Ohio River Hydrography and Water Data Sources and Treatment

The Ohio River is regulated with a series of locks and dams (L&D). The
USACE operates the L&D system on the river (Figure S1, https://www.lrd-
wc.usace.army.mil/OhioRiver/OhioRiver.html, accessed on 10 October 2018).
The sections of river between L&Ds are referred to as pools, with the pools
named by river hydraulic managers after the name of the downstream L&D
that forms the pool. For example, the Markland pool identifies the river
section between the Captain A. Meldahl L&D and the Markland L&D.

For data related to river flows, the USGS operates a comprehensive
network of gauging stations in the Ohio River basin including mainstem river
stations that are accessible through their National Water Information System:
Web Interface (https://waterdata.usgs.gov/nwis, accessed daily). A search for
sites reporting gauge height and river discharge returns 38 and 12,
respectively. However, continuous, long-term records of measured discharge
are limited to only two locations: an upper river site, the Dashields L&D, and
a down river site at Shawneetown, IL. Furthermore, there is a lack of
consistency among stations reporting observed stage and calculated
discharge in terms of when data reporting started: Two of the stations
reporting gauge height go back to the 1980s, ten offer data beginning in 2010,
eight others became available in 2014, and six others in later years. Five
stations report discharges back to the 1930s and 1940s.

Many of the USGS sites are maintained under contract with the USACE
at L&Ds. For each L&D, gate and tailwater flow rating curves were developed
after dam construction. Among the active USGS sites sensing gauge height at
L&Ds, the rating curves are used to estimate current flow conditions. For the
past, The Lakes and Rivers Division of the USACE has made available digital
datafiles of manual observations of pool level, tailwater level, total gate
opening, and hydropower flow (if appropriate) at each L&D since 1995
(http://www .lrd-wc.usace.army.mil/OhioRiver/OhioRiverNavData.html,
accessed on 10 October 2018). These data are typically recorded in one-hour
intervals, with increased frequency during rapidly changing conditions.

The OHREFC (url: https://www.weather.gov/ohrfc/ accessed on 20
October 2018) currently uses real-time monitoring from these USGS and
USACE sources to provide model guidance and support for drainages
upstream of Smithland L&D in the Ohio Basin and using a suite of
hydrologic, hydraulic, and related forecasting models. These models provide
river stage and flow forecasts at 54 sites to help support flood control and
navigation. They are generally calibrated with a focus on forecasting flood
conditions (or high flows) but are used daily to forecast stages across the full
range of flows. The same techniques OHRFC has used to provide discharge
data in its routine forecasting operations were used here to reconstruct
synchronized time series of discharges beginning in 1995 and that currently
report river stage in real time.

Within the L&D system, the backwater influence of each dam structure
decreases upstream and is a minimum at the tailwater of the next dam
upstream. For L&Ds, computation of discharge depends on the flow rate at
each structure. When the dam is “in pool” (i.e., flow is insufficient to support
the federally regulated 11’ depth for navigation throughout the pool, and the
dam is needed to control pool depth), discharge is computed by a gate-rated



flow and with the addition of total reported hydropower discharge where
appropriate. When river flow increases to the point where the dam is not
necessary to support navigation, gates at the L&D are raised above the water
surface, and the river changes into a free-flow condition. This free-flow
threshold is evident from an example of the upper pool and tailwater stages
to discharges estimated from gate ratings at the Meldahl L&D (Figure S2a,b).
On the downstream side of the dam, the tailwater (Figure S2b), the
correlation between stage and discharge, suggests relatively limited
hydraulic influence from the next L&D or other tributaries entering
downstream. These influences become more apparent at the Cincinnati stage
gauge (Figure S52c), were the correlation, while strong, contains more scatter,
especially under lower stages, indicating the impact of increasing proximity
of Markland L&D, as well as the influence of several tributaries entering
between the Meldahl L&D and Cincinnati. This analysis applied at each of
the 27 sites with stage data disqualified upper pool stations and eliminated
one L&D entirely and two mid-pool sites.

