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Abstract: Multivariate data assimilation (DA) of satellite soil moisture (SM) and terrestrial water
storage (TWS) observations has recently been used to improve SM and groundwater storage (GWS)
simulations. Previous studies employed the ensemble Kalman approach in multivariate DA schemes,
which assumes that model and observation errors have a Gaussian distribution. Despite the success
of the Kalman approaches, SM and GWS estimates can be suboptimal when the Gaussian assumption
is violated. Other DA approaches, such as particle smoother (PS), ensemble Gaussian particle
smoother (EnGPS), and evolutionary smoother (EvS), do not rely on the Gaussian assumption and
may be better suited to non-Gaussian error systems. The objective of this paper is to evaluate the
performance of these four DA approaches (EnKS, PS, EnGPS, and EvS) in multivariate DA systems
by assimilating satellite data from the Soil Moisture and Ocean Salinity (SMOS), Soil Moisture
Active Passive (SMAP), and Gravity Recovery And Climate Experiment (GRACE) missions into
the Community Atmosphere and Biosphere Land Exchange (CABLE) land surface model. The
analyses are carried out in Australia’s Goulburn River catchment, where in situ SM and groundwater
data are available to comprehensively validate the DA performance. Results show that all four DA
approaches have outstanding performances and improve correlation coefficients of SM and GWS
estimates by ~20% and 100%, respectively. The EvS outperforms the others, but its benefit is relatively
marginal compared to Gaussian approaches (e.g., EnKS). This is due to the fact that SM and TWS
error distributions in this study are close to Gaussian: a suitable condition for, e.g., EnKS, EnGPS. The
robust performance of EvS appears to be the optimal approach for jointly assimilating multi-source
hydrological observations to improve regional hydrological analyses.

Keywords: data assimilation; SMOS; SMAP; GRACE; soil moisture; groundwater

1. Introduction

The accurate estimation of terrestrial water storage (TWS) is critical for regional
water resource analyses. TWS can be calculated using a land surface model (LSM), which
incorporates complex land–surface processes into simulations of a wide range of hydrologic
variables [1]. However, the performance of LSMs is frequently constrained by factors such
as insufficient model physics representation, simplified model parameters, or inaccurate
meteorological forcing, resulting in significant uncertainty of simulation results [2]. Data
assimilation (DA) is an important technique for correcting model state variables with
satellite data, resulting in more robust hydrologic variables [3].

Advanced DA systems are capable of incorporating univariate and multivariate data
into models. Univariate DA is an approach for updating model states using only one
type of satellite observation [4]. Despite its success, univariate DA usually improves only
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one state variable associated with the assimilated observation, while the effect on other
variables can be insignificant or negative. For example, Yan and Moradkhani [5] discovered
that assimilating streamflow could lead to biased estimates of soil moisture (SM). Similarly,
Tian et al. [6] reported a reduction in the accuracy of groundwater storage (GWS) estimates
after assimilating satellite SM observations. Multivariate DA, as compared to univariate
DA, uses a suite of satellite observations to simultaneously constrain multiple model states,
resulting in a better overall representation of hydrologic systems [7,8].

Previous studies developed TWS/SM multivariate DA based on ensemble Kalman
approaches such as ensemble Kalman filter (EnKF [9]) and ensemble Kalman smoother
(EnKS [6,10]). Ensemble Kalman algorithms determine solutions based on random samples
associated with Gaussian error distributions. Although EnKF and EnKS have been useful
for many environmental modeling problems [11–14], they are potentially sub-optimal given
that error distributions of models or measurements are mostly non-Gaussian [2,15]. DA
approaches that are not restricted to specific error distributions, such as particle filters [16],
might be more suitable for highly nonlinear systems. Such approaches also include an
evolutionary DA that utilizes genetic algorithms to determine the optimal solution, i.e.,
through a natural selection process [17]. Because the evolutionary approach is based on
an intrinsic error distribution (rather than a Gaussian distribution), it may result in better
SM and TWS estimates. However, despite its success in improving evapotranspiration, soil
moisture, and streamflow estimates, the evolutionary DA has yet to be implemented or
investigated for multivariate SM/TWS estimations [18–20].

This study aims to assess the performance of four different DA algorithms on multi-
variate DA using satellite SM and TWS data. The DA approaches are (1) EnKS, (2) particle
smoother (PS [21]), and for the first time, (3) an ensemble Gaussian particle smoother
(EnGPS) and (4) evolutionary smoother (EvS). The satellite SM and TWS observations
are simultaneously assimilated into the Community Atmosphere and Biosphere Land
Exchange (CABLE) LSM [22,23] with the purpose of improving regional SM and GWS
estimates. This assessment is conducted in the Goulburn River catchment in Australia,
where in situ SM and groundwater level data are available for validation. The analysis
period is between January 2010 and December 2015, when satellite and validation data are
available. The findings of this study may shed some light on the selection and development
of robust multivariate DA algorithms for improved regional terrestrial hydrology analyses.

