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Abstract: Marine nepheloid layer is widely distributed in the oceans and marginal seas. The concen-
tration of suspended particles in the nepheloid layer is significantly higher than that of the adjacent
layers. Marine nepheloid layers include the surface nepheloid layer (SNL), intermediate nepheloid
layer (INL), and bottom nepheloid layer (BNL). As a transport pathway for the particulate matter
in the oceans, nepheloid layer is important to the carbon cycle and the source–sink system at the
continental margin. This paper focused on the characteristics of the marine nepheloid layer and
the mechanism of internal solitary waves that form INL and BNL, providing a reference for further
research on the marine ecological environment dynamic process and source–sink system. BNL is
formed by suspended seabed sediments with strong currents near the bottom, but the fate of BNL
remains unknown. Marine nepheloid layer significantly affects the transportation of materials within
the ocean. The transport of sediments by ISWs dramatically affects the formation of deep seabed
sedimentary landform. However, the formation process and the transport contribution of INL and
BNL are still unclear. The systematic and long-term research on the marine nepheloid layer in the
world oceans is still limited.

Keywords: marine nepheloid layer; sediment; characteristics; mechanism; internal solitary waves;
review

1. Introduction

Marine nepheloid layer is a turbid layer containing significantly more suspended
particles than the adjacent layers in oceans. The suspended particles may collide and form
large falling particle aggregates known as marine snow [1,2]. Although the nepheloid layer
continually changes with time and space, it shows certain temporal and spatial stability.
A marine nepheloid layer could last a few days to years, with a thickness ranging from
meters to kilometers [3,4]. Nepheloid layers include the surface nepheloid layer (SNL),
intermediate nepheloid layer (INL), and bottom nepheloid layer (BNL). SNL, caused by
biological activities and nearshore river plumes, is mainly located in the upper water. INL
is formed by suspended particles spreading along the isopycnic line, and generally appears
on the edge of the continental shelf, continental slope, submarine canyons, and seamounts.
Sometimes weak INL may appear in the deep sea [5–9]. BNL is formed by resuspension
of seabed sediments and is near the seabed. It has been found that the thickness of BNL
may exceed 2000 m, which is greater than the bottom mixed layer [3,5,9]. Furthermore, as a
widespread anthropogenic mechanism, bottom trawling activities can also generate BNLs
and INLs over the continental shelves and slopes [10,11].
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The concentration of suspended particles changes with oceans. The background sus-
pended particle concentrations in the oceans are generally less than 0.005 mg/L [2]. The
turbidity of the marginal seawater is greater than that of the oceans. The concentration of the
background suspended particles is between 0.05 and 0.08 mg/L in the Mediterranean Sea [9]
and is 0.08 mg/L in the Scotian Shelf [12]. It is generally believed that the concentration of the
suspended particles in the nepheloid layer exceeds 0.1~0.5 mg/L [2,6] in different sea areas
and at different depths. Studies reported that the concentration in most sea areas ranges from
0.1 to 3 mg/L but could reach as high as tens to thousands of mg/L near the estuaries [2,5].

Marine nepheloid layer was initially discovered as a near-bottom turbidity layer
by Jerlov (1953) using an optical measuring instrument during the Swedish Deep-Sea
Expedition [13]. Ewing and Thorndike (1965) first named the near-bottom turbidity layer as
the nepheloid layer and pointed out that it is a widespread and permanent phenomenon in
oceans [14]. The early measurements of the nepheloid layer were limited to indirect optical
parameters or the direct filtered suspended matter [13–15]. Biscaye and Eittreim (1977) first
converted the turbidity data of the Atlantic water into the concentration of the suspended
particles and divided the water column into surface turbidity layer, clear water layer, and
deep-water turbidity layer on the basis of the vertical distribution of turbidity [16].