For water quality data, we started with ORSANCO’s repository of
phytoplankton cell counts data with an objective of identifying periods in the
past where blooms may have occurred but had gone unreported or had not
received attention as a potential risk to public health. This was spurred by the
reports of the large bloom in 2008 in the vicinity of Cincinnati, OH. More than
1500 samples from 12 stations covering 13 years were reviewed, only to find
five observations with cyanobacteria cell densities above 20,000 cells/mL and
with a maximum slightly above 52,000 cells/mL among them; the 2008 bloom
event at Cincinnati was not evident. With cell counts up to 31 x 10¢ cells/mL
recorded during the 2015 cyanoHAB event, we determined that there was no
direct evidence of significant cyanoHAB events over at least the previous 13
years that could be used to support our modeling effort.

ORSANCO also conducts routine nutrient monitoring, visiting 35 sites
(18 mainstem and 17 tributary sites) every other month (six times per year),
starting in January 2000. Although this grab sampling data proved useful for
characterizing inter- and intra-annual trends in river nutrient concentrations
and loadings, we deemed the collection frequency too infrequent to be used
directly in model development. Similarly, there proved to be little continuous
and long-term data available for other water quality variables (i.e., in situ
sensor data). While several drinking water utilities deploy sensors to monitor
conditions of their raw water, in all cases that we were aware of, sensors were
not in locations conducive for assessing river conditions that could be directly
related to cyanoHABs occurring at or near the surface of the river. Therefore,
we deemed it ineffective to try to compile and quality control such data from
the DWTPs along the river.

Finally, as this research progressed, the number of sites reporting
continuous water quality on the Ohio river increased from two to eight. The
USGS reports data from two super gauge sites on the river, one reports
publicly available data starting in 2013 near the mouth of the river at
Olmstead, IL, and the other has data available since September of 2015 from
a site near Ironton, OH. Two additional USGS sites report water quality from
Markland and Cannelton L&Ds. The reporting history, number, and type of
water quality measurements differs between these sites. Similarly, starting in
2019, ORSANCO began to establish four seasonal water quality monitoring



stations along the river at Pike Island, Meldahl, Markland, and Newburgh.
These sites have sensors for measuring water temperature, pH, specific
conductivity, dissolved oxygen, turbidity, phycocyanin, and total
chlorophyll. The latter two measures are indicative of the relative
concentration of cyanobacteria and total algae density, respectively. Data
from many of these sites during both the 2015 and 2019 blooms were not
available or lacked reporting consistency among them. This precluded their
use in our model development.

Modeling Assumptions, Convergence, and Validation Statistics

The assumptions required for our modeling approach warrant some
explanation. We assume linearity, which is difficult to assess empirically
within a given location since there was only one or two years in which blooms
occurred. However, we consider it reasonable relative to our conceptual
model that as the maxratio or incl5 increases, the log odds of bloom
occurrence would increase by a proportional amount if all other variables are
fixed. For the persistence model, a quadratic relationship is modeled between
the log odds of bloom occurrence and the number of days after the maxratio
was passed and assuming location, maxratio, and the threshold-passed-
indicator are fixed. A site’s mean residence time is incorporated in the models
so that bloom probability depends both on residence time, the maxratio, and
the inc15. After accounting for these three variables, independence across
sites is assumed. This assumption is supported by the river managers who
noted the failed attempt to use the Ohio River spill transport model [75] to
track the timing of the 2015 bloom in the downstream direction. Similar
inconsistencies were noted for bloom dynamics in the Kansas River, where
measured concentrations of cyanobacteria and associated compounds
indicated that simple dilution models were not sufficient to describe the
downstream transport [58]. Regardless, the meanrt predictor was added to
the model as a proxy for spatial location, given that farther upstream sites
tend to have lower average residence times. In this way, spatial location is
indirectly accounted for in the mean structure of the model, because sites
closer together on the river tend to have similar meanrt and thus are similar
in terms of bloom occurrence.

The responses are summarized yearly for the occurrence model to
minimize temporal autocorrelation. Whether a bloom occurs from one year
to the next can be viewed as functionally independent, although we realize
that akinetes and overwinter potential exist from lake studies ([77,78]). For
the persistence model, the responses are summarized daily, and the
relationship between the response from one day to the next is accounted for
by the number-of-days variable. Independence is still assumed from one year
to the next. Unaccounted for binomial variation may be present, which may
lead to underestimation of model uncertainty. However, this was not a major
concern given that (1) features that may lead to it are not expected to be severe
(i.e., violations in independence and model inadequacy), and (2) model
uncertainty is already large due to the limited sample size under bloom
conditions.