2. Model, Study Area, and Data
2.1. Model Configurations

The CABLE LSM is used to simulate daily SM and GWS at 0.25◦ × 0.25◦ resolution.
The CABLE model can be obtained from https://trac.nci.org.au/trac/cable (last access:
25 November 2021). This section describes the model configuration used in our analysis,
and comprehensive model descriptions can be found in Decker [22]. CABLE estimates
SM in six distinct layers. The soil thicknesses from top to bottom are set to 1.2, 3.8, 25,
39.9, 107.9, 287.2 cm, respectively. Together, the first two model soil layers correspond to
the 0–5 cm sampling depth of in situ SM measurements and satellite SM estimates (see
Sections 2.2 and 2.3). The groundwater layer is defined as a 20 m thick unconfined aquifer
located below the soil layers. The forcing data required for CABLE simulations are obtained
from the Global Land Data Assimilation System (GLDAS [24]). GLDAS precipitation is
replaced by data from the Integrated Multi-satellite Retrievals for Global Precipitation
Measurement Mission (IMERG [25]) to improve the accuracy of TWS estimates [26].

In the DA process, the precipitation is perturbed by multiplicative white noise. The
perturbation magnitude is obtained from the uncertainty provided by the IMERG product.
Shortwave radiation is perturbed using multiplicative white noise at 10% of the nominal
values. An additive white noise of 2 ◦C is used for the air temperature. Perturbations of
the forcing data utilize an exponential correlation function to maintain spatial consistency:
a 0.25◦ correlation length is applied to the covariance matrix for each forcing variable.
Model parameters associated with SM and GWS components are also perturbed by 10%

https://trac.nci.org.au/trac/cable
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of their magnitudes. These parameters consist of the fractions of clay/sand/silt and the
drainage parameters that control the soil storage capacity and subsurface runoff (see Table 1
in Tangdamrongsub et al. [10] for more details).

Table 1. Characteristics of the four DA algorithms evaluated in this study.

EnKS PS EnGPS EvS

Sample size N N N 2N

Error distribution Gaussian No restriction No restriction No restriction

Evaluation approach Kalman gain function Likelihood function
Likelihood function

and proposal
distribution

Cost functions

Updating approach Applying Kalman gain
function

Resampling particles
based on the likelihood

function

Resampling particles
based on EnKS

posterior estimates

Natural selection
(crossover, mutation)
through the iteration

process

Posterior estimation Mean of ensemble
members

The weighted mean of
ensemble members

The weighted mean of
ensemble members

Mean of ensemble
members or only
selecting optimal

members

2.2. Study Area and In Situ Data

The Goulburn River catchment (6540 km2) is located in New South Wales, approx-
imately 200 km northwest of Sydney (Figure 1). In the north, the catchment consists of
a floodplain, clear grassland, and crops. In the south, there is a mountain range with
dense vegetation. Summer average minimum/maximum temperatures in the catchment
are 16/30 ◦C, and winter temperatures are 2/14 ◦C. As such, snowfall is scarce in the
catchment area. The Scaling and Assimilation of Soil Moisture and Streamflow (SASMAS)
project collects volumetric SM measurements at various sampling depths [27], and the
0–5 cm data are used in this study due to their compatibility with CABLE’s top two soil
layers. The soil moisture profile is measured using water content reflectometers. Sensors
were installed by excavating to the top of the sensor installation level and then backfilling
to ensure continuous monitoring of the soil moisture profile. The accuracy of the in situ
measurement is approximately 0.035 m3/m3, as determined by comparing probe data
to independent gravimetric soil moisture samples. Comprehensive details of field mea-
surements can be found in Rüdiger et al. [27]. In situ groundwater level (GWL) data are
provided by the Department of Primary Industries (DPI), Office of Water, New South Wales
(http://www.water.nsw.gov.au; last access: 23 December 2020). At each location, ground-
water depth measurements are converted to groundwater depth variations by removing
the long-term mean from all available data in the time series. Sites are excluded if the time
series is shorter than three years or has significant data gaps. Prior to validation, the point
measurements of in situ data inside the same model grid cell are averaged. This procedure
is carried out to reduce the spatial resolution inconsistency between ground measurements
and the model.

http://www.water.nsw.gov.au
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Figure 1. The Goulburn River catchment in South−East Australia (see inset). The displayed gridlines
denote the boundaries of model grid cells. The in situ SM and GWL data locations are represented by
blue diamonds and red pentagons, respectively. All in situ SM data within the same model grid cell
are averaged, resulting in S1–S4 grid cells. A similar approach is applied to the in situ GWL data,
resulting in G1–G4 grid cells.

2.3. Satellite Soil Moisture Data

The daily satellite SM retrievals are obtained from Soil Moisture and Ocean Salinity
(SMOS [28]) and Soil Moisture Active Passive (SMAP [29]). Both carry L-band (1.4 GHz)
radiometers that are used to estimate 0–5 cm soil moisture. SMOS data are the Level 3
(Release 4) gridded product [30] provided by the Centre Aval de Traitement des Données
SMOS (CATDS; https://www.catds.fr; last access: 23 December 2020) operated for the
Centre National d’Etudes Spatiales (CNES) by the French Research Institute for Exploitation
of the Sea (IFREMER). The product has a spatial resolution of ~25 km on the Equal-Area
Scalable Earth (EASE) grid and is available from 15 January 2010. SMAP data are the Level
3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture Version 6 provided by the
National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC;
https://nsidc.org/data/smap; last access: 23 December 2020). The product provides a
composite of daily SM and is available from 31 March 2015. For spatial consistency with
the model, both SMOS and SMAP data are resampled to a 0.25◦ × 0.25◦ regular grid using
a nearest neighbor interpolation method. When more than one SM retrieval is available on
a given day, the average value is used to ensure temporal consistency with the model.

