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Abstract: A phytoremediation experiment was carried out with kerosene as a model for total
petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants
at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of
42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5%
to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of
kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau
model, which was closer than that with the zero order, first order, or second order kinetic models. The
experimental study showed that the barley plant designed in a subsurface flow phytoremediation
system would have great potential for the reclamation of kerosene-contaminated water.

Keywords: phytoremediation; subsurface flow; kerosene-contaminated water; total petroleum
hydrocarbon; barley plant

1. Introduction

The most common causes of petroleum component exposure to the environment
are accidental spills such as leakage from containers, pipes, joints, and land disposal of
petroleum waste. In addition, the extraction, transportation, and refining of crude oil cause
a great deal of pollution in the environment [1]. These contaminants are highly persistent
in nature and hardly soluble in water. When exposed to soil, deterioration of soil could
happen because of their toxicity, reduction of oxygen tension, and development of the
anaerobic area, which is harmful to plant roots [2].

Upon reaching the soil surface, petroleum hydrocarbons (PHCs) degrade very slowly
and eventually accumulate in the upper soil layer, thus creating an anaerobic environment
and causing soil phytotoxicity. This phenomenon has attracted the attention of researchers
to provide novel studies. To date, abundant studies of PHCs involving crude oil [2], diesel
fuel, and mineral oil can be found. However, to our knowledge, kerosene, which is a
typical petroleum product, was left aside, although Sharonova and Breus [3] reported that
kerosene was 1.3 to 1.6 times more phytotoxic than diesel fuel and 1.3 to 1.4 times more
toxic than crude oil.
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To treat PHC’s exposure to soil and water, various physical and chemical methods
such as advanced oxidation processes as ozonation (O3/H2O2), photocatalysis (UV/TiO2),
photo-Fenton, coagulation/flocculation, filtration, chemical precipitation, and evaporation
have been studied to curb these problems, but they are not environmentally friendly, not
easy to implement, and usually high in cost, especially when the PHC concentration is very
high (above 100 mg/L) [2,4–6]. Contamination treatment using biological methods is a
safer option for environment, lower in cost, and causes no secondary pollution, especially
in soil remediation [7,8]. Among the biological methods that can be applied are microbial
remediation, plant-microbial remediation, and phytoremediation [9].

In comparison with the traditional physico-chemical methods for various reclaiming
treatment methods, phytoremediation is considered the most economical and low-effort
technique [10,11]. The implementation of potential biotechnologies such as phytodegra-
dation and phytoextraction has resulted in significant progress in this sector [12]. Heavily
contaminated industrial sites could be recovered using phytoremediation techniques [13].
Al-Baldawi et al., Abdullah et al. and Almansoory et al. [14–16] have successfully reported
phytoremediation processes tested with total petroleum hydrocarbon (TPH) waste.

In the phytoremediation process, plants are one of the important components that
affect the removal efficiency of contaminants such as PHCs. As a key biological component
in this process, microphytes play a role in depuration reactions by optimizing various
processes of removal and direct uptake of contaminants. According to Cheng et al. [17],
rhizodegradation carried out by plant roots together with bacteria in the rhizosphere, such
as rhizobacteria, is one of the major mechanisms contributing to the removal of PHCs during
the phytoremediation process. Plant roots could transform PHCs into less toxic compounds
and prevent the allelochemicals through oxidation through the use of enzymes [18]. Many
studies have also reported the ability of most bacteria in the rhizosphere to use PHCs as a
source of carbon and energy [17,19]. The unique interactions that exist between plant roots
and rhizospheric bacteria not only ensure the prompt growth of plants and soil microbes,
but also provide a suitable environment for PHC degradation [20]. In the case of the barley
plant, several authors have demonstrated the important contribution of this macrophyte in
the removal and uptake of organic compounds [21] and heavy metals [22,23].

Barley plants (Hordeum vulgare) that can be found abundantly in the arid and semi-arid
regions of North Africa, the Middle East, and the Andean countries [24] have a unique root
system architecture. Barley plants have been known to develop two types of roots, seminal
and adventitious roots, which affect water and solute transport [25] and are adaptable in a
wide range of environmental conditions with stress [24], making them a suitable candidate
to be used in phytoremediation of kerosene.