Convergence statistics (Table S1) and trace plots (Figure S3) follow for
the occurrence model: three chains were run with 8000 iterations each (2000
discarded as warmup). See main text for parameter references. The trace plots



for all model parameters indicated mixing of all chains, R values were all less
than 1.009 or greater than 0.999, and effective sample sizes ranged from 562
t0 2198. There were no divergent transitions. We show posterior distributions
or each parameter in Figure 54.

Table S1. Convergence statistics for parameters in the occurrence model.

Parameter Effective Sample Size Rhat
Bo 666 1.0067
B1 1668 1.0019
B, 1804 1.0018
B3 632 1.0062
Ba 2198 1.0007
(o 562 1.0084
0y 1117 1.0028
bo1 658 1.0058
by 649 1.0060
bos 643 1.0057
by, 653 1.0058
by 652 1.0055
by3 662 1.0056

Convergence statistics (Table S2) and trace plots (Figure S5) follow for
the persistence model: four chains were run with 6000 iterations each (2000
discarded as warmup). See main text for parameter references. The trace plots
for all model parameters indicated mixing of all chains, R values were all less
than 1.002 or greater than 0.999, and effective sample sizes ranged from 3142
to 15,472. There were no divergent transitions. We show posterior
distributions or each parameter in Figure S6.

Table S2. Convergence statistics for parameters in the persistence model.

Parameter Effective Sample Size Rhat
Bo 6564 1.000097
B1 7096 1.000074
B2 14,769 1.00047
B3 15,472 1.00035
Ba 3486 1.0016
Bs 3142 1.00046
Bs 3398 1.00088
B, 5509 0.999987
O 3009 1.00084
oy 5069 1.00038
boy 7282 1.00040
bgs 6354 1.000014
bos 6266 1.00019
by, 5980 1.00044
by 6564 1.00019

bis 8740 0.999982




Leave-one-out cross validation was performed to evaluate the
occurrence and persistence models. For the occurrence model, it was fit
leaving out each combination of site and year, and, subsequently, it was used
to predict a probability for the removed data. A misclassification rate of 2.8%
was observed (Figure S7). Most notably, the 2019 sites that experienced
blooms were misclassified, with prediction probabilities near 0.05. Though
small in an absolute sense, the predicted probabilities for 2019 were larger
than those observed on years without blooms.

For the persistence model, it was fit leaving out each combination of site
and year at 30 days after the maximum ratio day. The fitted model was
subsequently used to predict a probability for the removed data. A
misclassification rate of 3.4% was observed (Figure S8).

The results of both validation procedures are approximate because a
mixed effects model was fit for the validation procedure, rather than the full
Bayesian model, given the relatively long fit time for the full Bayesian model.
Mixed effects parameter estimates and standard errors were compared to
Bayesian model posterior predictive distributions and showed general
agreement. Furthermore, the model validation results are dependent upon
the limited data available under bloom conditions. Both the 2015 and 2019
blooms fit the conceptual model on which the statistical model is based, and
the threshold was also developed based on the characteristics of these
blooms. The models will be occurrence and persistence validated in real time
each year and refit with new data. However, the threshold value for the
persistence model may need to be reconsidered as future data are
incorporated in the model training set. If the conceptual underpinning of the
model predictors is correct, then we would anticipate predictions to improve
as future data are incorporated into the model training set.

Real-Time Data Source for the Ohio River cyanoHABs Shiny app

The data presented in the shiny application are derived from several
public and private sources. The flow data are publicly available on the web.
Flow data are retrieved from a USGS gauge station when available and from
a USACE source otherwise. Table S3 provides a comprehensive list of the
sites displayed by the application and the associated USGS or USACE ID and
link.

The nutrient data presented on the Supporting Evidence tab of the
application were obtained from ORSANCO
(https://www.orsanco.org/data/nutrients/, accessed on 29 December 2021).
The residence time data were also obtained by combining USGS flow data
with estimates of pool volume provided by USACE directly to C. Nietch.

USGS water quality data with a sufficient time range were only available
at Ironton, Cannelton, and Olmstead (Table S3). ORSANCO provided static
data files with water quality information at Pike Island and Meldahl through
July of 2019. Markland and Newburgh data are updated in real time from a
direct query to the communication software used by ORSANCO to manage
automatic data upload from the sensors at Markland and Newburgh.



