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Abstract: Clean water is an indispensable essential resource on which humans and other living 

beings depend. Therefore, the establishment of a water quality prediction model to predict future 

water quality conditions has a significant social and economic value. In this study, a model based 

on an artificial neural network (ANN), discrete wavelet transform (DWT), and long short-term 

memory (LSTM) was constructed to predict the water quality of the Jinjiang River. Firstly, a multi-

layer perceptron neural network was used to process the missing values based on the time series in 

the water quality dataset used in this research. Secondly, the Daubechies 5 (Db5) wavelet was used 

to divide the water quality data into low-frequency signals and high-frequency signals. Then, the 

signals were used as the input of LSTM, and LSTM was used for training, testing, and prediction. 

Finally, the prediction results were compared with the nonlinear auto regression (NAR) neural 

network model, the ANN-LSTM model, the ARIMA model, multi-layer perceptron neural 

networks, the LSTM model, and the CNN-LSTM model. The outcome indicated that the ANN-WT-

LSTM model proposed in this study performed better than previous models in many evaluation 

indices. Therefore, the research methods of this study can provide technical support and practical 

reference for water quality monitoring and the management of the Jinjiang River and other basins. 

Keywords: water quality forecast; MLP neural network; Daubechies 5 wavelet; long short-term 

memory network; hybrid model; decomposition-and-ensemble 

 

1. Introduction 

Water is one of the most essential natural resources on which all life depends. 

However, various economic activities have an indispensable impact on the environment 

through different pathways [1]. Take China as an example: in recent years, along with 

high-speed economic development and urbanization, China’s limited freshwater 

resources have been drastically reduced and, at the same time, increasing water pollution 

poses a serious threat to human survival and security and has become a significant 

obstacle to human health and sustainable socio-economic development. From the 

perspective of China’s actual national conditions, water resources are relatively scarce. In 

addition, as China is undergoing a period of rapid socio-economic development, the 

demand for water resources is accelerating. Although China has 2.8 trillion water 

resources [2], which seems to be very rich, the per capita share of water resources is only 

2400 cubic meters due to its large population [3], and account for less than one-quarter of 

the world’s total per capita water resources. In addition, the discharge of industrial 

wastewater and domestic sewage into water bodies without treatment has led to the 

severe pollution of various water bodies, including rivers and lakes, thus seriously 

damaging the ecological environment, biodiversity, and the ecological and service 
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functions of water bodies [4]. According to previous studies, only a small number of rivers 

worldwide are not affected by water pollution [5]. At present, the pollution and 

eutrophication of rivers in China are severe. According to the 2019 statistics from China’s 

State Environmental Protection Administration, the seven major water systems in China 

in descending order of pollution level are listed as follows: the Liaohe River basin, the 

Haihe River basin, the Huaihe River basin, the Yellow River basin, the Songhua River 

basin, the Pearl River basin, and the Yangtze River basin, with more than 70% of the 

Liaohe, Haihe, Huaihe, and Yellow River basins being polluted. Huang et al. [6] 

conducted an analysis of water quality data from 2424 water quality observation stations 

in China from 2003–2018 and concluded that the quality of river water in China showed 

significant spatial differences, with 17.2% of sampling sites in eastern China showing poor 

water quality during the period of 2016–2018, compared to 4.6% in the western region. 

Moreover, 24.4% of the sampling sites in coastal areas (buffer zone of 20 km from the 

coastline) showed poor water quality. Although the Chinese government has invested a 

great deal of money into the treatment and management of polluted water bodies, the 

pollution proportion of water resources is still quite impressive, which has brought severe 

economic and social costs to China’s water environment remediation [7]. Water quality 

prediction is a necessary tool for water environment planning, management, and control; 

an important element of water pollution research; and a fundamental part of water 

environmental protection and management. Thus, it is vital to find a reasonable and 

effective water quality prediction method. At the same time, predicting future water 

quality is a prerequisite for preventing rapid changes in water quality and proposing 

countermeasures. Therefore, the accurate prediction of water quality changes can not only 

effectively ensure the safety of people’s drinking water, but can also have a positive 

impact on guiding fishery production and protecting biodiversity. 

Research into water quality prediction dates back to the 1920s. Streeter and Phelps 

developed a coupled model based on biochemical oxygen demand and dissolved oxygen 

when they studied pollution sources in the Ohio River. They proposed a one-dimensional 

steady-state oxygen balance water quality model (the S-P model). Since then, many 

scholars have supplemented and revised their theories [8–10]. At present, the research 

methods of water quality prediction are mainly divided into two categories: one is to use 

theoretical mathematical model and physical model to predict the development trend of 

water quality mechanism [11], the other is a non-mechanistic prediction method that 

builds mathematical statistical prediction models based on historical data. The 

mechanistic prediction method analyses the physical, chemical, and biological changes of 

each factor in the water resource cycle; establishes a mathematical model reflecting the 

relationship between the substances; and solves the corresponding mathematical 

equations to predict the trend of water quality changes. For example, Zhang et al. 

incorporated the operation rules of dams or sluices into the reservoir regulation module, 

used an improved SWAT model to simulate the water quantity and quality in the Huaihe 

River basin, and compared the results with those of the original SWAT model. The results 

showed that the improved SWAT model was more accurate in simulating the water 

quantity and quality in the Huaihe River basin [12]. Peng et al. used the Environmental 

Fluid Dynamics Code (EFDC) model coupled with a geographic information system (GIS) 

model to simulate the water quality of the lower Charles River, and the results showed 

that the accuracy of the model was improved compared with the original EFDC model 

[13]. The mechanistic models of river water quality tend to provide a more comprehensive 

description of water quality changes, as they consider the effects of physical, chemical, 

and biological processes on the spatial and temporal transport and transformation 

patterns of pollutants in river waters; however, at the same time, most of these models are 

complex and require a great deal of basic information and data (numerical model uses a 

large amount of water quality data as the basis for calculation), and it is difficult to obtain 

a continuous distribution of water quality in space and time. This has greatly limited the 

application of these models [14]. In addition, the mechanics of many water environment 
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systems are not fully understood by scholars; hence, it is difficult to describe them 

accurately using exclusively mechanistic modelling. In contrast, non-mechanical water 

quality modelling is a black-box approach to a particular water quality system, which is 

modelled by mathematical statistics or other mathematical methods to make predictions 

about water quality. Commonly used non-mechanical water quality simulation prediction 

methods include regression models, probability statistical models, grey prediction 

models, time series models, etc. 

In recent years, neural networks and other machine learning algorithms have been 

applied by many researchers in the field of water quality prediction and have achieved 

good prediction results. The SOTA table of the progress of research based on water quality 

prediction is shown in Table 1 (distinguishing between mechanistic and non-mechanistic 

models). 

Table 1. Overview of water quality prediction research. 