The objective of this paper was to investigate the phytoremediation of kerosene-
contaminated water at various concentrations (1–3%) using barley plants. To the best of
our knowledge, phytoremediation using barley plants in treating kerosene-contaminated
water is novel and unique since there is little information on this particular study. A
preliminary test was conducted prior to the phytoremediation study to determine the maxi-
mum inhibition concentration by increasing the kerosene concentration. Phytoremediation
was conducted in a glass aquarium for 42 days. The growth responses, such as wet and
dry weight, and root and stem lengths, were monitored within the exposure period. The
water and sand samples were collected at a periodical time for the analysis of kerosene
(represented as TPH) and physical parameters. In addition, the TPH translocated to barley
plants was also determined through the extraction method.

2. Materials and Methods
2.1. Preliminary Test

The selected barley plants used in this study were of equal number and size in each
test pail. Barley was planted in 1.62 kg of fine sand with 0.5 L of synthetic wastewater in
each pail. Synthetic wastewater was prepared by mixing water with kerosene at different
concentrations (5–20%). Another pail without kerosene acted as a control. The plants were
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classified by physical observation as healthy, withered, yellow, or dead after exposure
to kerosene.

2.2. Setup of the Phytoremediation Experimental Test Procedure

The outdoor conditions were taken into consideration during the experimental work
of phytoremediation. This work included seven glass aquariums to minimize the possibility
of kerosene sticking to the walls. The experimental setup is shown in Figure 1. The aquar-
iums were managed batch-wise in a single exposure, and every aquarium had the same
dimensions of 30 cm × 30 cm × 30 cm and was filled with layers from the bottom to top;
first, with an 80-mm layer of gravel with a grain size of 10–20 mm; second, with a 30-mm
layer of gravel with a grain size of 1–5 mm; and finally, with a 100-mm layer of sieved, fine
sand with a grain size of 0.15–1.18 mm. The aquariums were each filled with the following
differing contents: one aquarium with the reference contaminant without any plants, and
the other aquariums were filled with differing concentrations of contaminant together with
the plants in each aquarium, except for one aquarium as a plant reference without the
kerosene contaminant. The planting procedure was carried out in each aquarium with 6 L
of synthetic wastewater, adjusted by mixing normal kerosene at various concentrations of
0, 1, 2, and 3% with water (VKerosene/VWater), which was obtained from the Al-Dora petrol
station located in Baghdad city. The sand layer surface was used to maintain the water
level to act as a subsurface flow system, as commonly applied in built-up wetlands (USEPA,
2000) [26]. In this study, observations were carried out throughout the 42 days, and the
sampling times were on days 0, 7, 14, 21, 28, 35, and 42. The analysed parameters were
the concentration of kerosene in the water and sand medium. The physical parameters of
vegetation including dry and wet weights, root length, and stem height were also recorded.
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2.3. The Measurement of Water Physicochemical Properties

The total experimental activity was carried out over 42 days of exposure, while sample
performance was gathered on days 0, 7, 14, 21, 28, 35, and 42. The oxidation-reduction
potential (ORP, mV), temperature (T, ◦C), and pH were recorded on an IQ150 multiprobe
(IQ Scientific Instruments, California, USA).

2.4. Water Sampling

Clean containers were used to periodically gather the water samples (100 mL each)
from the growth medium on the sampling days of each aquarium for all treatments to
evaluate kerosene contamination. Following the Environmental Protection Agency Method
3510C (USEPA, 2011) [27], gas chromatography and liquid-liquid extraction methods were
used to measure the kerosene concentration in the synthetic wastewater [28]. Twenty-five
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millilitres of dichloromethane were used as a solvent and was added to a 1 L separator
funnel that contained a 100 mL sample of wastewater, which was then shaken for 2 min.
Sodium sulfate was then used to dry the lower organic layer that was isolated from the
bottom of the flask. The evaporation of the remaining water occurred over 3 to 4 days by
putting the residuals in a 10 mL vial inside an overhead fume hood.