Table S3. USGS flow data are publicly available at https:
/[waterdata.usgs.gov/nwis/uv, (accessed on 29 December 2021), and USACE flow
data are available at https://water.usace.army.mil/a2w/f?p=100:1:0:, (accessed on 29
December 2021). The data can be obtained by entering the associated ID number into
the query utilities provided by each organization.

Site Name NWS Code USGS ID USACE ID Data type
Emsworth EMSP1 03085734 USGS flow
Dashields DSHP1 03086001 USGS flow
Montgomery MGYP1 03108500 USGS flow
New Cumberland NCUW2 03110690 USGS flow
Pike Island WHLW2 03111520 USGS flow and static water quality
Hannibal HANO1 03304300 USGS flow
Willow Island RNO001 28484108 USACE flow
Parkersburg PARW2 03151000 USGS flow
Belleville BEVW2 28477108 USACE flow
Racine RACW?2 28482108 USACE flow
Point Pleasant POPW2 03201500 USGS flow
RC Byrd GALW2 28483108 USACE flow
Huntington HNTW2 03206000 USGS flow
Ironton 03216070 USGS water quality
Greenup GNUK2 03216600 USGS flow
Maysville MYVK2 03238000 USGS flow
Meldahl MELO01 28478108 Static water quality
Cincinnati CCNO1 03255000 USGS flow

USGS flow and ORSANCO probe

Markland MKLK2 03277200 . .
with water quality
McAlpine MLPK2 03294500 USGS flow
Cannelton CNNI3 03303280 USGS water quality
Newburgh NBGI3 03304300 USGS flow and ORSANCO probe
with water quality
Evansville EVVI3 03322000 USGS flow
Smithland SMLI2 (03399800 USGS flow
Olmstead 03612600 USGS water quality

Supporting Water Data Presentations

Supporting water data presentations: (1) July 2015 nutrient loads (Figure
59); (2) residence time plots of upper river sites during the time period of the
2015 bloom (Figure S10); (3) Shiny app visualization option of stacked
discharge data (Figure S11); (4) screen capture of water quality site
comparison display (Figure S12); (5) screen capture of water quality year
comparison display (Figure S13); (6) data for microscopy-based Ohio River
algae cell counts from a period covering the 2019 cyanoHAB to provide
context to the phytoplankton community structure and the cyanobacteria
genera dominance (Figures S14 and S15, respectively); (7) fixed station water
data time series from the Greenup pool (compliments Cody Schumacher,
Marshall University (Figure S16)); and (8) 2019 Markland pool, in situ
phytoplankton indicator sensor measurements made during a longitudinal



idle-speed boat survey (Figure S17). (9) nutrient concentration distributions
for ORSANCOQO's nutrient grab sampling program (Figure 518).

In Figure S12, the water quality data visualization options are
customized to focus on the 2019 bloom season to compare dissolved oxygen
and pH data at three sites for which data were available during the
cyanoHAB that occurred that year (11 September to 24 October). The 2019
bloom affected the Ironton site but not the Cannelton or Olmsted sites, which
are further downstream from Ironton. The variables selected of those
available are known to be responsive to phytoplankton dynamics. For
dissolved oxygen, when phytoplankton biomass concentrates into bloom
conditions, high rates of photosynthesis during the day often supersaturates
water column oxygen concentrations, while community respiration of the
high biomass at night can dramatically decrease the concentrations.
Therefore, when large differences between diel minimums and maximums
are observed in a waterbody, excess phytoplankton is suspected. The same is
true for pH, which can also be responsive to phytoplankton photosynthetic
activity and be indicative of high algal biomass. We programmed a
visualization of the time series of diel differences as part of the site
comparison display. The graph of differences is situated under the raw
variables time series plot. For the data visualization configured for Figure
512, we observe indications of more intense phytoplankton activity at [ronton
compared to the other two sites.

In the screen capture shown in Figure S13, the Markland site has been
selected. Markland was affected by both the 2015 and 2019 blooms. However,
the time series of dissolved oxygen and diel differences are not notably
different compared to other non-bloom years. This could be a function of
where the oxygen sensor is installed at the Markland L&D relative to where
the bulk of the bloom biomass resided. This lack of an apparent response
across bloom and non-bloom years also exemplifies why water quality data
may not be as directly supportive of risk probability predictive modeling as
one might imagine, given a greater potential for smaller scale factors to affect
the measurements compared to a more macro-scale measurement such as
flow.