Water Quality Mechanical Prediction Methods 

Research Scholars Research Subjects Model Name Model Characteristics 

Lee et al. (2017) 

[15] 

Environmental 

Fluid Dynamic 

Code 

The Galing River in 

Kuantan, Pahang, 

Malaysia 

The Environmental Fluid Dynamic Code (EFDC) model considers the 

effects of temperature, humidity, radiation, cloud cover, evaporation, 

wind direction, and wind speed, which makes the simulation results 

closer to the reality. The water quality (TOC, TN, TP) in the upstream 

section is significantly improved, and the prediction accuracy can be 

improved by about 37%; if the sewage from the tributary is at the same 

location, it will increase by about 77%. A total of five water quality 

management plans for improving the water quality of the Galing River 

were evaluated using EFDC. 

Deus et al. (2013) 

[16] 

Two-dimensional 

water quality 

model 

The Tucuruí 

reservoir, Pará, 

Brazil 

The use of CE-QUAL-W2 to model hydrodynamics and water quality can 

reproduce horizontal and vertical gradients and their temporal changes. 

The field data of temperature, nitrate, ammonia, phosphorus, total 

suspended solids (TSS), and dissolved oxygen and chlorophyll a are used 

to verify the prediction effect of the model, and it has been confirmed that 

it can be used to simulate the response of water quality to the various 

management schemes of the fish industry. 

Al-Zubaidi and 

Wells (2018) [17] 

Three-

dimensional 

hydrodynamic 

model 

Lake Chaplain, 

Washington, USA 

The 3D hydrodynamic and water quality model is developed by 

expanding the 2D fully implicit scheme of CE-QUAL-W2 in three 

dimensions. The governing equations include a continuity equation, free 

surface equation, momentum equation, and transport equation, and the 

momentum and transport equations are solved by the time-splitting 

technique. The hydrodynamic equation and water quality equation are 

solved at the same time to realize the feedback between water quality and 

hydrodynamics. The results showed that the solution of the 

hydrodynamic equation of the model was very consistent with the field 

data. 

Yang et al. (2017) 

[18] 

Finite volume 

method 

Urban Lake in 

Tianjin, China 

The Navier Stokes equation is used to establish a two-dimensional 

hydraulic model, the finite volume method is used to calculate the 

parameters of the two-dimensional uncertain eutrophication model, and 

the Bayesian method is used to correct the model parameters. The model 

reflects the interaction between nutrients, phytoplankton, and 

zooplankton. It can be used to simulate the changes of seasonal and 

regional water quality indicators (DO, NH4+, NO3−, and PO43−), and can 

calculate hydrodynamic information and eutrophication dynamics with 

reasonable accuracy (all relative errors are less than 11%). 

Colton et al. (2022) 

[19] 

Mass balance 

model 

the Laurentian Great 

Lakes 

The model calculates the mass balance and dynamic simulation 

evaluation of some trace metal loads in the Great Lakes basin, 

summarizes the loads of the tributaries and connecting channels, and 

estimates the atmospheric input and sedimentation. Among them, the 
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load of conservative elements (Na and Cl) is used to calibrate the black 

box method. The mass balance of these elements can be accurately 

reproduced to 90% in a long-term trend. 

Wang et al. (2018) 

[20] 

Soft-sensing 

method based on 

WASP model 

Taihu Lake and 

Beihai Lake in China 

The WASP model is employed as a soft-sensing method and its unknown 

parameters are estimated by the unscented Kalman filter. The results 

show that the proposed soft sensing method can describe the changes of 

relevant water quality indexes (DO, BOD, TN, and Chl_a), and has 

improved accuracy compared to the nonlinear least square method and 

traditional trial and error method. 

Yang et al. (2021) 

[21] 

MIKE 21 FM 

model  

Dongshan Lake in 

Guangdong 

Province of China 

By using the MIKE 21 FM model and considering different flow 

arrangements, several model scenarios were established to predict the 

impact of diversion on selected water quality parameters. The results 

showed that the inflow and outflow arrangement was the main factor 

determining the flow field of the whole lake and the change trend of NH3-

N, and the increase in flow showed an unequal influence in each region. 

Wind was also shown to be important for the formation of air circulation 

and the change of pollutants. 

Water Quality Non-Mechanical Prediction Method 

Research Scholars Research Subjects Model Name Methods and Results 

Najafzadeh et al. 

(2021) [22] 
None 

SVM, GEP, MTree, 

EPR, and MARS 

models 

The d-factor of the SVM model was 0.79 for the Kx metric with 95% 

confidence space. The d-factor value was 0.87 for the Ky metric, which is 

better than the other models in terms of prediction accuracy. 

Song et al. (2021) 

[23] 
Haihe River SWT-ISSA-LSTM 

Based on the strong noise immunity of the simultaneous wavelet 

transform, the simultaneous wavelet transform is used to denoise the 

dataset, followed by an improved sparrow search algorithm to optimize 

the hyperparameters of the LSTM. The mean absolute error (MAE) of the 

model for predicting the water quality of Yongding River was 0.4727, 

which is much lower than other models. 

Noori et al. (2013) 

[24] 

Sefidrood River 

Basin 
ROANFIS 

The Pearson correlation coefficient (R) and root mean square error of the 

best-fit ROANFIS model were 0.96 and 7.12, respectively. In the test step 

of the selected ROANFIS model, the uncertainty analysis showed that the 

95% confidence interval and the d-factor were predicted as 94% and 0.83, 

respectively. 

Noori et al. (2013) 

[25] 

Sefidrood River 

Basin 
RONNM 

The results showed that the best-fit RONNM had a Pearson correlation 

coefficient (R) and root mean square error of 0.94 and 7.75, respectively. 

In addition, the accuracy analysis of the model outputs based on the 

developed difference ratio statistics showed that RONNM was more 

advantageous. 

Noori et al. (2015) 

[26] 

Sefidrood River 

basin 
SVM 

The percentage of observed data included by the bandwidth of 95% 

prediction uncertainty (95 ppu) and 95% confidence interval (d-factor) 

was selected for analysis. The results showed that the support vector 

machine model was more sensitive to the capacity parameter (C) than 

kernel parameter (gamma) and fault tolerance (epsilon), and it had 

acceptable uncertainty in BOD5 prediction. 

Ahmed et al. 

(2019) [27] 

Data from 

PCRWR 

Polynomial 

regression, random 

forest, etc. 

Multiple linear regression, polynomial regression, random forest, and 

other machine learning regression models were used to predict WQI 

separately. The results show that the mean absolute error (MAE) of 

polynomial regression was 2.7273, which bests the other models in terms 

of performance. 

Liu (2019) [28] 

Guazhou 

automatic water 

quality 

monitoring station 

LSTM 

The mean interpolation and Pearson correlation coefficient were first used 

to preprocess the dataset, followed by LSTM to predict the PH and 

CODMn metrics. The mean squared error (MSE) of the model was 0.0017 

for the DO dataset, which outperformed the ARIMA and SVR models. 