Marine nepheloid layer has gained great interest. The continental rise in Nova Scotia of
Canada is the first systematically studied location. The United States has been performing
the High Energy Benthic Boundary Layer Experiment (HEBBLE) here since 1981, which
first discovered that the BNL is formed mostly by the abyssal benthic storms transporting
the suspended particles upward [17]. Many studies have been carried out on the material
composition, cause, migration, flux, and formation mechanism of the nepheloid layer in
different sea areas such as the Mediterranean [3,9,16], Atlantic Ocean [18–20], California
coast [21], Gulf of Mexico [4], Otsuchi Bay [22], Portugal continental shelf [23], St. Lawrence
Bay [24], Central Pacific [25], East China Sea continental shelf [26,27], northern South China
Sea [28–32], and the Arctic Ocean [33] (Figure 1). Furthermore, numerical simulations have
also been performed [34,35].
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Shown are well-known sites of occurrence (pink) and new areas of activity (green).

As the largest carbon pool on the Earth, oceans play an important role in mitigating
global warming. The carbon cycle in the marine nepheloid layer, predominantly in the
SNL, has various forms, complex processes, and a huge amount of substance. The duration,
transfer, and destination of the different carbon forms in the nepheloid layer are important
subjects in the study of the sources and sinks of the carbon cycle in the ocean that have
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attracted extensive attention [25,36] such as the Shelf Edge Exchange Processes (SEEP-I,
SEEP-II) programs [37] and the Ocean Margin Exchange (OMEX) study on the European
margin [38]. As pathways for transporting the terrestrial materials from the edge to
the interior of the ocean, the nepheloid layer also accommodates sinking particles and
resuspended particles at the bottom of the water column [39]. Lateral transport is the main
form of particulate matter transport that is vital to the global marine particulate matter
budget [25,39,40]. In the nepheloid layer, the lateral particulate matter transport flux is
several orders of magnitude larger than the vertical flux. Although occupying only 15 to
20% of the ocean surface area, the continental shelf and continental slope are vital to the
ocean carbon cycle as these portions account for almost half of the primary productivity of
the entire ocean [41,42]. Sources of the suspended particles in the nepheloid layer include
the surface organisms as well as the resuspension and lateral transport of continental
margin seabed sediments [42]. Due to the ubiquitous nepheloid layers, the most organic
carbon in the sediments of continental shelves and slopes will be resuspended. Therefore,
the nepheloid layer is closely related to the ocean carbon cycle.

Gardner et al. (2018) plotted the global maps of BNL on the basis of 8804 global profiles
from 1964 to 2016 [18]. The global maps could benefit the understanding of the deep ocean
sediment dynamics, linkage with upper ocean dynamics, and the potential for scavenging
adsorption-prone elements near the seafloor as the maps provided a comprehensive com-
parison of these datasets on a global scale [18]. However, BNLs found in most proportions
of the Pacific, Indian, and Atlantic basins away from continental margins that are induced
by the internal wave [22,28,30,31] were not included in the maps.

Suspended sediments can act as tracers in contact with water on the edge of the
continent [5,39,43]. The BNL is a layer directly above the seafloor with relatively high
suspended particulate matter, while the INL is in the middle depth with the peak suspended
particle concentration. There are enough particles to produce a measurable response in
light transmission or backscattering. However, the particle concentration is too small to
affect the density, and fine particles can basically be considered as active tracers [39]. In
many cases, the INL can be traced along the isopycnic surface to the original depth on the
continental slope or shelf.

However, there is still a lack of detailed research and quantitative analysis on the role
of the nepheloid layer in the material transport and source-sink processes. It is difficult to
capture these temporal and spatial processes. The lack of research is partly attributed to
the limited methods and subject categories. The research on internal waves (internal tides,
internal solitary wave (ISW)), turbulence, and mixing have always been the task of physical
oceanographers and the research on the fate of suspended sediments and other near-margin
materials have been carried out by marine geologists and biogeochemists. Internal tides
generated by barotropic tides flowing over varying topography are ubiquitous in the
oceans [44]. Internal tides could transport significant amounts of energy over hundreds
or even thousands of kilometers and behave as the primary driver of diapycnal mixing in
the deep ocean. ISWs are remotely generated in the rough topography through energetic
tide–topography interaction [44]. Although the generation processes, propagation, and
dissipation of ISWs have been discussed, problems about the influence on the nepheloid
layer still exist.