2.5. Sand Sampling

The percentage of kerosene absorption by the sand samples was calculated at the
Ministry of Science and Technology, and the sand was extracted following the Environ-
mental Protection Agency Method 3550C (USEPA, 2007) [29]. Ten grams of sand from
each aquarium were collected and placed in clean containers on the sampling days to
analyse the sand and obtain kerosene for all treatments. The ultrasonic method, according
to Liu et al. [30], was implemented to detect kerosene using a solvent extraction method.
First, the sand samples were dried by mixing them with sodium sulfate (Na2SO4). Second,
50 mL of dichloromethane in a 100 mL Schott bottle was used as the solvent. Subsequently,
an ultrasonic cleaner was used to keep the Schott bottle for 30 min at a temperature of 50 ◦C
(Kwun Wah International Ltd., Shenzhen, China). Finally, glass wool was used to filter the
samples to evaporate any of the remaining dichloromethane and water, and the extracted
solution was drained into a 15 mL vial and kept in a fume hood for 3–4 days.

2.6. Plant Growth

The growth of barley exposed to the various kerosene concentrations (0, 1, 2, and 3%,
(% v/v)) was measured over 42 days on the respective sampling days (days 0, 7, 14, 21,
28, 35, and 42). On each of these sampling days, a single plant was collected from each of
four aquariums (there were three aquariums for each of the kerosene concentrations (1, 2,
and 3%, (% v/v)) and from another aquarium without the kerosene pollutant that acted
as a plant control. To observe the root length, stem height, and wet weight, tap water was
used to rinse each plant, and then normal tissue was used to absorb the remaining water.
A constant weight was achieved by drying the plant samples in an oven at 70–72 ◦C to
calculate the dry weight [31,32].

2.7. Analysis and Removal Percentage of Kerosene

Sand extracts were concentrated to 2 mL in GC vials and analysed by GC-FID utilizing
capillary-column gas chromatography (Agilent Technologies, Model 7890A, GC System,
Santa Clara, CA, USA) with an HP-5.5% phenyl methyl siloxane column (30 m × 0.32 mm
i.d. × 0.25 microns) and helium as the carrier gas. The column temperature was kept at
50 ◦C for 1 min and then ramped up by 15 ◦C per min until 320 ◦C was reached for 10 min.
The percentage of kerosene removal represented as TPH removal from each sampling day
was calculated according to the following equation:

% Removal =
(TPH0 − TPHt)

TPH0
× 100

where TPH0 = total petroleum hydrocarbon on sampling day 0 and TPHt = total petroleum
hydrocarbon on each sampling day.

3. Results and Discussion
3.1. Preliminary Test

According to the findings of the preliminary tests, it was clearly observed that the
number of withered plants increased with an increase in the kerosene concentration. After
two weeks of exposure of the barley to the kerosene, all the plants died at kerosene
concentrations of 20%. The minimum percentage of withered plants was 0% at a 1%
kerosene concentration, and 100% of the plants withered at a 20% kerosene concentration.
Fifty percent of the withered plants were observed at a kerosene concentration of 4.45%
after two weeks, as shown in Figure S1. Therefore, the concentration of kerosene should
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not exceed 4.45% in the phytoremediation test at the next stage of the phytoremediation
process because 50% of the plants withered at this concentration, which is, therefore, too
high for this species of plant.

3.2. Monitoring of Physicochemical Parameters

The phytoremediation test was used to record the physical parameter variations in
temperature, pH, and ORP (as described in Figure 2) at kerosene concentrations of 10,000,
20,000 and 30,000 mg/L for all the treatment variations used in our experiment tests, both
with and without plants. The findings showed that the temperature mean values varied
between 11 and 25 ◦C over the 42-day period [33]. The pH value is an essential aspect
of water quality conditions, exerting a huge effect on aquatic systems. The average pH
value that was measured for all the aquariums ranged from 6.8 to 7.3, which indicates that
the pH did not change significantly among the treatments [34]. Dissolved oxygen (DO)
and ORP measurements can be used to distinguish whether the conditions during the
phytoremediation test were aerobic or anaerobic [35]. The research findings demonstrated
that the treatment environment was aerobic. ORP oscillated between −21 and +10 mV,
and kerosene influenced the rhizosphere treatment environment and caused a decrease
in the ORP measurements, suggesting that the environment became more anaerobic with
increased concentrations of kerosene.
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3.3. Degradation and Removal of Kerosene from Water

Synthetic wastewater of various kerosene concentrations (1, 2, and 3%) was extracted
to calculate the kerosene degradation ratio effect of barley with the corresponding reference
contaminant with and without plants throughout the 42-day treatment period; the findings
were under the detection limit.