Hu et al. (2019) 

[29] 
None LSTM 

Linear interpolation and Pearson correlation coefficients were first used 

to preprocess the dataset, followed by LSTM to predict PH, temperature, 

and other indicators. The results indicated that in the short-term 
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prediction, the prediction accuracy of PH and water temperature could 

reach 98.56% and 98.97%, and the prediction time lengths were 0.273s and 

0.257s, respectively. In the long-term prediction, the prediction accuracy 

of pH and water temperature could reach 95.76% and 96.88%, 

respectively. 

Elias Eze et al. 

(2021) [30] 
South Africa 

EEMD-DL-LSTM 

model 

Firstly, EEMD was used to decompose temperature and PH into 

individual IMF components, and then each IMF component was used as 

the input of LSTM to train the neural network. The results showed that 

the average absolute error of this hybrid model was 0.0375, which is much 

lower than that of the BPNN and DL-LSTM models. 

Archana et al. used the depth belief network in unsupervised learning to study the 

PH, dissolved oxygen, turbidity, and other water quality parameters of the Chaskaman 

reservoir for prediction and analysis [31]. The results show that this method performs 

better than the classical method for prediction. Wang et al. introduced the Holt–Winters 

seasonal model based on the ARIMA model and predicted the total phosphorus and total 

nitrogen in the reservoir. The results showed that the model had a prediction accuracy of 

97.5% and had many advantages, such as fast learning speed [32]. Mohamed et al. 

analyzed the irrigation water quality index in Egypt by means of an integrated evaluation 

method and an artificial neural network model. In addition, the ARIMA model was 

developed to predict IWQI in Bahr El-Baqar drain, Egypt [33]. Shi et al. proposed a 

combination of the wavelet artificial neural network (WANN) model and the high-

frequency alternative measurement of water quality anomaly detection and early warning 

method [34]. Li et al. proposed an EEMD-SVR water quality prediction model to predict 

the water quality of Jialing River in China. The model first decomposes water quality 

indicators, such as DO, into each IMF component by the EEMD algorithm, and then builds 

the SVR model based on each IMF component. The results showed that the hybrid model 

outperformed the standard SVR model and BPNN model in a variety of evaluation 

indicators [35]. Ewaid et al. established a multiple linear regression model according to 

the specified weight and predicted the water quality of the Euphrates River [36]. Xu 

combined wavelet transform and BPNN to establish a short-term wavelet neural network 

water quality prediction model and used the model to predict the water quality of 

intensive freshwater pearl culture ponds in Duchang County, Jiangxi Province, China. 

The results showed that the RMSE of the model was 3.822 in DO metrics, which was much 

lower than that of the BPNN and ELman models, showing desirable performance [37]. 

Qin et al. developed a PSO-WSVR model and used a particle swarm algorithm to optimize 

the parameters of the weighted support vector regression machine to predict water 

quality in Yixing, China. The results showed that the model reduced RMSE, MAE, MAPE, 

and MSE by 46.74%, 17.86%, 43.62%, and 67.84%, respectively, compared with the 

standard SVR model [38]. Tizro et al. used the ARIMA model to study nine water quality 

parameters of Hor Rood River [39]. Faruk established an ARIMA-ANN model with 108 

months of water quality data from the Büyük Menderes River in Turkey from 1996-2004. 

The model consisted of two parts: firstly, the ARIMA model was used to model the linear 

part of the dataset, and then the artificial neural network was used to model the nonlinear 

part of the water quality series based on the fact that the ARIMA model could not solve 

the nonlinear part of the water quality series well. The results showed that the correlation 

coefficients between the predicted values of the hybrid model and the observed data for 

boron, dissolved oxygen, and water temperature were 0.902, 0.893, and 0.909, respectively 

[40]. Zhang et al. developed an ARIMA-RBFNN model to predict the total nitrogen (TN) 

and total phosphorus (TP) of Chagan Lake. The results showed that the RMSE values of 

this hybrid model were 0.139 and 0.036 for TN and TP indicators, respectively, which were 

improved compared to the ARIMA and RBFNN models [41]. Than et al. developed the 

LSTM-MA model, classified the water quality of Dongnai River from 2012 to 2019, 

predicted the water quality in the next two years, and proved that the LSTM-MA hybrid 



Water 2022, 14, 610 6 of 26 
 

 

model has a quicker training time and more precise prediction than ARIMA, NAR, NAR-

MA, and LSTM models [42]. Jian et al. first used an improved grey correlation (IGRA) to 

extract the features of water quality information and subsequently used LSTM to predict 

the water quality of Taihu Lake and Victoria Harbor; the results showed that the RMSE 

values of the model were 0.07 and 0.067, which were lower than those of the BPNN and 

ARIMA models, showing good performance [43]. Hameed et al. used an RBF neural 

network (RBFNN) and BPNN model to forecast and compare the water quality in 

Malaysia, respectively. The results showed that the RMSE of BPNN was 0.867 and the 

RMSE of RBFNN was 0.0194, and the RBF neural network outperformed the BP neural 

network model in terms of prediction accuracy [44]. 

In summary, although scholars have proposed a large number of research methods 

in the field of water quality prediction, the prediction results of traditional statistical 

models are not satisfactory for time series with large fluctuations and long-term trends. 

For example, the regression analysis model is relatively simple, but its requirements for 

statistical data are high, demanding a large sample and data with a good distribution 

pattern; the time series model has a relatively sound theoretical basis, but its prediction 

accuracy is poor; the grey prediction model is suitable for the case of small and 

discontinuous historical data, but the model is susceptible to the influence of unstable 

data, resulting in a large prediction error; the support vector machine is suitable for small 

samples, but it is more sensitive to the choice of parameters and kernel functions. In 

addition, traditional single deep learning models, such as back Propagation neural 

network (BPNN) and RBFNN, lack the memory ability for historical information. 

Moreover, most of the missing data filling methods cannot effectively handle the time-

series information in the dataset, resulting in large errors in the estimation of missing 

values. Therefore, this study attempts to use an artificial neural network to fill in the 

missing information of water quality, comprehensively apply wavelet transform and the 

LSTM model to the field of water quality prediction, and compare the prediction results 

with ANN-LSTM, ARIMA, NARNN, CNN-LSTM, and DWT-CNN-LSTM models so as to 

prove the effectiveness of the proposed model. 

This study is divided into the following parts: Section 2 introduces the artificial 

neural network model, wavelet transform, long-short term memory network model, and 

error evaluation index; Section 3 takes the Jinjiang River Basin as the research object, 

constructs the ANN-WT-LSTM model for water quality prediction, and compares the 

prediction results with the NAR neural network model, ANN-LSTM model, and ARIMA 

model; and the conclusion and research prospects are presented in Section 5. 

2. Materials and Methods 

2.1. Study area Description and Dataset Analysis 

The Jinjiang River is 182 km long, with a watershed area of 5629 square kilometers, 

an average slope of 0.19%, and an average annual runoff of 5.13 billion cubic meters. It is 

the largest river in Quanzhou and the third largest river in Fujian Province. The following 

Figure 1 shows the geographical location of the Jinjiang River. 