2. Characteristic of Marine Nepheloid Layer
2.1. Marine Nepheloid Layer of the Ocean

Research on the marine nepheloid layer of the ocean has been conducted the most
thoroughly as it was first discovered in the ocean. The nepheloid layers in the ocean only
include SNLs and BNLs. However, INL only was found in the Atlantic Ocean at depths
of 3200~3700 m, which was the result of the Deep Western Boundary Current (DWBC)
suspending sediment at depths of 4300 m [20]. As it is far away from the continental
margin, the ocean water is cleaner, and the concentration of suspended matter is smaller.
The background concentration of the North Atlantic is 0.02~0.03 mg/L. The minimum
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concentration of the water profile is one to two orders of magnitude lower than that of the
SNL [16]. The concentration of suspended matter in the nepheloid layer lasting several
weeks to months is generally above 0.30 mg/L [3,45]. Most particles in the BNL are fine silt
to clay with average particle size of less than 8 µm.

Eittreim et al. (1976) mapped the spatial variability of BNL in the Atlantic Ocean
with the turbidity data through 12 years and found that the concentration of near-bottom
particulate matter in the Northwest Atlantic Basin changed 70 times in space [46]. The
highest concentration was located near the western edge of the basin (Figure 2). Eittreim
et al. (1976) believed that the strong nepheloid layer at the edge was caused by DWBC,
namely, the southward flow of cold deep water eroding seafloor sediments in the high
latitudes of the North Atlantic [46]. In fact, the deep-sea bottom water current is dynamic,
and the average equatorial geostrophic current such as DWBC velocity of the deep-sea
current can reach up to 10 cm/s [3]. It was not until the late 1970s and early 1980s that the
bottom water velocity and turbidity were measured simultaneously, such as by Johnson et al.
(1976) [47]. At 20 m above the seabed in the northwest of Bermuda, serial measurements
recorded the first large and intermittent increase in turbidity [48]. In the HEBBLE project,
the term abyssal benthic storm was used to describe an event with a current velocity
exceeding 20 cm/s, and similar events have been intensively studied [17,45,49–51] in the
lowermost continental rise of the eastern United States and the Hatteras Abyssal Plain [52],
the northeastern Atlantic Ocean [53], and the Argentine Basin [54]. Abyssal benthic storms
are similar to sandstorms where the fluid moves fast enough to erode and suspend the
sediment and mix the sediment with the overlying fluid, creating a redistributed turbidity
layer in the downwind/downstream. Turbidity currents often occurring in submarine
canyons can also form BNLs [42]. However, research on the duration and scale of the
nepheloid layer is limited, and so is the analysis of how the geological time scale influences
the seabed.

The formation of SNLs in the ocean is caused by plankton activities [3]. The suspension,
mixing, and vertical transport of nutrients on the seafloor may affect the growth of plankton,
which in turn affects the SNL [55,56]. However, this idea has not been verified with
substantive evidence. Interdisciplinary research by field observations among physical
oceans, marine biology, marine geology, etc., is needed.

2.2. Marine Nepheloid Layer in the Marginal Sea

Research on the marine nepheloid layer in the marginal sea mainly focused on the
Mediterranean [3,8,9,57], the coast of California [21], the Gulf of Mexico [4], the Otsuchi
Bay [22], the Portuguese shelf [23,41], St. Lawrence Bay [24], and the East China Sea shelf
and northern South China Sea [28–31]. Nepheloid layers in the marginal sea include SNLs,
INLs, and BNLs [5,6,8,42,58]. The particulate matter in the INL is fine particulate matter
that may suspend for months to years before settlement [5]. The INLs have the largest
vertical span along the water column and can be divided into shallower and deeper ones.
The deeper INL is formed by the diffusion of suspended sediments on the seafloor along
the isodensity line, which mainly occurs near the outer shelf, continental slope, submarine
canyons, and seamounts [5,6]. Biological factors are the main cause of the formation of
the shallower INL [12]. Nepheloid layer in the marginal sea is mainly caused by internal
waves, especially internal tides [7,58] suspending seabed sediments [5,6,8,9,21].