https://www.catds.fr
https://nsidc.org/data/smap
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Assimilating satellite SM data into LSMs requires rescaling to reduce systematic bias
between model estimates and observations [31,32]. In this study, a cumulative density
function matching approach (CDF-matching [32]) is used to adjust satellite observations to
model climatology. The CDF is constructed using all the data in the study period, and the
rescaling is applied separately for each satellite data product and individual model grid
cell. Following previous studies, a 0.04 m3/m3 measurement error is used for both SMOS
and SMAP data [33,34].

2.4. GRACE Data

This study uses GRACE mascons Release 6 Version 2 provided by the Center for
Space Research (CSR) at the University of Texas Austin [35]. The data are obtained from
http://www2.csr.utexas.edu/grace/RL06_mascons.html (last access: 23 December 2020).
The mascon product contains monthly TWS variations at 0.25◦ grid size derived from
GRACE [36] and GRACE Follow-On missions [37] from April 2002. It is noteworthy that
mascons only use 0.25◦ grid size for properly rendering mass redistribution near coastal
areas, whereas the native resolution of GRACE is approximately 3◦. At each mascon cell,
the long-term mean computed from all data between January 2010 and December 2015 is
removed to obtain TWS variations relative to our analysis period.

Prior to the DA process, the long-term mean TWS (January 2010 and December 2015)
from CABLE estimates is added to the GRACE-derived TWS variation to reduce systematic
differences between observed and modeled mean TWS. The CSR product does not include
observational errors, and the 2 cm TWS error proposed by [38] is used in this study.
Additionally, spatial correlation errors are included when perturbing GRACE observations,
given that the GRACE-derived TWS spatial resolution is on the order of 3◦. The correlation
error (C) is calculated as C = exp(ψ/L), where ψ is a spherical distance between two grid
points, and L is the correlation length (3◦).

3. Methodology

The concept of multivariate DA implementation is explained in this section. Table 1
summarizes the characteristics of the DA algorithms, while Appendices A–D provide
detailed descriptions.

3.1. Implementation of Multivariate DA

This study assimilates SMOS, SMAP, and GRACE observations into CABLE us-
ing four different DA approaches, namely EnKS, PS, EnGPS, and EvS, and updates
modeled SM and GWS estimates every month. The DA schematic is similar to that of
Tangdamrongsub et al. [10], with a slight modification to the assimilated time widow. The
DA process consists of forecast and analysis steps (Figure 2). In the forecast step, forcing
data and model parameters are firstly perturbed using N ensemble members (N = 100 is
used in this study). The model is then propagated for s days to forecast s-day state variables
(i.e., SM and GWS):

xi
s|t−1 = F

(
xi

t−1, fi
s, αi

)
(1)

where F is a model operator used to propagate the states from t − 1 (initial state) to s
day forecast, x is a model state vector, f is forcing data, α is model parameters, and i
denotes the index of the ensemble members. The initial states are obtained in the first step
of simulations by spinning up the model between 2010 and 2015 for 10 revolutions, at
which point all storage variables reach equilibrium states. The state vector comprises seven
different variables: six SM layers and GWS. It should be noted that snow water equivalent
and canopy storage are negligible in the Goulburn River catchment and are not included in
the state vector. The forecasts can be converted to SM (ds(SM)) and TWS (ds(TWS)) values
as follows:

di
s(SM) = H(SM)x

i
s (2)

di
s(TWS) = H(TWS)x

i
s (3)

http://www2.csr.utexas.edu/grace/RL06_mascons.html
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where H is the operation matrix relating model state vectors to SM and TWS observational
spaces. The H matrix has a dimension of s × 7s associated with s day forecast period and
seven state variables:

H(SM) =


1 1 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 · · · 0 0 0 0 0 0 0

...
...

. . .
...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

 (4)

H(TWS) =
1
s


1 1 1 1 1 1 1 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 · · · 0 0 0 0 0 0 0

...
...

. . .
...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

. (5)
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Figure 2. The multivariate DA schematic used in this study. (a) In the forecast step, a model
propagation of approximately one month is performed, and the daily model state variables (e.g., SM,
GWS) are saved. (b) In the analysis step, satellite observations are used to update the state variables
of the entire month. (c) The updated variables are saved, and the model states from the last day are
used as initial states for the following month’s forecast.