The Jinjiang River is divided into two tributaries, the east stream and the west stream, 

and the source of the Jinjiang River is the west stream, which is 153 km long with a 

watershed area of 3101 square kilometers and an average annual runoff of 3.65 billion 

cubic meters. The east stream of the Jinjiang River originates at the southern foot of 

Xueshan Mountain in Jindou, Yongchun. The river is 120 km long, with a watershed area 

of 1917 square kilometers and an average annual runoff of 1.4 billion cubic meters. 

Quanzhou City, through which the Jinjiang River flows downstream, is one of the most 

economically developed regions in Fujian Province. Quanzhou, located in the 

southeastern part of Fujian Province, is one of the three central cities in Fujian Province, 

and its total economic output has remained the first in Fujian Province for 22 consecutive 

years. In 2020, the city’s population was over 7 million, ranking first in the province in 
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terms of population size. As the Jinjiang River basin covers 53.8% of Quanzhou’s land 

area, water resources are very important for the city’s sustainable development. At the 

same time, there has been a serious pollution problem in the Jinjiang River basin [45,46]. 

The traditional industrial development model has caused great damage to local 

sustainable development, the pressure on the water environment is increasing, pollution 

from some enterprises is rebounding, the construction of environmental protection 

infrastructure is lagging behind, and the proportion of domestic pollution sources is 

increasing day by day. Therefore, the accurate prediction of water quality in the Jinjiang 

River basin will provide crucial decision data support for future pollution control 

programs. 

 

Figure 1. Geographical overview of Jinjiang River basin. 

The dataset used in this study was selected from the weekly report of automatic 

water quality monitoring at the Shilong section of Jinjiang River basin. Among the many 

water quality evaluation indexes, we selected dissolved oxygen (DO), permanganate 

index (CODMn), ammonia nitrogen (NH3-N), and TP (total phosphorus), which are the 

four most representative indexes of the research object. The time of data collection was 

from 7 January 2013 to 21 June 2021. The data update cycle occurred once a week, with a 

total of 443 groups of data. We used the first 421 groups of data as the training set and the 

last 22 groups as the test set. The images of the dataset are shown in Figure 2. 

Next, the dataset was analyzed and the missing values were found. The analysis 

results are shown in Table 2. 

 
 

(a) (b) 
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(c) (d) 

Figure 2. The image of dataset. (a) Dissolved oxygen (DO). (b) CODMn. (c) NH3-N. (d) Total 

phosphorus (TP). 

Table 2. Descriptive statistics of experimental dataset. 

Index 
Minimum 

Value 

Maximum 

Value 
Mean Value Standard Deviation Variance 

Number of 

Missing 

Values 

DO 4.80 11.10 7.49 1.19 1.19 1 

CODMn 1.10 5.30 2.64 0.74 0.74 1 

TP 0.00 0.19 0.09 0.03 0.03 0 

NH3-N 0.02 0.95 0.29 0.17 0.17 2 

Then, we used Pearson’s correlation coefficient to analyze the correlation of each 

dataset. The results are shown in the Table 3. From the above correlation analysis table, it 

can be seen that the DO dataset was negatively correlated with the CODMn, TP, and NH3-

N datasets; the CODMn dataset showed a weak positive correlation with the TP and a 

significant positive correlation with the NH3-N dataset; and the TP dataset showed a 

significant positive correlation with the NH3-N dataset. 

Table 3. Correlation coefficients for each dataset. 

Correlation Coefficient DO CODMn TP NH3-N 

DO 1 −0.024 −0.201 −0.136 

CODMn - 1 0.031 0.087 

TP - - 1 0.448 

NH3-N - - - 1 

2.2. The Framework of the Proposed Model 

The single neural network model is susceptible to fluctuations in the water quality 

time series during training, which affects the prediction accuracy. Therefore, this study 

introduced the signal time and frequency decomposition method for water quality data 

preprocessing and built a hybrid prediction model based on “decomposition- prediction- 

reconstruction” to improve the overall prediction accuracy. The hybrid model is made up 

of five components: 

1. Data preprocessing: firstly make a descriptive analysis of the collected water quality 

data, find the missing value, estimate the missing value by artificial neural network, 

and then normalize it to eliminate the influence of dimension. 

2. Discrete wavelet transform: The db5 wavelet technique is used to decompose the 

water quality time series datasets. 
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3. Model training, detection: Split the high-frequency and low-frequency signals of each 

dataset obtained from the db5 wavelet decomposition into a training set and a test 

set according to a fixed ratio. In this study, we set the first 421 sets of each dataset as 

the training set and the last 22 sets as the test set. Subsequently, we used LSTM to 

train each training set and adjust the relevant parameters of LSTM, such as learning 

rate and the maximum number of iterations 

4. The predictions obtained from the decomposed test set of each sub-series are 

superimposed to obtain the final prediction results. 

5. Model evaluation: This study used four indicators—MSE, RMSE, MAE and MAPE—

to evaluate the model’s performance. 

The whole algorithm flow chart is shown in Figure 3. 

 

Figure 3. Flow chart of water quality prediction model. 

2.3. Data Normalization 

Data normalization is a fundamental task for mining data in machine learning. In 

practical research, different methods and evaluation metrics often have different scales 

and units, which will produce diverse data analysis results. In order to reduce the relative 

relationship between quantities and to eliminate the influence of the dimension between 

indicators, the data must be normalized in order to achieve comparability between data 

indicators and to achieve the expectation of data optimization. The original data are 

normalized such that the indicators are in the same order of magnitude, which is 

convenient for comprehensive comparison and evaluation. Commonly used 

normalization methods include min-max normalization [47] and Z-score normalization 

[48]. Minimum-maximum normalization, also known as outlier normalization, is a linear 

transformation of the original data such that the resulting values map to between 0 and 1. 

There are also some other data normalization methods, such as the Z-score 

standardization method. However, the Z-score application also has risks. Firstly, the 

estimation of the Z-score requires the overall mean and variance, but this value is difficult 

to obtain in real analysis and mining. In most cases, it is replaced by the sample mean and 

standard deviation. Secondly, Z-score has certain requirements for data distribution, and 

normal distribution is the most conducive to Z-score calculation. Therefore, we chose the 

min-max normalization method. It is more suitable for use on data with relatively 

concentrated values. The transformation function of the min-max normalization used in 

this study is as follows: 
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' min

max min

x x
X

x x

−
=

−
 (1) 

where maxx  is the maximum value of the sample data and minx is the minimum value of 

the sample data. 