Nepheloid layer in the marginal sea is more complex than that in the ocean. The INL
and BNL are ubiquitous in the marginal sea, which significantly contributes to the transport
of shelf suspended sediment and particulate matter from the ocean margin to the ocean
interior [12,21,39,59]. INLs are even more significant than the BNL in terms of sediment
transport [21]. The number of INLs and the thickness and length of BNLs vary at different
marginal seas [8,22–24,28,59] (Table 1), which is important to the quantity of suspended
sediment transported to the ocean interior with INLs.
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Figure 2. Distribution of excess particulate matter load (red contours, in µg/cm2) in the bottom
nepheloid layer of the western North Atlantic Ocean, with nephelometer data from the HEBBLE
area [55]. Nephelometer profile locations are indicated by dots. Bottom Ocean Monitor (BOM) loca-
tions (triangles) and mooring sites (stars) are identified. Black dashed and solid lines are bathymetric
contours. The insert shows an idealized nephelometer profile. Looping arrows indicate surface-water
and benthic boundary layer mixing. Horizontal arrows indicate lateral transport of resuspended
sediment. Wavy vertical arrows indicate particles sinking from surface waters. Blue arrow indicates
the DWBC location.

Table 1. Statistics of the nepheloid layers in the marginal sea.

References Method Location Number of
INLs

Thickness and Length
of the BNLs (m)

[59] Field observations Shetland slope, Scotland 2 100 and 10,000
[8] Field observations Alboran continental slope, Mediterranean 1 >100 and 600

[23] Field observations Western Portuguese mid-shelf 0 10~15 and >1500
[28] Field observations Shelf break, South China Sea 0 200 and 20,000
[24] Field observations St. Lawrence Estuary, Canada 1 5 and 400
[22] Field observations Otsuchi Bay, Japan 1 2 and 1000

Since the end of the last century, the temporal and spatial distribution characteristics,
as well as formation the mechanisms of nepheloid layer in the Mediterranean, has been fully
studied, especially in the northwestern Mediterranean [3,8,57,60] and Guadiaro submarine
canyon [8]. The systematic study of the nepheloid layer in the Mediterranean has become
an essential reference. The research on nepheloid layers in the other seas are only individual
studies, not enough to form systematic knowledge.
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3. Formation Mechanisms of Marine Nepheloid Layer
3.1. Formation Mechanisms of Bottom Nepheloid Layer
3.1.1. Bottom Boundary Mixing Processes

Ocean dynamics make the fine particles of bottom boundary layers move, transport,
deposit, resuspend, and retransport in the cyclical movement. Ocean dynamics, such as
ISWs shoaling, could generate strong near-bottom currents and strong turbulent mixing
in bottom boundary layers [22,61]. On the basis of the dominant transport mechanisms,
the bottom boundary layer can be vertically structured into the turbulent boundary layer,
the viscous sublayer, and the diffusive sublayer [62]. Resuspension is believed to occur
due to the shear and global instability in bottom boundary layer including a jet in the
adverse pressure gradient region beneath the ISW [61,63,64]. Global instability beneath
ISWs depends upon the background flow characteristics, wave amplitude, and Reynolds
number [64]. The bottom shear stress induced by ISWs is sufficient to mobilize sediment
within the bottom boundary layer [65]. Bottom boundary layer has an important influence
on the dynamic processes of the seabed, such as the material exchange between the seabed
and the seawater, erosion of seabed sediments, resuspension, and accumulation.

For the typical oceanic density stratification, consisting of a thin upper mixed layer above
a thicker benthic zone, ISWs are waves of depression generated offshore [66]. ISWs may
interact slowly with a flat bottom or more quickly with local topography. When shoaling
into shallower water, ISWs form waves of elevation at the turning point that degenerate into
boluses of dense water propagating upslope along the bed [44,61]. The detailed mechanisms
of interaction between ISW and bottom boundary layer have been categorized by Boegman
and Stastna (2019), which lead to sediment resuspension into those originating from ISWs of
depression, ISWs of elevation, and ISW interaction with topography [61].