The 1/s in Equation (6) represents a temporal averaging given that GRACE provides
monthly averaged TWS observations. Note that the forecast period (s) in this study de-
pends on the GRACE observation period, which is approximately one month. This forecast
window differs from the 3-day window used by Tangdamrongsub et al. [10]. Our sensitivity
analysis (not shown) found that the selected period has no significant effect on DA perfor-
mance and using a 1-month or 3-day forecast period yields similar results. Cases with a
1-month forecast period require more computational memory to handle larger matrices, but
they consume less processing time since the state is only updated once a month (instead of
every three days). In the analysis step, different DA approaches use different formulations
to update the model states.
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3.2. Ensemble Kalman Smoother (EnKS)

The EnKS optimizes the state estimates based on a gain matrix (K):

xi
s|s = xi

s|t−1 + K(yi
s −Hxi

s|t−1), (6)

where yi
s is a perturbed observation vector, and K contains the model and observation error

covariance (see Appendix A). The H matrix is adopted from Equation (5) or Equation (6)
for univariate DA (using only one satellite observation). For multivariate DA (e.g., SMOS,
SMAP, and GRACE), H is a combination of H(SM) and H(TWS):

H =

 H(SM, SMOS)
H(SM,SMAP)

H(TWS,GRACE)

 (7)

In this case, the dimension of H is 3s × 7s to provide multivariate DA of SMOS, SMAP,
and GRACE.

3.3. Particle Smoother (PS)

The PS uses an importance weight (w) constructed using a likelihood function to
determine the contribution of each individual particle (or ensemble member):

wi
s = wi

t−1·p
(

ys

∣∣∣xi
s

)
. (8)

where p
(
ys
∣∣xi

s
)

indicates a likelihood function (see Appendix B). Unlike EnKS, the sample
distribution of PS does not rely on the Gaussian error assumption. Such a characteristic is
beneficial for highly nonlinear systems [15].

3.4. Ensemble Gaussian Particle Smoother (EnGPS)

Despite PS effectiveness, PS frequently suffers from particle degeneracy and impov-
erishment problems, in which the system loses meaningful particles over time [16]. The
EnGPS is developed to improve the PS performance by incorporating a Gaussian distribu-
tion in the importance weight determination:

wi
s =

p
(
ys
∣∣xi

s
)

p
(
xi

s
∣∣yt−1

)
q(xi

s|s, ys)
(9)

where p
(
ys
∣∣xi

s
)
, p
(
xi

s
∣∣yt−1

)
, and q(xi

s|s, ys) are a likelihood, prior, and proposal density func-
tion, respectively (see Appendix C). In comparison to PS, the importance weight of EnGPS
includes two additional terms, prior and proposal functions, which are approximated using
a Gaussian distribution constructed from EnKS estimates. Utilizing prior and proposal
functions increases particle diversity of the system and may improve the performance of
multivariate DA.

3.5. Evolutionary Smoother (EvS)

The EvS determines the optimal state estimates using an iterative process. Unlike
other DA algorithms, EvS uses 2N = 200 ensemble members. In each iteration, EvS ranks
the ensemble members based on a cost function (J):

Ji =
s

∑
j=1


(

dj − db,j

)2

σ2
b

+

(
dj − dy,j

)2

σ2
y


i

(10)

where dj is a model forecast of day j, db is a value obtained from a background model, dy

is a perturbed observation, σ2
b is a variance of a background model, and σ2

y is a variance
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of the observation (see Appendix D). Figure 3 illustrates EvS processes in detail. In a
nutshell, EvS selects the N best samples in each iteration. These selected samples are
used to generate N = 100 new offspring using crossover and mutation operations [17].
The crossover operator produces new members from the existing population, whereas
mutation generates members outside the ensemble distribution. The mutation operator
has the advantage of increasing the sample diversity of the DA system, which can alleviate
ensemble collapse problems. The iteration process is repeated with 2N samples until the
desired criteria are met—the cost functions are smaller than the observation uncertainty,
i.e., 0.04 m3/m3 (soil moisture) and 2 cm (TWS), or the iteration number is greater than 50.
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Figure 3. The processing diagram for EvS. The process employs genetic algorithms (e.g., crossover
and mutation) to determine the best state estimates. N, Ń, and Ñ represent the number of ensembles.
The different notations are used to clarify the processing step to which they belong; for example, Ń is
the number of selecting ensembles, and Ñ is the number of newly generated ensemble members from
crossover and mutation processes. The process is repeated until the cost functions are smaller than
the observation uncertainties or the iteration number (it) exceeds 50.
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4. Results
4.1. Initial Comparison

The benefit of assimilating satellite data can be preliminarily evaluated by comparing
model estimates and satellite observations with in situ data. Open-loop (OL) SM and GWS
variations are used here, meaning that the model simulation is performed without the
use of DA. The SM and GWS variations are calculated by removing the long-term mean
SM (or GWS) from their daily estimates. The SM evaluation (Figure 4a,b) reveals that
SMOS/SMAP data have better agreement with the ground observations than the model,
with a 0.1 higher correlation coefficient (see values given in Figure 4). Similar behavior is
seen in GWS estimates, where GRACE-derived GWS (Figure 4d) provides a nearly 100%
higher correlation value than the model (i.e., from 0.3 to 0.6). Note that the GRACE-derived
GWS used in this comparison is simply calculated by subtracting the CABLE-simulated
SM storage value from the GRACE observations. This preliminary analysis suggests that
assimilating SMOS, SMAP, and GRACE data into CABLE may improve SM and GWS
estimates in the Goulburn catchment (i.e., move model estimates closer to the values of
ground observations). We performed an accuracy assessment in Section 4.4 to confirm
this hypothesis.
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Figure 4. Initial comparisons between modeled/observed variables and in situ data, (a) modeled
SM vs. in situ SM variations, (b) satellite−derived SM (SMOS/SMAP) vs. in situ SM variations,
(c) modeled GWS vs. in situ GWL variations, and (d) satellite−derived GWS (GRACE GWS) vs. in
situ GWL variations. For this initial analysis, GRACE GWS variations are computed by removing
CABLE−simulated SM storage variations from GRACE observations. The correlation coefficient (R)
is provided in each figure.
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4.2. Multivariate DA Impacts on SM and TWS Estimates