3.4. Removal of Kerosene in Sand

The sand extraction procedure was performed to obtain further information in the
case of kerosene degradation in the sub-strata. Figure 3 shows three different kerosene
concentration treatments of 1, 2, and 3% used both with and without plants that were
observed over 42 days, while Figure S2 shows the GC chromatogram for kerosene con-
centrations in sand and plants. The elimination ability of kerosene pollutants in most
treatments was highly divergent between the sample selection dates and the concentrations.
The highest kerosene removal in sand of 61.2% occurred at a kerosene concentration of 1%
when the duration of the treatment was completed, whereas the removal was only 23.2% in
its respective control treatment. Correspondingly, the removal percentages with kerosene
concentrations of 2 and 3% were 56.5 and 60.7%, respectively. However, the removals were
23.6 and 21.3%, in the respective control treatments. These findings, taken together, illus-
trate the capability of barley plants to survive at these three kerosene concentrations and
to increase the removal of kerosene in a subsurface flow system. The hydrocarbons were
metabolized as a result of the interaction between the rhizobacteria and the plants, while in
the unplanted sand, kerosene was degraded by volatilization, eluviation, photolysis, and
volatilization. According to Shirdam et al. [36], sorghum plants removed TPH levels in
contaminated soil by 23.63 and 45.97%, respectively, compared to the reference treatment.Water 2022, 14, x FOR PEER REVIEW 7 of 14 
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3.5. Plant Behaviour to the Kerosene Contaminant

Over the 42-day period of observing the progress of the plants exposed to the kerosene
contaminant compared with plants growing in the corresponding reference (barley without
the contaminant), it was noted that few of the plants grown in sand irrigated with kerosene-
contaminated water presented a clear change in appearance, as shown in Figure 4. Usually,
after 7 days of exposure to kerosene concentrations of 1, 2, and 3%, the growth of the plants
increased. It was observed that the plants still survived at kerosene concentrations of 1 and
2%. After 21 days at a kerosene concentration of 3%, the growth of the plants decreased
slightly in comparison to the plants in the sand without kerosene. No plant death was
observed with kerosene concentrations of 1 and 2%, which means that the degree of plant
adaptation increased in the sand contaminated with kerosene at these concentrations. At
a kerosene concentration of 3%, the growth of the barley was affected, which means that
there was an inhibition of plant growth.
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contaminant levels over 42 days.

A few of the plants showed several signs of phytotoxicity at this concentration, such as
impaired growth, yellowing leaves, and plants dying in comparison with the corresponding
reference in all conditions. These signs are approximately compatible with the findings of
Barati et al. and Shirdam et al. [33,36]. The roots of the barley were able to uptake kerosene
up to 2250 and 2625 mg/L at kerosene concentrations of 1 and 2%, respectively, after
42 days. However, at a kerosene concentration of 3%, the barley was able to uptake up to
2700 mg/L of kerosene after 21 days. For 1 and 2% kerosene concentrations, the wet and dry
biomass increased with time, as shown in Figure 5, but for the 3% kerosene concentration
after 21 days, the wet and dry biomass decreased. As reported by Aisabadi et al. [34], the
comparison in terms of root and shoot dry weight between the contaminated and control
treatments revealed approximately 22 and 30% root dry matter, and 51 and 42% shoot dry
matter of sorghum and barley in contaminated soil, respectively.

Figure 6 shows the trend of an increase in stem and root length throughout the 42 days
of kerosene exposure for 1 and 2% kerosene concentrations, but for the 3% kerosene
concentration after 21 days, the stem and root length decreased. For all treatments, the
increases in stem length and root length were similar to those of the control plants without
contaminants. The largest root and shoot dry biomass, in addition to the long root length,
were gained in the uncontaminated treatment. Merkl et al. [37] additionally observed
an important shoot length decrease in the presence of 3 and 5% crude oil. Liste and
Felgentreu [38] mentioned that a shoot biomass decrease of 38.9% was observed for rye
grass cultivated in contaminated soil during a 95-day period, and root biomass further
decreased by 52.6% in their research. The toxic composition of petroleum hydrocarbons can
cause inhibition of plant growth, specifically low molecular weight hydrocarbons [36,37,39].
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The best findings show the trend of increases in stem and root length, and in dry and wet
biomass during the 42 days of kerosene exposure at a 1% kerosene concentration.
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the kinetic models (Table 1), and the results are shown in Figure 7, respectively. The data 
obtained separately for each of the kinetic models from the slopes of the plots show good 
agreement with the Grau kinetic model compared with the other models. All constants 
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3.6. Kinetics of Removal