3.1.2. Formation Mechanisms

The BNL is formed from seabed sediments suspended by strong currents near the bot-
tom, mainly caused by seabed storms [5,9,17,18], vortex [18,43], and internal
waves [5,6,8,9]. The salient feature of the water column near the seabed in most oceans
includes the substantial increase in light scattering and attenuation due to increased particu-
late matter. The HEBBLE conducted in the 1980s confirmed that the BNL of the deep ocean
is formed by suspended seabed sediments from deep-sea currents, which is widely found
in other sea areas [5,9,17,18]. The water flow near the submarine canyon also suspends the
sediments, forming the BNL [67]. Subsequently, the phenomenon of vortex forming BNL at
the bottom of the continental shelf was first discovered in the northern California shelf [43].

At present, many studies conclude that internal waves, especially ISWs, are the main
driving force for the formation of the BNL in the continental shelf and continental slope as
the seabed slope of the continental shelf or continental slope is consistent with the internal
wave group velocity vector angle, which increases the seabed velocity [5–9,58,68]. The
formation of the BNL induced by internal waves has also been widely observed in the
field [22–24,28,59] (Figure 3) and analyzed with numerical simulation [34,35].

Studies have found that the thickness of the BNL exceeds that of the bottom mixed
layer [3,5,9], which has not been explained yet. The existence and fate of BNL remain
unknown, although the process of BNL formation has been clearly understood.

3.2. Formation Mechanisms of Intermediate Nepheloid Layer

Existing studies have found that although capable of sediment suspension, surface waves
alone cannot form INL [12,21,69]. Due to stratified water columns, internal waves, especially
ISWs, could form INL. Many studies on INL have put forward several opinions, mainly
related to the reflection of internal waves. Interaction between internal waves and the critical
area of the slope of the seabed are the main reasons for the formation of INL [12,39].
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3.2.1. Reflection Characteristics of Internal Solitary Wave

Numerous in situ measurements and remote sensing observations reveal that ISWs
are ubiquitous phenomena in density stratified fluids and are commonly observed in the
coastal oceans, lakes, and straits [70,71]. ISWs produce shear instability and turbulent
mixing that contribute to the global energy transport and dissipation in the world’s oceans.
ISWs are also important due to the impacts on offshore engineering, biological activity,
and military applications such as submarine navigation and underwater acoustic prop-
agation. The velocity field caused by ISWs is a typical feature of translational waves.
This fundamental difference means that ISWs transmit energy (mass and heat) during
the propagation phase [72,73]. ISWs develop inside the stratified water column, whose
stratification is manifested in the rapid increase of the density with temperature or salinity
changes. In the ocean, well-mixed surface waters in mid-latitudes are affected by seasonal
temperature changes [74–76]). The boundary between the mixed and deep layers is called
the thermocline (pycnocline), representing a very stable area that acts as a barrier to the
surface process of the ocean. The salinity or temperature changes under the thermocline are
very small. The thickness of the mixed layer ranges from 30 to 200 m, mainly depending
on seasonal changes [73].

According to the wave reflection theory, the shallowing area of ISWs can be divided
into propagation (transmissive) zone, critical zone, and reflection (supercritical) zone [77,78]
on the basis of the wave group velocity vector angle (α) and the seabed slope (γ) (Figure 4).
Puig et al. (2004) [8] have redefined the velocity vector angle (α) of the internal waves
group relative to the horizontal plane as follows:

α= arctan

[(
σ2 − f 2

N2 − σ2

)1/2]
(1)
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where σ is the internal wave frequency, f is the local inertial frequency (depending on
latitude), and N is the buoyancy frequency or Brünt–Vaisala frequency.
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Cacchione et al. (2002) first linked the behavior of internal waves close to the slope
seabed boundary with sediment resuspension [7]. Moreover, they proposed that internal
waves suspending seafloor sediments affecting particle deposition and the distribution of
INL and BNL is related to the slope of the seabed. In the propagation zone (transmissive,
γ/α < 1), the ISW energy propagates to the shore, and the energy mainly propagates
between the seabed and the boundary layer. In the critical zone (critical, γ/α~1), ISWs
enhance the bottom shear velocity, inhibit the redeposition of fine suspended sediments,
and erode the seafloor surface sediments [7]. In the reflection zone (supercritical, γ/α > 1),
most ISW energy will be reflected back into the interior of the ocean.