The behavior of different multivariate DA algorithms is investigated by assessing their
impact on SM and TWS estimates. The purpose of this analysis is to examine how DA affects
model state estimates, while validation against ground measurements is discussed later in
Section 4.4. The basin-averaged SM (Figure 5a) and TWS variations (Figure 5c) show that
model simulations (OL) perform reasonably well compared to satellite observations, with
correlation values greater than 0.6 (Figure 5b,d). However, under/overestimated SM and
TWS are frequently observed in OL simulations, where model outputs differ significantly
from observations: see, for example, SM estimates in 2011, 2012, and 2014 (gray circles
in Figure 5a). Applying multivariate DA results in the SM and TWS estimates moving
toward the assimilated observations and mitigates most of the significant mismatches
between modeled and observed values (see, e.g., OL vs. EvS time series in Figure 5a,c). The
correlation coefficients of SM and TWS estimates are improved by more than 0.1 through
the inclusion of multivariate DA.
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Figure 5. (a,c) Monthly basin−averaged SM and TWS variations from OL and four different DA algo-
rithms (EnKS, PS, EnGPS, and EvS). For comparison, SMOS/SMAP in (a) and GRACE observations
in (c) are also shown. The circles represent the periods when model estimates differ significantly from
observations. (b,d) Spearman’s correlation coefficients of SM (c) and TWS (d) computed between
model estimates and satellite observations.

All four DA algorithms deliver relatively similar SM and TWS estimates. Among all
considered DA approaches, EvS has the greatest impact on SM estimates and produces
the highest correlation coefficient (Figure 5b). EvS also improves TWS estimates, with a
correlation value only ~0.01 less than EnKS and EnGPS results (Figure 5d), suggesting
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that EvS is effective at capturing the assimilated observations. For both SM and TWS,
EnGPS correlation coefficients fall between those of EnKS and PS. This is because EnGPS
evaluates optimal particles using information from both EnKS (e.g., proposal function) and
PS (e.g., likelihood function), resulting in posterior estimates that are constrained by the
EnKS and PS results.

4.3. Error Characteristics of DA Systems

The four multivariate DA algorithms each have a unique approach to handling system
errors. EnKS assumes Gaussian error distributions, while EvS, PS, and EnGPS are free from
such a restriction. The success of EnKS (Figure 5) suggests that the error distribution of
DA systems is probably Gaussian. To investigate this hypothesis, the error distribution of
monthly basin-averaged SM and TWS estimates from four DA algorithms is determined
at each analysis step. Error distributions from Dec 2012 and Dec 2015 are shown in
Figure 6. Other monthly solutions exhibit a similar pattern. The Jarque–Bera (JB [39])
test is performed to confirm the validity of the Gaussian error assumption. Although
some skewness of the error distribution is observed, we find that the SM and TWS error
distributions in this study are close to Gaussian throughout the simulation period (at
0.05 significance level). The imperfect Gaussian shape of the error distribution seen in
some panels of Figure 6 is due to the small sample size used in our DA systems. Increasing
the number of ensemble members improves the Gaussian shape but has no effect on DA
performance (not shown).
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Figure 6. Prior error distributions of the model−estimated SM (first (a–d) and second rows (e–h)) and
TWS (third (i–l) and fourth rows (m–p)) obtained from four DA algorithms in Dec 2012 and Dec 2015:
EnKS (first column), PS (second column), EnGPS (third column), and EvS (fourth column). Gaussian
fits to error distributions are shown in each figure as a solid black line.
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4.4. Validation with In Situ Data
4.4.1. Soil Moisture

SM estimates are validated with in situ data at S1–S4 grid cells (see Figure 1). The
four DA SM estimates exhibit similar temporal patterns but are noticeably distinct from the
OL estimates (Figure 7). Utilizing multivariate DA leads to improved agreement between
SM estimates and in situ data. Both OL and DA appear to be smoother than the ground
truths, which is most likely due to a coarse spatial resolution of the model that is incapable
of capturing point-scale SM variations. Despite this potential over-smoothing, OL and DA
effectively observe the SM’s overall pattern. The declining tendency in SM between 2010
and 2015 is seen at all sites and results from reductions in precipitation since 2010 (Figure 8).
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Figure 9 depicts the statistical results of SM estimates. Multivariate DA algorithms
improve SM accuracy by increasing the correlation coefficient and reducing unbiased root
mean square difference (RMSD [40]) by up to 20% (see, e.g., Figure 9d). EvS provides
the best overall performance, improving correlation and RMSD values by up to 0.14 and
0.01 m3/m3, respectively. EnKS and EnGPS perform similarly to EvS, while PS performs
slightly worse. It should be noted that the PS generates particles solely based on the model’s
prior distribution, which does not always overlap with observation distributions [15]. This
process can cause SM estimates to be closer to modeled than observed values at some
update time steps. Multivariate DA provides correlation coefficients as high as 0.8. These
results are in line with our initial analysis (Section 4.1), in which comparisons of satellite
SM observations and in situ data yield similar correlation values (see, e.g., Figure 4b). This
behavior is expected since the top soil component is directly updated by SMOS/SMAP data,
i.e., via cost function (EvS), Kalman gain (EnKS), or likelihood (PS, EnGPS). The positive
impact of satellite SM observations is simply propagated into modeled SM estimates. At
S2, the positive impact of DA is marginal. The OL SM simulation at S2 has the highest
correlation and lowest RMSD among the evaluated locations, and the slight impact of DA
is due to the OL estimate already having very high accuracy in the first place.
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4.4.2. Groundwater Storage