Kinetics are a key factor in understanding the removal process, measuring the rate of
bioremediation, and developing an efficient clean-up method for contaminated environ-
ments. The kinetics of removal are a set of empirically derived rate laws. The three rate
laws that suffice to describe most biological reactions are listed in Table 1, where Ci is the
influent contaminant concentration (mg/L), C is the effluent contaminant concentration
(mg/L), a = C

k2X (X) is the biomass concentration in the reactor, k2 is the second-order
contaminant removal rate constant (per day), b is a constant greater than unity, and k is the
rate constant (1/day) [40].

The removal data were described using zero order, first order, second order and Grau
kinetic models. The final concentration to initial concentration of the kerosene in the sand
was also plotted against time, as shown in the figure, to analyse the kinetics of the removal
processes. The kinetics of kerosene removal with and without plants were plotted using
the kinetic models (Table 1), and the results are shown in Figure 7, respectively. The data
obtained separately for each of the kinetic models from the slopes of the plots show good
agreement with the Grau kinetic model compared with the other models. All constants
resulting from fitting with R2 and SSE are shown in Table 2. The cited figures and tables
reveal that there is a satisfactory match between the experimental results and the model
predictions, as is clear from the values of the SSE in combination with R2.
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Table 1. Mathematical equations of the kinetic model.

Model Mathematical Formula

Zero order C = C0 − kt
First order C = C0e−kt

Second order C = C0
1+C0kt

Grau C = C0

(
1 − 1

b+ a
t

)

Table 2. Parameters of the kinetic model with and without the plant system.

System Model Parameter
Initial Concentration

1% 2% 3%

Plant

First order k 0.049 0.142 0.1535
R2 0.687 0.921 0.9407

RSME 703 1143 1713
MSE 494,218 1,307,427 2,933,396

Second order k 0.000033 0.000015 0.000011
R2 0.976 0.972 0.9793

RSME 445 721 790
MSE 197,798 520,046 624,593

Zero order k 280.919 555.142 844.7689
R2 0.468 0.475 0.4754

RSME 1055 1753 3170
MSE 1,112,476 3,073,787 10,049,635

Grau
a 1.003 1.079 1.1515
b 1.137 1.149 1.1274

R2 0.998 0.998 0.9989
RSME 304 558 630
MSE 92,426 310,830 396,557

Without plant

First order k 0.092 0.081 0.0832
R2 0.797 0.777 0.7695

RSME 438 209 683
MSE 192,075 43,871 466,723

Second order k 0.000020 0.000009 0.000006
R2 0.917 0.912 0.9055

RSME 382 1618 4580
MSE 145,608 2,619,230 20,976,788

Zero order k 252.831 498.344 745.9159
R2 0.422 0.444 0.4230

RSME 499 245 798
MSE 248,238 60,013 636,626

Grau
a 0.624 0.784 0.5818
b 1.279 1.295 1.3044

R2 1.000 0.999 0.9996
RSME 99 205 221
MSE 9834 42,026 49,030
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4. Conclusions

In this study of phytoremediation testing, barley plants were examined. The barley
survived and contributed to excellent conditions for the rhizobacteria to degrade kerosene
at concentrations of 1, 2, and 3% (% v/v). This caused plant inhibition because the kerosene
was attached to the plant tissues and roots. The highest kerosene result of 61.2% was
obtained at a kerosene concentration of 1%. The analysis of kerosene at varying initial
concentrations of 1, 2, and 3% allowed the kinetics of kerosene to be better fitted with the
Grau model than with the zero order, first order, or second order kinetic models, as shown
by a high R2 of 0.99.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w14050687/s1, Figure S1: Percentage of withered Barley in relation
to kerosene concentrations; Figure S2: GC chromatograms at different concentration of kerosene.
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