3.2.2. Formation Mechanisms of Intermediate Nepheloid Layer by Internal Solitary Wave

ISWs are the main reason for the formation of INL [12,39]. In terms of sediment transport,
the INL is even more effective than the BNL [21]. Field observations have proved that ISWs
can induce strong vertical flow velocity and pump near-bottom suspended sediments to form
BNL or INL [21,23,58]. Studies have suggested that the formation process of INL is related to
the internal bore caused by shallowing ISWs [21,35]. ISW suspends fine-grained sediments
with the vertical velocity to form INL along the pycnocline [35] (Figure 5).
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The spreading mode of suspended sediments is another idea about the mechanism of
shallowing ISWs forming INL. The ISWs shoal with the submarine slope, which suspends
the seabed sediments. Garrett (1990) proposed the concept of boundary layer mixing on
the submarine slope on the basis of experiment and theoretical research [79] (Figure 6).
In the case of uniform background stratification, Garrett (1990) believed that in the near-
mixed layer, near-boundary turbulence only mixes the mixed fluid while not promoting
the net vertical buoyant flux or transportation of sediment to the ocean basin [79]. It is
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also believed that the buoyancy generated by ISWs drives the upslope flow closest to
the boundary and the downslope flow to somewhere above a certain height [39,79,80]
as the bottom mixing causes the pycnocline to be perpendicular to the submarine slope,
satisfying the no-flux condition at the boundary. The buoyancy drive does not mean
any boundary layer separation or mass exchange between the boundary layer and the
interior [81]. However, if the stratification of the water column is no longer uniform,
and the local maximum density gradient (thermocline) intersects the submarine slope at
a certain depth, the buoyancy along the slope will be sheared out from the pycnocline
in the intersection (Figure 6b). The resulting buoyancy–flux convection will cause the
mixed fluid to slowly diffuse away from the boundary and spread into the ocean along the
isobath [39,80]. This mixing mode of the water column is precisely the spreading mode of
suspending seabed sediments by ISWs. Studies have found that the thickness of INL can
exceed that of the pycnocline layer [34], which has not been proven yet. More research is
needed on the formation mechanism of INL by ISWs.
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Figure 6. Development of boundary layer flows when mixing in a stratified fluid is confined to a
mixing layer above a sloping boundary [39]. (a) Uniform stratification; (b) stratification varies with
depth and a pycnocline intersects the sloping boundary. Thin arrows are isopycnals to spread in this
region. Thick arrows indicate that convergence pushes mixed fluid out of the boundary layer and the
mixed fluids spreading along the pycnocline.

Field experiments have confirmed that the ISWs suspend and transport sediments
in two processes. First, the vortex generated by shoaling ISWs suspends the sediments
and moves upward through the isopycnals to the shore. The coarse suspended matter
redeposits and forms sand waves. Second, the fine suspended matter migrates into the
sea through INL and BNL along the thermocline [22,59] (Figure 7). Numerical simulations
have found that shoaling ISWs will erode, suspend, and transport mud-like sediments into
the sea through the INL and BNL [34]. The shoaling ISWs may be an important mechanism
for the spread of the sediment along the continental shelf and transport of the sediment
down the slope [22,34,59,69,82]. Tian et al. (2019) found that the number of BNLs and INLs
was principally determined by the relationship between the angle of the ISW group velocity
vector (α) and the slope gradients (γ) and proposed a prediction model [31] (Figure 7). ISWs
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suspended seabed sediment by the horizontal velocity in the vortex, and the near-bottom
vertical velocity lifted sediment into the water column to create a BNL, which detached
from the slope and diffused along the isopycnals, forming more than one INL [31,83]. In
transmissive regions (γ/α < 1), one BNL and more than one INL were formed. In critical
regions (γ/α~1), only one BNL and no more than one INL were observed. In reflective
regions (γ/α >1), less than one BNL and no INL were formed [31].
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3.3. Formation Mechanisms of Surface Nepheloid Layer