2.4. Artificial Neural Network (ANN) 

During the collection of time-series data, the loss of single or multiple attributes of 

some data in the final dataset or the loss of single or multiple records will be caused by 

acquisition, storage, and human error. These data are called missing data. The lack or 

incompleteness of data brings many difficulties to data mining, which will lead to the 

deviation of the analysis results and mislead users’ decisions, resulting in adverse 

consequences. Therefore, filling the missing data completely under certain conditions is 

of great significance for macro data mining in big data scenarios. Nowadays, there are 

several ways to deal with missing data, such as the deletion method [49,50], missing value 

filling method based on a statistical model [51], or the method based on parameter 

estimation. This method first judges the missing mechanism of the missing value and then 

establishes a specific model to estimate the missing value. This method is widely used 

because it is more flexible in application and can be applied to datasets with a large 

number of missing values [52]. Common methods include the expectation maximization 

method, multiple filling method [53–57], maximum likelihood estimation method, etc. 

Austin et al. used multiple interpolations to estimate missing values in clinical medicine 

[58]. Chang et al. developed a distributed multiple filling method with communication 

efficiency to estimate the missing data in distributed health data networks (DHDNs) [59]. 

In summary, research on interpolation methods for missing values of time series has 

received increasing attention from scholars in various fields, and although some scholars 

have considered the correlation characteristics of time series, most of these studies have 

not quantified the correlation between the observed quantities. Although some scholars 

consider the correlation characteristics of time series, most of the studies are still based on 

traditional interpolation or regression analysis methods. Moreover, some traditional 

models, such as piecewise linear interpolation [60], cannot estimate the missing value well 

[61,62]. Therefore, with the development of machine learning, researchers can gradually 

apply various machine learning algorithms to the field of missing value filling, which can 

to some extent solve the problem of non-linearity that cannot be handled by traditional 

methods. Machine learning methods for missing value estimation include the KNN 

method [63], artificial neural network, etc. 

Artificial neural network (ANN) is a classical fundamental technique in machine 

learning. Compared with general multi-factor prediction methods, its prediction method 

has the advantages of high fault tolerance, high reliability, and fast prediction speed. In 

addition, ANN is a powerful interpolation tool [64–66]. Artificial neural networks 

generally have more than three layers of multilayer neural networks, which generally 

include three-layer structures of input, hidden, and output layers, as shown in Figure 4. 

 

Figure 4. Topology of neural network structure. 
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A neural network can be divided into two states: learning state and working state. 

The learning state is used to adjust the weight of the neural network to make the output 

close to the actual value, while the working state uses the established network for 

classification and prediction without changing the weight of the neural network. The 

learning mode of the neural network is tutorial learning. The weight of the network is 

adjusted by the difference between the actual output and expected output of the network 

to make the model adapt as accurately as possible. 

In this study, the MLP neural network was used to estimate the missing values from 

the water quality data of the Jinjiang River. The activation function of the output layer is 

constant. The single-layer perceptron is the simplest neural network, which is composed 

of input and output layers, and the input and output layers are directly connected. The 

MLP neural network contains an input layer, output layer, and several hidden layers, 

which is a kind of multi-layer feed-forward neural network based on BP algorithm 

training. The input signal is passed forward through the input layer to the hidden layer, 

and subsequently the neurons in the hidden layer are computationally processed and then 

passed forward to the output layer, which is a forward transmission process in which the 

output of the MLP neural network depends only on the current input and not on past or 

future inputs; thus, the MLP neural network is also known as a multi-layer feed-forward 

neural network. Among many neural network architectures, MLP neural networks are 

simple in structure, easy to implement, and have good fault tolerance, robustness, and 

excellent nonlinear mapping capability (Figure 5). 

 

Figure 5. Topology of MLP neural network structure. 

2.5. Basic Principle of Wavelet Transform 

In the process of time-series data acquisition, there will be some noise in the time 

series data due to observation error, systematic error, or other reasons, and the noise will 

seriously affect the data processing results. Therefore, in the data preprocessing stage, 

different methods should be selected to denoise the data according to the type of noise. 

Common denoising methods include the Fourier transform [67], the wavelet transform 

[68], etc. 

The Fourier transform is a widely used analysis method in the field of signal 

processing. It converts a time domain signal into a frequency domain signal. Its basic idea 

is to decompose the signal into the superposition of a series of continuous sine waves with 

different frequencies. However, Fourier transform also has many disadvantages. The 

traditional Fourier transform can only realize the overall transformation between the 
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signal time domain and the frequency domain and cannot distinguish time-domain 

information. However, Fourier transform is only suitable for stable signals; most signals 

have variability, which significantly limits the application of Fourier transform. 

The basic idea of wavelet transform is to adaptively adjust the time-frequency 

window according to the signal, decomposing the original signal into a series of sub-band 

signals with different spatial resolutions, frequency characteristics, and directional 

characteristics after stretching and translating. These sub-bands have good local 

characteristics in both the time and frequency domains and can therefore be used to 

represent the local characteristics of the original signal, thus enabling the localization of 

the signal in time and frequency. This method can overcome the limitations of Fourier 

analysis in dealing with non-smooth signals and complex images. 

The mathematical definition of wavelet is as follows: let 2 ( ) ( )L R L R  , which 

is almost always 0 on R and satisfies 

( )

C d

 






+

−
=  , then   is the wavelet, 

where 
1

( ) ( )
2

irt e dt  


+
−

−

=   is the Fourier transform of  . Wavelet transform is 

one order of magnitude faster than fast Fourier transform. When the signal length is M, 

the computational complexity of Fourier transform is Of = Mlog2M and that of wavelet 

transform is OM = M. 

Wavelet transform can be divided into continuous wavelet transform (CWT) and 

discrete wavelet transform (DWT). 

The formula of continuous wavelet transform is: 

1
( , ) ( ) ( )f

t b
W a b f t dt

aa


+

−

−
=   (2) 

where Wf(a,b) is the continuous wavelet coefficient, a is the scaling factor, b is the 

translation factor, ( )
t b

a


−
 is the conjugate function of ( )

t b

a


−
, and ( )f t  represents 

the original data. The scale of wavelet transform is controlled by adjusting the values of a 

and b to realize the adaptive time-frequency signal analysis. 

The discrete wavelet transform formula is: 

0

0

0

( )

( , ) ( )
j

f
j

t
kb

a
W j k f t dt

a


+

−

−

=   
(3) 

where Wf(j,k) is the discrete wavelet coefficient and f(t) is the original data. 

The dbn wavelet is the most common wavelet transform and is mainly used in 

discrete wavelet transform. For wavelets of a finite length, when applied to fast wavelet 

transform, there will be a sequence composed of two real numbers. One is the coefficient 

of the high-pass filter, which is called the wavelet filter, and the other is the coefficient of 

the low-pass filter, which is called the adjustment filter. Firstly, the wavelet transform 

decomposes the original data into the low-frequency wavelet coefficient cAn and high-

frequency wavelet coefficient cD1, cD2, …, cDn by using the low-pass filter and high-pass 

filter, respectively. Among them, the low-frequency wavelet coefficient can be further 

decomposed and iterated several times until the maximum decomposition time is 

reached. Finally, the decomposed wavelet low-frequency signal and high-frequency 

signal are added to realize wavelet reconstruction. The formula is: 
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where f(t) is the restored signal; ( ( ))ikl t  and ( ( ))ikh t  are the low-pass filter and 

high pass filter, respectively; cAn is low-frequency wavelet coefficient; and cDn is high-

frequency wavelet coefficient. 

