the lower and upper margin parameters of summer corn production profit in the five
studied cities were calculated, and the results are shown in Table 12. The larger the
probability value of the crop area, the smaller the lower boundary value of its summer corn
production profit, and the larger the upper boundary value. The lower and upper boundary
values of summer corn’s production profit in the five cities, in order from small to large,
are as follows: Zhengzhou City, Jinan City, Anyang City, Weifang City and Baoding City.
When the planting area and effective precipitation were determined, the difference between
the upper and lower bounds of summer corn’s production profit in the five cities are, in
descending order: Weifang City, Baoding City, Anyang City, Jinan City and Zhengzhou
City. When the effective precipitation was determined, the change range of summer corn’s
lower boundary and upper boundary for production profit between the possible values
of adjacent crop areas are, in descending order: Anyang City, Baoding City, Weifang City,
Zhengzhou City and Jinan City.

In general, under the conditions of a higher planting area’s possibility level and the
effective precipitation probability in a year, the range between upper and lower boundaries
of the production profit of summer corn are larger. This is due to the large range of effective
precipitation and crop area changes in the year. It can be seen from Table 7 that when the
effective precipitation was the same, the upper and lower boundaries of the production
profit of summer corn were different with different conditions of crop area possibility. When
the crop area possibility was the same, the upper and lower boundaries of the production
profit of summer corn were different with different conditions of effective precipitation.
The larger the probability value of the effective precipitation, the larger the lower boundary
value and the upper boundary value of its production profit for summer corn. Under the
conditions of the same effective precipitation and crop planting area in different years, the
correlation between summer corn’s production profit and unit area yield is the greatest.
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Table 12. Interval parameters of production value of summer corn in five cities under different
possibilities and precipitation.

City λ
2020 ($108) 2021 ($108) 2022 ($108)

Dry Year Normal Year Wet Year Dry Year Normal Year Wet Year Dry Year Normal Year Wet Year

A
ny

an
g 1 [5.41, 6.78] [5.54, 6.84] [5.64, 6.84] [5.35, 6.70] [5.48, 6.76] [5.57, 6.76] [5.32, 6.66] [5.45, 6.72] [5.54, 6.72]

0.9 [5.44, 6.74] [5.58, 6.80] [5.68, 6.80] [5.38, 6.66] [5.61, 6.72] [5.61, 6.72] [5.35, 6.63] [5.49, 6.68] [5.58, 6.68]
0.8 [5.48, 6.70] [5.62, 6.76] [5.72, 6.76] [5.42, 6.62] [5.56, 6.68] [5.65, 6.68] [5.39, 6.59] [5.53, 6.64] [5.62, 6.64]
0.7 [5.52, 6.66] [5.66, 6.72] [5.76, 6.72] [5.46, 6.59] [5.60, 6.64] [5.69, 6.64] [5.43, 6.55] [5.56, 6.60] [5.65, 6.60]

Z
he

ng
zh

ou 1 [2.60, 3.21] [2.70, 3.26] [2.79, 3.26] [2.59, 3.20] [2.69, 3.25] [2.78, 3.25] [2.58, 3.19] [2.68, 3.24] [2.77, 3.24]
0.9 [2.62, 3.20] [2.72, 3.24] [2.80, 3.24] [2.61, 3.18] [2.71, 3.23] [2.80, 3.23] [2.60, 3.17] [2.70, 3.22] [2.78, 3.22]
0.8 [2.63, 3.18] [2.73, 3.23] [2.82, 3.23] [2.62, 3.17] [2.72, 3.22] [2.81, 3.22] [2.61, 3.16] [2.71, 3.21] [2.80, 3.21]
0.7 [2.65, 3.16] [2.75, 3.21] [2.84, 3.21] [2.64, 3.15] [2.74, 3.20] [2.82, 3.20] [2.63, 3.14] [2.73, 3.19] [2.82, 3.19]

W
ei

fa
ng

1 [8.85, 10.50] [9.13, 10.63] [9.36, 10.63] [8.76, 10.40] [9.04, 10.53] [9.27, 10.53] [8.87, 10.53] [9.16, 10.66] [9.38, 10.66]
0.9 [8.89, 10.47] [9.17, 10.59] [9.40, 10.59] [8.80, 10.36] [9.08, 10.49] [9.31, 10.49] [8.91, 10.49] [9.20, 10.62] [9.42, 10.62]
0.8 [8.93, 10.42] [9.22, 10.55] [9.44, 10.55] [8.84, 10.32] [9.12, 10.45] [9.35, 10.45] [8.95, 10.45] [9.24, 10.58] [9.47, 10.58]
0.7 [8.96, 10.38] [9.25, 10.51] [9.48, 10.51] [8.87, 10.28] [9.16, 10.41] [9.39, 10.41] [8.99, 10.41] [9.28, 10.54] [9.51, 10.54]

Ji
na

n

1 [4.61, 5.27] [4.74, 5.32] [4.85, 5.32] [4.65, 5.32] [4.79,5.38] [4.90, 5.38] [4.67, 5.34] [4.81, 5.41] [4.92, 5.41]
0.9 [4.62, 5.25] [4.76, 5.31] [4.86, 5.31] [4.67, 5.31] [4.81, 5.37] [4.91, 5.37] [4.69, 5.33] [4.82, 5.39] [4.94, 5.39]
0.8 [4.64, 5.24] [4.77, 5.29] [4.87, 5.29] [4.68, 5.29] [4.82, 5.35] [4.93, 5.35] [4.70, 5.32] [4.84, 5.38] [4.95, 5.38]
0.7 [4.65, 5.22] [4.79, 5.28] [4.89, 5.28] [4.70, 5.28] [4.84, 5.34] [4.94, 5.34] [4.72, 5.30] [4.85, 5.36] [4.96, 5.36]