The SNL appears in the surface water or subsurface water over the shelf and slope
[30,84,85]. The SNL related to river plumes extending over the coastal area [86] is an
important delivery mechanism of terrigenous sediment from the continental margin to
deep waters [84]. Biological particles also contribute to the formation of SNL, especially in
spring [16,41,87,88].

Satellite imagery and in situ observations show that the river plume responds rapidly
to the alongshore wind, moving predominantly in the wind direction with a weak Ekman
drift [89]. The dispersal of river plume is also determined by the turbulent mixing by
the wind field in the upper part of the water column and by tidal forces in the lower
part [90–92]. As rivers form sediment plume, this effect is particularly apparent during
the flood season, then SNL transporting sediments from the continental shelf to the deep
waters. In 1983, spring and storm runoff to the Nemadji River produced a surface turbidity
plume that extended 10 km into the lake [93].

The suspended particles in the SNL accommodate microorganisms and some plankton.
These organisms affect the aggregation and dispersion of particles in turn, thereby affecting
the formation and distribution of the SNL [87]. Oliveira et al. (2002) investigated the
SNL dynamics in the northern Portuguese shelf and found that biological particles mainly
contribute to the SNL in spring, which is separated from the BNL by a clear water zone,
and the particles in the SNL disperse offshore [41]. Moreover, the SNL is restricted to the
inner shelf with high inputs of fluvial particles in winter [41].

4. Observational, Experimental, and Numerical Results
4.1. Observation Methods of Marine Nepheloid Layer

The early observation of the marine nepheloid layer was limited to the indirect mea-
surement of optical parameters or the direct measurement of filtered suspended mat-
ter [13–15]. Nowadays, the marine nepheloid layer in the cruises can be measured with the
turbidity sensors [6,9,32]. The turbidity sensors or nephelometer measurements were either
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transmissometers (Sea Tech Inc. and WET Labs C-Star) or optical backscatter sensors (Sea-
point) combined with CTD. However, these methods are only adoptable to a single point
or single profile. The profiles of the nepheloid layer can also be observed with an Acoustic
Doppler Current Profiler (ADCP) or a multi-beam bathymetry system [18,21,22,28].

Nowadays, more methods have been adopted to observe the nepheloid layer. On
the southern continental shelf of Monterey Bay, autonomous underwater vehicles (AUVs)
were employed to collect the temperature, salinity, and pressure data measured with a
Neil Brown G-CTD, as well as chlorophyll-a concentration and optical volume scattering
measured with a WET Labs ECO Puck triplet sensor [21].

In the northern South China Sea, the seismic oceanography method was adopted to
measure the nepheloid layer on the shelf and upper continental slope [94] (Figure 8). Geng
et al. (2018) found that the nepheloid layer is indicated by the enhanced reflections on the
seismic oceanography profiles [94]. With the seismic oceanography method, the characteristics
and profile of the nepheloid layer were observed in addition to the seafloor and ISWs.
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Compared to traditional acoustic and optical methods, the seismic oceanography
method maps the whole water column structure quickly with high resolution. The method
can also capture the temporal and spatial variations in the nepheloid layers and realize the
four-dimensional observations.