GWS estimates are compared with in situ GWL at G1–G4 grid cells (Figure 10). Due
to the lack of accurate specific yield, the conversion between GWS and groundwater level
was not performed here, and the validation was only carried out in terms of correla-
tion. OL GWS estimates have much smaller dynamic ranges than those of in situ data
(e.g., Figure 10a). Ineffective redistribution between evapotranspiration and soil infiltration
by CABLE (as described in Decker et al. [41]) likely causes inaccurate groundwater recharge
and GWS variations. In addition, long-term trends in OL GWS estimates contradict ground
truths, such as at G3, where OL exhibits increasing GWS (1 cm/yr), but in situ data shows
decreasing GWL (−3 cm/yr). After applying multivariate DA, the overall GWS temporal
feature is consistent with in situ data: GWS increases from 2010 to 2012 and decreases
from 2013 to 2014, consistent with precipitation patterns (Figure 8). Multivariate DA also
increases the GWS dynamic range and the seasonal variation in the GWS time series from
1.7 cm (OL) to 3 cm (DA) (see, e.g., Figure 10a). The performance of all four DA approaches
is comparable.
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Figure 10. GWS variations obtained from four DA approaches (EnKS, PS, EnGPS, and EvS) at G1–G4
pixels (a–d). For comparison, OL estimates and in situ GWL variations are also shown.

The correlation coefficient between GWS and in situ GWL confirms the importance
of multivariate DA in GWS estimations (Figure 11). To start, OL has a poor agreement
with in situ GWL, with an average correlation value of only ~0.3 (see Avg in Figure 11).
At G3, OL even exhibits anticorrelation. On average, applying multivariate DA increases
correlation coefficients by about a factor of two (100%). EvS has the highest average
correlation coefficient, 0.63. However, the advantage of EvS over the other three DA
algorithms is marginal and statistically insignificant, according to the Fisher Z-transform
test for correlation coefficients at a significance level of 0.05 [42]. This is due to the fact that
EnKS, PS, and EnGPS all perform well under SM/TWS Gaussian error distributions (as
demonstrated in Section 4.3). This analysis finds that all DA algorithms are suitable for
GWS estimations in the Goulburn River catchment.
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Figure 11. Correlation coefficients of GWS estimates obtained from OL and four DA approaches
(EnKS, PS, EnGPS, and EvS) at G1−G4 pixels. Average correlation values (Avg) from all four locations
are also shown.

5. Discussion

Assimilating SMOS, SMAP, and GRACE data into CABLE in the Goulburn River
catchment results in improved SM and GWS estimates. Our findings support those of
previous studies [6,9,10] regarding the benefits of multivariate DA in simultaneously
improving modeled SM and GWS. The assimilation of SMOS and SMAP leads to a 20%
improvement in SM correlation and RMSD. GRACE DA results in a twofold (100%) increase
in agreement between GWS estimates and in situ groundwater data. Despite marginal
differences among DA approaches, the benefit of multivariate DA is in line with the
findings shown in Tangdamrongsub et al. [10]. This indicates that the different update time
window, whether monthly or sub-monthly, has no significant effect on DA performance
in the Goulburn River catchment. However, the importance of time windows may differ
depending on location, so a sensitivity analysis is always recommended prior to performing
DA to determine the appropriate forecast/update period.

EvS has a significant impact on SM and GWS estimates, providing the most-improved
correlation value among all DA approaches (EnKS, PS, and EnGPS). However, the degree
of improvement of EvS does not differ significantly from the others. The similarity in DA
performances is due to the system’s error distributions being close to Gaussian, which
conforms with EnKS, PS, and EnGPS requirements. The small benefit of EvS over the
other DA algorithms is a result of the latter having effective performance to begin with. In
systems with highly non-Gaussian error distributions, EvS is expected to provide a more
significant advantage [15,20].

From an implementation point of view, EvS is more robust than other algorithms because
the relationship between model states and observations does not need to be formulated in a
single large covariance matrix, as in, e.g., EnKS and EnGPS (see Equations (A1)–(A3)). This
advantage is especially noticeable when a large number of model state variables or satellite
observations are included in multivariate DA. In a large dimensional system, EvS requires
less processor memory than other DA algorithms (i.e., EnKS, PS, and EnGPS). The crossover
and mutation resampling in EvS also acts to improve the sample diversity of the DA system,
avoiding the ensemble/particle collapse problems of PS [16]. The only disadvantage of EvS
is that the iteration process can occasionally consume more simulation time than other DA
algorithms, particularly in large study areas. However, the additional processing effort is
found to be insignificant and does not affect EvS’s overall performance in our analysis.