The calculation steps of wavelet transform are as follows: 

Step 1. Elect the wavelet function and align it with the starting point of the analysis 

signal. 

Step 2. Calculate the approximation degree between the signal to be analyzed and 

the wavelet function at this time; that is, the wavelet transform’s coefficient C. The larger 

the coefficient C, If the coefficient C is larger, the more similar the current signal is to the 

waveform of the selected wavelet function. 

Step 3. Move the wavelet function to the right one-unit time along the time axis, and 

then repeat Steps 1 and 2 to calculate the transformation coefficient C until it covers the 

whole signal length. 

Step 4. Scale the selected wavelet function by one unit, and then repeat Steps 1–4. 

Step 5. Repeat Steps 1–4 for all expansion scales. 

The selection of the mother wavelet type and decomposition level are the two most 

important problems in wavelet analysis. In this study, the db5 wavelet was used to 

decompose the experimental sequence for the following two reasons: 

(1) The db wavelets are more suitable for relatively stable sequences; 

(2) db5 is also one of the most commonly used wavelets in the db wavelet family, which 

is suitable for smoother datasets. 

Because Jinjiang water quality data has obvious smoothing characteristics, the db5 

wavelet analysis was the most suitable method for this study. 

The maximum decomposition levels of wavelet can be calculated by the following 

Equation (5): 

L = ln(nd/(lw − 1)) (5) 

where lw is the length of the wavelet decomposition low-pass filter and nd is the data 

length. 

In this study, lw = 23 and nd = 443 were selected, and L was calculated such that the 

number of wavelet decomposition layers was 3. 

2.6. Basic Principle of LSTM 

RNN was first proposed in the 1980s. As a popular algorithm in deep learning, 

compared with deep learning network (DNN), its circular network structure allows it to 

take full advantage of the sequence information in the sequence data itself. Therefore, it 

has many advantages in dealing with time series. Moreover, the ability to correct errors is 

achieved through back-propagation and a gradient descent algorithm. However, there are 

also many problems: as the time series grows, researchers have found that RNNs are weak 

for long time series, which means that the long-term memory of RNNs is poor. At the 

same time, as the length of the sequence increases, the depth of the model increases, and 

the problem of gradient disappearance and gradient explosion cannot be avoided when 

calculating the gradient. Therefore, Hochreiter et al. [69] proposed LSTM. The structure 

of LSTM is shown in Figure 6 [70]. 

The long-short term memory network is different from the traditional recurrent 

neural network in rewriting memory at each time step. LSTM will save the important 

features it has learned as long-term memory, and selectively retain, update, or forget the 

saved long-term memory according to the learning. However, the features with small 

weight in multiple iterations will be regarded as short-term memory and eventually 
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forgotten by the network. This mechanism allows the important feature information to be 

transmitted all the time with the iteration so that the network has better performance in 

the classification task with a long-time dependence of samples. LSTM has been widely 

applied in flood sensitivity prediction [71], the prediction of key parameters of nuclear 

power plants [72], wind speed prediction [73,74], financial price trends [75], language 

processing [76], etc. In recent years, the LSTM model has made a series of improvements 

on the basis of RNN neurons. These include the addition of a transmission unit state in 

the RNN hidden layer controlled by three gating units: the forgetting gate, input gate, and 

output gate. Forgetting gates are used to control the forgetting of information and the 

extent to which it is retained. The calculation formula is: 

1( [ , ] )t F t t FF W h X b −=  +  (6) 

where Xt is the current input information, ht−1 is the data information in the previous 

hidden state, and the range of Ft is 0 to 1. When Ft = 1, it means that the information is 

completely retained, and when Ft = 0, it means that the information is completely 

abandoned. 

 

Figure 6. Long short-term memory network topology diagram. 

The input gate is used to control how much input information at the current time is 

saved to the unit state. The expression is written as: 

1( [ , ] )t i t t iI W h x b −= +  (7) 

where Wi is the weight matrix, bi is the offset term, and It is the input layer vector value. 

The input unit status Ct is represented as: 

1t i t t tC F C I C−= +  (8) 

1tanh( [ , ] )t c t t cC W h x b−=  +  (9) 

where Wc is the weight matrix and bc is the offset term. 

The output calculation formula of the output gate Ot
 
is shown as: 

1( [ , ] )t o t t oO W h X b −=  +  (10) 

where bo is the offset value, Wo is the judgment matrix, and ht-1 is the hidden layer state at 

time (t−1). 

tanh( )t t th O C=  (11) 

In Equation (11), is the Hadamard product and ht is the hidden layer state at time 

t. 
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2.7. Evaluation Index 

In this study, mean square error (MSE), root mean square error (RMSE), mean 

absolute error (MAE), and mean percentage error (MAPE) were selected as the basis for 

judging the prediction effect of the model. The calculation formulae are as follows: 

2

1

1
MSE ( )

N

t t

t

y y
N =

= −  (12) 

2

1

1
RMSE ( )

N

t t

t

y y
N =

= −  (13) 

1

1
MAE ( )

N

t t

t

y y
N =

= −  (14) 

1

1
MAPE

N
t t

t t

y y

N y=

−
=   (15) 

where N represents the total data volume, 
ty  represents the real value, and ty  

represents the predicted value. 

MAE is used to measure the mean absolute error between the predicted and actual 

values, RMSE is used to measure the deviation between the predicted and actual values 

(which is sensitive to outliers), and MAPE is used to measure the average relative error 

between the predicted and actual values. 

3. Results 

3.1. Artificial Neural Network Interpolation 

In this study, we used MATLAB to construct a multilayer perceptron neural network 

to fill in the missing data in each dataset. The parameters of MLP were set as follows: the 

number of implied layers was two, the optimization algorithm was the conjugate scalar 

gradient algorithm, and the minimum relative change in the training error rate was 0.001. 

The artificial neural network training images for the DO, CODMn, and NH3-N datasets 

are shown in the Figure 7. 

   

Figure 7. Residual images of ANN training on DO, CODMn, and NH3-N datasets. 

As shown in Figure 7, the coefficient of determination was 0.99488 for the DO dataset, 

0.99317 for the CODMn dataset, and 0.99525 for the NH3-N dataset. It is clear that the fit 

of each dataset was good. Therefore, the model could be used to estimate the missing 

values in the DO, CODMn, and NH3-N datasets. 
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3.2. Results of Wavelet Transform Model 

Figure 8 shows the original images of DO, CODMn, TP and NH3-N and the images 

after db5 wavelet decomposition. 

  

  

Figure 8. Original images and three-layer decomposition images of DO, CODMn, TP, and NH3-N 

datasets. 