4.2. Laboratory Experiments and Numerical Simulation on Nepheloid Layer

There is a lack of laboratory experiments and numerical simulations, which are useful
for the visualization and investigations under ideal conditions of the nepheloid layer.
Helfrich (1992) found a BNL induced by shoaling ISW in a two-layer system on a uniform
slope on the basis of laboratory experiments [95]. Several laboratories [96–98] have shown
that intrusions of mixed fluid after ISW breaking on slopes drive offshore transport along
the pycnocline. More recently, Tian et al. (2019a) studied the INL and BNL caused by
ISWs in the flume experiments (Figure 9) and found that the maximum height of the
suspended sediment is the height of the pycnocline [83]. The suspended sediment may
be slightly transported up to the top of the slope via the BNL [83]. Tian et al. (2019a)
analyzed the detailed formation processes of INL and BNL caused by ISWs and found
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that ISWs suspended seabed sediment by the horizontal velocity in the vortex [83]. The
near-bottom vertical velocity lifted sediment into the water column to create a BNL, which
detached from the slope and diffused along the isopycnals, forming more than one INL [83].
Furthermore, the shearing stresses of ISWs was proved to be larger than the maximum
critical shearing stress of sediment [99]. However, the flume experiments are small-scale,
and therefore not adaptable to the study of the natural oceans.
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There are numerical simulations to examine the resuspension, dispersal, and transport
induced by ISW breaking on slopes [22,34,98,100]. Bourgault et al. (2014) adopted two-
dimensional, nonlinear, and nonhydrostatic field-scale numerical simulations to examine
the resuspension, dispersal, and transport of mud-like sediment caused by the shoaling and
breaking of long ISWs on uniform slopes [34]. Masunaga et al. (2015) adopted the nonlinear
and nonhydrostatic SUNTANS model in a two-dimensional domain to reproduce the
observation results of the sediment resuspension caused by the ISWs in a shallow bay [22].
It was found that the INL and BNL were formed by ISWs. Arthor and Fringer (2016)
innovatively employed the results of a direct numerical simulation (DNS) with a particle-
tracking model to investigate the three-dimensional transport by ISW on slopes and found
that the offshore transport occurred due to an intrusion of mixed fluid that propagated
offshore and forming resembles an INL [100]. The onshore and offshore transport and
lateral turbulent diffusivity values were also calculated [100]. In the future, numerical
simulations could be one of the main methods to study the nepheloid layer in the ocean
due to the simulation on the true scale.

5. Summary and Future Outlook

Marine nepheloid layer, connecting the continental margins and the interior of the
ocean with various forms and complex processes, is important for material transportation,
ocean carbon cycles, and the study on the source–sink systems of the ocean. This article
focused on the characteristics and formation mechanism of the marine nepheloid layer,
analyzing the copious previous research and providing a comprehensive understanding of
the influence of the marine nepheloid layer.

The systematic and long-term research on the marine nepheloid layer in the world
oceans is still limited. Nowadays, more observation methods can be applied to the neph-
eloid layer. It is necessary to quantitatively analyze the huge impact of the marine nepheloid
layer with various methods from a global perspective.
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It is well known that BNL is formed by suspended seabed sediments with strong currents
near the bottom, but the fate of BNL remains unknown. Many field observations need to be
carried out. The formation mechanism of INL by ISWs also requires further research.

Marine nepheloid layer significantly affects the transportation of materials within the
ocean, including vertical and lateral transportation. This transport mode affects surface
organisms and seabed sediments, and they also affect each other. At present, the impact and
function of marine nepheloid layer are not comprehensively understood. Multidisciplinary
research among physical oceanography, marine biology, marine geology, etc., is needed.

The transport of sediments by ISWs dramatically affects the formation of deep seabed
sedimentary landform. However, the formation process and the transport contribution
of INL and BNL are still unclear. The specific migration distance remains to be studied.
Detailed research of the suspended sediments redeposition process both in experiments
and field observations is needed. More evidence of the diffusion model of ISW suspending
seafloor sediments and the verification of the mechanism of multiple INL is required.

The suspended sediment in marine nepheloid layer could serve as a tracer, which,
however, has not been fully utilized. Laboratory experiments and numerical simulations
have been carried out, although they are still limited to the nepheloid layer formed by
ISWs. Therefore, more field observations should be carried out to analyze the detailed
characteristics and various effects of the nepheloid layer.
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