Future developments may include different satellite SM and TWS observations, such
as SM retrieval from the Cyclone Global Navigation Satellite System (CYGNSS [43]), and
TWS derived from the Swarm satellites [44]. Including different observed variables such as
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leaf area index or snowcover in a multivariable DA algorithm is also feasible with minor
changes to the state vector and measurement operator matrix. However, it should be
noted that assimilating a large number of observations does not always result in improved
simulation results, and a sensitivity study is recommended prior to the DA operation to
identify the optimal set of assimilated observations.

6. Conclusions

This study assessed the performance of four different multivariate DA algorithms used
to assimilate SMOS, SMAP, and GRACE data into the CABLE model to improve SM and
GWS simulations in the Goulburn River catchment in Australia. The evaluation found that
EvS improves the accuracy of SM and GWS estimates most, increasing their correlation with
in situ observations by ~20% and 100%, respectively. Similar improvements were made by
the other three DA approaches evaluated (EnKS, PS, and EnGPS). The similarity among DA
performances can be explained by TWS error distributions being close to Gaussian. EvS may
be superior in applications that contain highly non-Gaussian distributions (e.g., streamflow
estimations; Dumedah and Coulibaly, 2013). In the context of water storage estimates, EvS
demonstrates its utility in multivariate DA by simultaneously improving a suite of model
state variables, resulting in a more robust DA system.
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Appendix A. Ensemble Kalman Smoother (EnKS)

In EnKS, the state vector is updated as follows:

xi
s|s = xi

s|t−1 + K(yi
s −Hxi

s|t−1), (A1)

with
K = PeHT

(
HPeHT + Re

)−1
, (A2)

where yi
s is a perturbed observation vector, K is the Kalman gain matrix, and Pe and Re

are the ensemble error covariance matrices of the model and observations, respectively. If
the matrix A contains the ensemble states (SM and GWS) and A has the same dimension
as A and filled in with the mean value computed from all ensemble members, Pe can be
computed as follows:

Pe = (A−A)(A−A)
T/(N − 1). (A3)

Similarly, Re is computed as follows:

Re = YYT/(N − 1), (A4)

where Y contains measurement errors of all ensemble members.
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Appendix B. Particle Smoother (PS)

The PS represents the state probability density function (pdf) from random samples
(called particles). The posterior pdf can be approximated using a set of weighted particles
as follows:

p(xs|y1:t) =
N

∑
i=1

w̃i
sδ
(

xs − xi
s

)
, (A5)

where w̃i is a normalized importance weight associated with a particle xi, and δ( ) is the
Dirac delta function. The importance weight can be computed using a likelihood function
p
(
ys
∣∣xi

s
)

as:

wi
s = wi

t−1·p
(

ys

∣∣∣xi
s

)
. (A6)

The likelihood function is expressed as

p
(

ys

∣∣∣xi
s

)
=

1

(2π)
N0
2 det(R)

1
2

e[−
1
2 (ys−Hxi

s)
T

R−1(ys−Hxi
s)], (A7)

where det( ) is a determinant of the given matrix, N0 is a number of observations, and
R is an observation error covariance matrix. The normalized importance weight is then
computed as

w̃i
s =

wi
s

∑N
i=1 wi

s
. (A8)

Final outputs of PS approach consist of a particle set (in xi
s) and their associated

weights (w̃i
s). The weighted mean of the particles represents the optimal state estimate.

Appendix C. Ensemble Gaussian Particle Smoother (EnGPS)

The EnGPS is developed based on Ensemble Gaussian Particle Filter [45]. The EnGPS
adopts the same concept as PS, but computes importance weights based on the posterior
estimate of EnKS:

wi
s =

p(ys|xi
s|s)p

(
xi

s
∣∣yt−1

)
q(xi

s|s, ys)
(A9)

where p(ys|xi
s|s), p

(
xi

s
∣∣yt−1

)
, and q(xi

s|s, ys) are a likelihood, prior, and proposal density

function, respectively. The xi
s|s represents particles obtained from a proposal density

function q(xi
s|s, ys). constructed based on EnKS posterior information. The likelihood

function can be calculated using Equation (A7) by replacing xi
s. with xi

s|s. The prior and
proposal functions are approximated using a Gaussian distribution as follows:

p
(

xi
s

∣∣∣yt−1

)
= N (xi

s|s; xs|t−1, Ps|t−1), (A10)

q(xi
s|s, ys) = N (xi

s|s; xs|s, Ps|s), (A11)

xs|t−1 =
1
N

N

∑
i=1

xi
s|t−1, (A12)

xs|s =
1
N

N

∑
i=1

xi
s|s, (A13)

Ps|t−1 =
1

N − 1

N

∑
i=1

(xi
s|t−1 − xs|t−1)(x

i
s|t−1 − xs|t−1)

T
, (A14)