However, after summing the data signals of each frequency band after wavelet 

reconstruction into the original signal, there is a certain error between this reduced data 

and the original data that is determined by the characteristics of the computer and is an 

error that cannot be eliminated. If this error value is too large, the experimental results 

will not be credible. Therefore, in this research, in order to verify the experimental 

accuracy of the model, the difference between the reduced data and the original data after 

wavelet reconstruction of the four indicators in the experiment was calculated. The errors 

are shown in Table 4. 

Table 4. Wavelet reconstruction error table for each parameter. 

Parameters Error Value 

DO 9.1 × 10−16 

CODMn 6.75 × 10−16 

NH3-N 8.13 × 10−16 

TP 8.35 × 10−16 

From Table 4, it can be found that the error of CODMn was the largest (6.75 × 10−16) 

and the error of DO was the smallest (9.1 × 10−16). An error value in this range interval 

has a negligible effect on the experimental results, which proves the validity of the 

experiment. 
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3.3. Model Result Output 

After wavelet transform of DO, CODMn, TP, and NH3-N data, the decomposed low-

frequency wavelet coefficient cA and high-frequency wavelet coefficient cD were used as 

the input of LSTM. Meanwhile, in order to verify that the ANN-WT-LSTM model had a 

higher prediction accuracy than other models, we selected ANN-LSTM, ARIMA, and 

NAR neural network models for comparison. The parameter settings of the other models 

are shown in Table 5. 

Table 5. parameter settings of ANN-WT-LSTM and traditional LSTM models. 

Model Parameters ANN-WT-LSTM ANN-LSTM 

Data Type cA cD 
Data Interpolated by 

Artificial Neural Network 

Number of hidden layer units a 300 300 300 

Learning rate (%) b 0.003 0.003 0.001 

Forgetting rate (%) c 0.2 0.2 0.2 

Gradient threshold d 1 1 1 

Number of iterations e 250 250 250 

Batch size f 32 32 32 
a NAR neural network parameter settings: autoregressive coefficient lag = 3, number of hidden layer 

units = 300. b Set to reduce the learning rate by multiplying by a factor of 0.2 after 125 rounds of 

training. c BPNN parameter settings: number of hidden layer units = 300 and number of iterations = 

250; d SSA-LSTM parameters: dim is 4, the range of learning rate is (0.001,1), the range of the 

maximum number of iterations is (10,500), number of sparrows = 5, warning value ST = 0.6, 

proportion of discoverers PD = 0.6, proportion of sparrows aware of danger SD = 0.2, and population 

size = 5; e ISSA-BPNN: based on the fact that the sparrow search algorithm tends to fall into a local 

optimum, a tent mapping was used to initialize the population for the sparrow search algorithm. f 

The parameters were set as follows: lower boundary (lb) of the weight threshold is −5 and upper 

boundary (ub) of the weight queue is 5. 

The results of the ANN-WT-LSTM model are shown in Figures 9–12. 

  

  

Figure 9. Prediction results and error images of the ANN-WT-LSTM model for high-frequency and 

low-frequency parts of the Do verification set. 
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Figure 10. Prediction results and error images of the ANN-WT-LSTM model for high-frequency and 

low-frequency parts of the CODMN verification set. 

  

Figure 11. Prediction results and error images of the ANN-WT-LSTM model for high-frequency and 

low-frequency parts of the TP verification set. 

  

Figure 12. Prediction results and error images of the ANN-WT-LSTM model for high-frequency and 

low-frequency parts of the NH3-N verification set. 

The prediction error images of the ANN-LSTM model on the test set data and the 

comparisons with the original images are shown in Figures 13–16. 
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Figure 13. Prediction results of the ANN-LSTM model on the DO test set and comparison with the 

original image. 

 

 

Figure 14. Prediction results of the ANN-LSTM model on the CODMn test set and comparison with 

the original image. 

 

 

Figure 15. Prediction results of the ANN-LSTM model on the TP test set and comparison with the 

original image. 
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Figure 16. Prediction results of the ANN-LSTM model on the NH3-N test set and comparison with 

the original image. 

3.4. Comparison with Other Models 

We aimed to compare the prediction results of the ANN-WT-LSTM model with other 

existing models, compare the prediction accuracy of the different models, and analyze the 

prediction efficiency of the models. The comparison results of the model predictions are 

shown in Table 6. 

Table 6. Analysis and comparison of ANN-WT-LSTM model and other models on dataset. 

Parameter 

Model 
DO CODMn TP NH3-N 

ANN-W-LSTM 

MSE 8.3 × 10−25 0.0006 0.00068 0.006 

RMSE 9.13 × 10−13 0.024 0.026 0.0776 

MAPE 5.65 × 10−13 0.021 0.243 0.0232 

MAE 4.39 × 10−12 0.014 0.014 0.011 

ANN-LSTM 

MSE 2.536 0.539 0.0009 0.03 

RMSE 1.5927 0.7341 0.03 0.232 

MAPE 0.106 0.178 0.355 2.88 

MAE 0.94 0.52 0.02 0.181 

NAR 

MSE 2.2889 1.1353 0.0012 1.945 

RMSE 1.5129 1.0655 0.0345 1.395 

MAPE 0.1489 0.2593 0.563 13.639 

MAE 1.2417 0.813 0.026 1.149 

ARIMA 

MSE 3.1659 0.9277 0.0013 0.0297 

RMSE 1.7793 0.9632 0.0359 0.1723 

MAPE 0.1711 0.1959 0.6434 2.1502 

MAE 1.4999 0.7009 0.0306 0.1601 

MLPNN 

MSE 2.7947 0.728 0.0011 0.015 

RMSE 1.67 0.853 0.033 0.122 

MAPE 1.403 0.698 0.29 0.11 

MAE 0.159 0.267 0.589 1.27 

CNN-LSTM 

MSE 2.35 0.25 0.018 0.008 

RMSE 1.53 0.5 0.134 0.09 

MAPE 0.015 0.15 0.96 0.28 

MAE 1.17 0.4 0.11 0.02 

BPNN 

MSE 0.27 0.126 0.2 0.07 

RMSE 0.52 0.35 0.45 0.26 

MAPE 3.87 1.59 1.22 1.11 

MAE 0.42 0.29 0.41 0.22 

SSA-LSTM 
MSE 1.4 0.27 0.02 0;009 

RMSE 1.18 0.52 0.14 0.095 
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MAPE 0.14 0.16 0.12 0.44 