Ba
od

in
g 1 [9.87, 11.23] [10.04, 11.35] [10.24, 11.35] [9.99, 11.37] [10.16, 11.48] [10.37, 11.48] [10.04, 11.43] [10.21, 11.54] [10.42, 11.54]

0.9 [9.91, 11.19] [10.08, 11.30] [10.28, 11.30] [10.03, 11.33] [10.20, 11.44] [10.41, 11.44] [10.08, 11.38] [10.25, 11.50] [10.46, 11.50]
0.8 [9.95, 11.15] [10.12, 11.26] [10.32, 11.26] [10.07, 11.29] [10.24, 11.40] [10.45, 11.40] [10.12, 11.34] [10.29, 11.46] [10.50, 11.46]
0.7 [9.99, 11.11] [10.16, 11.22] [10.36, 11.22] [10.11, 11.25] [10.29, 11.36] [10.49, 11.36] [10.16, 11.30] [10.33, 11.41] [10.54, 11.41]

5.5. Discussion and Analysis

The prediction model for the two main crop’s yields per hectare was developed, and
the yield per unit area of the two crops from 2020 to 2022 was predicted by comparing the
predicted value and the actual value in 2020. The results show that the prediction model
has high prediction accuracy and can be used for two crops in five cities in the North China
Plain. The irrigation water allocation benefits planning model based on hybrid uncertain
programming was developed, and the production profits of winter wheat and summer
corn in different scenarios were planned. The planning model and prediction model are
linked through the crop water production function. Based on the predicted yield per unit
area of winter wheat and summer maize from 2020 to 2022, this model generates interval
parameters of production profits under three kinds of precipitation opportunities and four
kinds of planting willingness.

According to the data of the 2020 Statistical Yearbook of the five cities, the planting
areas of winter wheat in Anyang, Zhengzhou, and Weifang have all declined significantly,
whereas the planting area of winter wheat in Jinan has not changed significantly. On the
other hand, the planting area of summer maize in the four cities did not change much from
previous years and remained basically stable. The main reason for this result is that the
growth period of summer maize is shorter than that of winter wheat, the rainfall during
the growth period of summer maize is sufficient, and the benefit of planting summer maize
is higher than that of planting winter wheat, so the planting area of summer maize in the
North China Plain has not dropped significantly. According to the possibility criterion, in
the planning of winter wheat’s planting area in the North China Plain, the possibility value
should be larger, and the possibility value of the planning of summer maize’s planting
area should be smaller. In this study, the probability of a good intention for winter wheat
planting was 1. The probability of a better intention for summer corn planting had a value
of 0.8. The comparison of planned interval parameters and the true value of profit in 2020
are shown in Figure 8. According to the precipitation data, 2020 was a dry year. Based on
the water consumption of the two crops, in order to obtain higher yields, more irrigation
water needs to be allocated so the profit in production is smaller than that in normal years.
The production profit value is near the lower boundary of the planning interval parameter.
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Figure 8. The comparison of planned interval parameters and true value of profit in 2020. (a) Winter
wheat in 2020 and (b) summer corn in 2020.

Therefore, considering the probability of effective precipitation and crop area with
different possibility conditions, different arrays of the objective profit can be calculated
by decision makers. The two uncertainty parameters have become the keys to whether
the prediction and planning model are effective in the future. Combined with the decision
makers’ mastery of the crop planting area and the ability to select a reasonable probability
distribution of effective precipitation, the decision makers can accurately seek the optimal
irrigation water allocation and production profits.
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6. Conclusions

Based on deep learning and the hybrid fuzzy uncertainty optimization method, this
study developed a crop yield prediction model per unit area and an irrigation water
distribution benefit planning model. Through the crop water production function, the
combination of the two models can effectively deal with crop planting area and effective
precipitation, and uncertain information such as irrigation water allocation costs. The
model was applied to the forecast of yield per unit area of winter wheat and summer maize
and the beneficial planning of irrigation water in five cities in the North China Plain.

The prediction accuracy of the prediction model for crop yield per unit area is high.
The average absolute error between the model’s prediction value and the actual value of the
unit area yield of winter wheat and summer maize in four cities in 2020 is controlled within
the range of 14.02 to 696.66 kg/hectare. It shows that the model can more accurately predict
the yield per unit area of crops. At the same time, the planning model for the benefit of
irrigation water allocation planning model generated three scenarios of rainfall levels and
four planting intentions, and compared the planned scenarios with the actual production
benefits of the two crops in 2020. It was found that in drought years, the possibility of the
winter wheat planting area is optimized. Out of the value of 1, the preferred value for the
likelihood of summer corn acreage is 0.8.

However, the planning model for the benefit of irrigation water allocation in this
study is an idealized scenario. Compared with the conventional deterministic planning
method, the model takes into account the uncertain parameters, which helps decision
makers seek better solutions in various scenarios. Appropriate planning schemes provide
strong technical support for the planning of irrigation water distribution and crop area
planning in the North China Plain. However, due to the large area considered in this study,
the correlation and complexity of the irrigation distribution system within the region were
not fully considered. Due to the limitation of the length of the article, this part of the content
will continue to be carried out in the follow-up research.
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