Ps|s =
1

N − 1

N

∑
i=1

(xi
s|s − xs|s)(x

i
s|s − xs|s)

T
, (A15)



Water 2022, 14, 621 18 of 20

where xi
s|t−1 and xi

s|s represent particles obtained after the model propagation and approx-

imated from EnKS estimates, respectively. After obtaining wi
s, the normalized weight is

computed as w̃i
s = wi

s/ ∑N
i=1 wi

s. Then, the posterior pdf can be finally defined as:

p(xs|y1:t) = N (xs; x̂s|s,
^
Ps|s), (A16)

where x̂s|s and
^
Ps|s are the weighted mean and weighted covariance, which are computed

as follows:

x̂s|s =
N

∑
i=1

w̃i
s xi

s|s, (A17)

^
Ps|s =

N

∑
i=1

w̃i
s (x

i
s|s − x̂s|s)(x

i
s|s − x̂s|s)

T
(A18)

Appendix D. Evolutionary Smoother (EvS)

The EvS approach employs a genetic algorithm to determine the optimal solution
through a natural selection process. In the analysis step, the cost function (J) is computed
as follows:

Ji =
s

∑
j=1


(

dj − db,j

)2

σ2
b

+

(
dj − dy,j

)2

σ2
y


i

(A19)

where dj is a model forecast of day j, db is a value obtained from a background model, dy is
a perturbed observation, σ2

b is a variance of a background model, and σ2
y is a variance of

the observation. In line with Dumedah [17], a background model (db, σ2
b ) is obtained from

the mean and variance of ensemble members in previous time steps. For the first time step,
a randomly generated value is used as the background model.

After obtaining the cost function with respect to SMOS, SMAP, and GRACE observa-
tions, EvS uses the Non-dominated Sorting Genetic Algorithm-II (NSGA-II [46]) algorithm
to evaluate the goodness-of-fit for each forecast ensemble member. This sorting process
identifies the optimal Ń = 100 members that have the best agreements with observations.
These selected Ń ensemble members are kept for the next iteration, while the others (re-
maining members) are discarded.

Crossover and mutation are used to generate Ñ = 100 new offspring. The crossover
operator produces new ensemble members from within the existing population, whereas
mutation can generate members from outside the ensemble distribution. An advantage of
the mutation operator is an increased sample diversity of the DA system, which can ease
ensemble collapse problems. The newly generated Ñ members are used in the forecast and
analysis steps (Equations (1)–(6)) to obtain the cost functions associated with them. Then,
the sorting process is repeated on the basis of Ń (optimal) + Ñ (newly generated) = 2N
members to determine the new optimal Ń members. This iterative process continues
until the cost functions are smaller than the observation uncertainty, i.e., 0.04 m3/m3 (soil
moisture) and 2 cm (TWS), or the iteration number is greater than 50. After the iteration is
completed, the last day’s model states are used as initial states for the following month’s
forecast. The updated model states are used as the background model (db, σ2

b ).
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44. Teixeira da Encarnação, J.; Arnold, D.; Bezděk, A.; Dahle, C.; Doornbos, E.; van den IJssel, J.; Jäggi, A.; Mayer-Gürr, T.; Sebera, J.;

Visser, P.; et al. Gravity Field Models Derived from Swarm GPS Data. Earth Planets Space 2016, 68, 127. [CrossRef]
45. Plaza Guingla, D.A.; De Keyser, R.; De Lannoy, G.J.M.; Giustarini, L.; Matgen, P.; Pauwels, V.R.N. Improving Particle Filters in

Rainfall-Runoff Models: Application of the Resample-Move Step and the Ensemble Gaussian Particle Filter. Water Resour. Res.
2013, 49, 4005–4021. [CrossRef]

46. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

http://doi.org/10.1029/2005GL024889
http://doi.org/10.1029/2004GL020938
http://doi.org/10.1016/j.rse.2015.06.025
http://doi.org/10.1016/j.rse.2017.01.021
http://doi.org/10.1002/2016JB013007
http://doi.org/10.1126/science.1099192
http://www.ncbi.nlm.nih.gov/pubmed/15273390
http://doi.org/10.1029/2005GL025305
http://doi.org/10.1016/0165-1765(80)90024-5
http://doi.org/10.1175/2010JHM1223.1
http://doi.org/10.1002/2016MS000832
http://doi.org/10.1037/0033-2909.87.2.245
http://doi.org/10.1109/LGRS.2021.3086092
http://doi.org/10.1186/s40623-016-0499-9
http://doi.org/10.1002/wrcr.20291
http://doi.org/10.1109/4235.996017

	Introduction 
	Model, Study Area, and Data 
	Model Configurations 
	Study Area and In Situ Data 
	Satellite Soil Moisture Data 
	GRACE Data 

	Methodology 
	Implementation of Multivariate DA 
	Ensemble Kalman Smoother (EnKS) 
	Particle Smoother (PS) 
	Ensemble Gaussian Particle Smoother (EnGPS) 
	Evolutionary Smoother (EvS) 

	Results 
	Initial Comparison 
	Multivariate DA Impacts on SM and TWS Estimates 
	Error Characteristics of DA Systems 
	Validation with In Situ Data 
	Soil Moisture 
	Groundwater Storage 


	Discussion 
	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