MAE 1.16 0.42 0.11 0.024 

ISSA-BPNN 

MSE 0.14 0.062 0.12 0.05 

RMSE 0.37 0.25 0.35 0.22 

MAPE 5.13 1.3 0.92 2 

MAE 0.29 0.2 0.31 0.18 

SSA-BPNN 

MSE 0.15 0.063 0.13 0.1 

RMSE 0.38 0.251 0.36 0.32 

MAPE 1.73 0.77 0.98 1.86 

MAE 0.29 0.2 0.32 0.19 

DWT-CNN-LSTM 

MSE 0.24 0.04 0.002 0.03 

RMSE 0.49 0.2 0.045 0.173 

MAPE 0.05 0.05 0.5 1.62 

MAE 0.39 0.15 0.043 0.13 

EMD-LSTM 

MSE 1.67 0.07 0.035 0.022 

RMSE 1.3 0.26 0.19 0.15 

MAPE 0.14 0.06 0.62 1.96 

MAE 1.1 0.2 0.13 0.12 

EEMD-LSTM 

MSE 1.12 0.07 0.037 0.016 

RMSE 1.06 0.26 0.192 0.126 

MAPE 0.11 0.07 0.62 1.64 

MAE 0.89 0.20 0.13 0.105 

4. Discussion 

Water pollution is one of the biggest important environmental problems facing 

mankind, and the harm caused by it is largely due to the lack of prediction and early 

warning and emergency disposal capabilities. Therefore, the construction of an effective 

monitoring and early warning system to achieve intelligent decision making and the 

management of water quality is a key scientific and technological issue that needs to be 

addressed urgently. However, because water quality indicators usually have the 

characteristics of nonlinearity and non-smoothness, conventional statistical models often 

have difficulties making accurate predictions [77]. In recent years, there has been a rapid 

development of deep learning technology and wireless sensing technology. The model 

proposed in this study can be applied in the following aspects: 

(1) Existing monitoring systems cannot achieve online high-frequency monitoring of all 

important pollutants, so the model proposed in this study can be used for soft 

computing to improve the timeliness, coverage and frequency of online monitoring 

and to form an effective early warning system for water quality management. 

(2) According to real-time monitoring data for water quality change trend prediction 

and water quality risk judgment. When the prediction results show that the water 

quality situation has a deteriorating trend, the relevant management departments 

can make the corresponding measures of pollution prevention and control at the first 

time, so as to minimize the water quality losses caused by pollution incidents. 

From the above results and error images, it can be seen that the accuracy of the ANN-

WT-LSTM model prediction on the DO dataset was substantially improved compared 

with the MLPNN model, ANN-LSTM model, NAR neural network model, CNN-LSTM 

model, SSA-LSTM, SSA-BPNN model, and ISSA-BPNN model. For the CODMn dataset, 

the MAPE of the ANN-WT-LSTM model was 0.021, which was 0.157, 0.2383, 0.1749, 0.677, 

0.129, 1.569, 0.139, 1.279, 0.749, 0.029, and 0.039 lower compared to the ANN-LSTM model, 

NAR neural network model, ARIMA model, MLPNN model, CNN-LSTM model, BPNN 

model, SSA-LSTM model, ISSA-BPNN model, SSA-BPNN model, DWT-CNN-LSTM 

model, and EMD-LSTM model, respectively. For the TP dataset, the RMSE of the ANN-

WT-LSTM model was 0.026, which decreased by 0.004, 0.0085, 0.0099, 0.007, 0.108, 0.424, 
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0.114, 0.324, 0.334, 0.019, and 0.164, respectively, compared to the other models. For the 

NH3-N dataset, the MSE of the ANN-WT-LSTM model was 0.006, which decreased by 

0.024, 1.939, 0.0237, 0.009, 0.002, 0.064, 0.003, 0.044, 0.094, 0.024, and 0.016, respectively, 

when compared with the other models. 

It is known that water quality prediction methods are divided into two main 

categories: mechanistic and non-mechanistic predictions. Mechanistic water quality 

models are derived using system structure data based on constraints in the underlying 

physical, biological, and chemical processes of the water environment system. A variety 

of water quality models have been developed, such as QUAL, WASP, MIKE, EFDC, 

SWAT, SMS, BASINS, etc., and have been widely used. However, these mechanistic water 

quality models are very complex and require a large amount of basic data information 

(such as simulation parameters, source and sink terms, etc.) to establish and solve the 

water quality control equations. This makes the complexity of building water quality 

models high and the parameters more difficult to determine, leading to limitations in the 

application of the models in many water bodies [78,79]. Moreover, for many aquatic 

environmental systems, the detailed mechanisms are not fully explained, and the 

evolutionary development of water quality is influenced and disturbed by many 

variables, such as physics, chemistry, biology, meteorology, and hydraulics, with strong 

non-linear characteristics. The existing water quality prediction models based on 

mathematical expressions are unable to take the influence of these factors into account, 

and it is difficult to accurately describe the migration and dispersion of the water 

environment using mechanistic modelling; hence, the predictions made on this basis have 

a “natural” bias. Furthermore, typical basin hydrological models, such as SWAT, HSPF 

and MIKE, have different scenarios that are able to simulate the hydrological processes 

and the evolution of point and non-point sources of pollution in large scale basins over 

long periods of time; however, they are not suitable for predicting water quality in larger 

water bodies, such as lakes and reservoirs. Water quality models such as CE-QUAL-W2, 

WASP, and EPD-RIV1 address the hydrodynamics and water quality of larger water 

bodies, but not the hydrological problems that occur in the basin. 

In contrast, the ANN-WT-LSTM model proposed in this paper is based on the idea of 

neural networks to analyze historical water quality data to predict future water quality 

changes, and is one of the non-mechanical water quality prediction methods. Non-

mechanical forecasting methods use the idea of statistics, through the water quality 

related to the historical time series data mining analysis, to find its data behind the law of 

change, and then deduce the trend of water quality changes. Compared with the 

mechanistic water quality prediction methods, the advantages are obvious. First of all, the 

modelling cost is lower as the modelling data requirements are not high. Therefore, the 

method can be applied to water quality prediction in areas where a large amount of 

hydrological data is missing. Secondly, the model prediction reliability is good, because 

the ANN-WT-LSTM model has good applicability to the analysis and prediction of non-

linear problems in uncertain environment; thus, the water quality prediction accuracy has 

been improved a great deal compared with previous models (Table 6). In addition, the 

ANN-WT-LSTM model has good applicability. The model itself is a “black box” model 

analysis, which does not need the hydrological data of pollution sources for analysis. 

Whether the study area is the river basin environment or lakes, reservoirs or other large 

water bodies, it has wide applicability and universality. In summary, our view is that the 

ANN-WT-LSTM model proposed in this paper is not the only choice in water quality 

prediction models, but it still has great potential for application compared to other 

competing methods (including 1D, 2D, and 3D numerical models) due to its reliability, 

efficiency, and accuracy. 

The ANN-DWT-LSTM model proposed in this study still has several aspects that can 

be improved. 

(1) The model proposed in this paper only considers the historical data of water quality 

indicators in the Jinjiang River basin, while changes in the external environment have 
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a greater impact on river water quality, which can interfere with the neural network 

training process, thus affecting the accuracy of the model. There is still room for 

further research into how to reduce the interference of external factors or consider 

the influence of water quality factors in the model. 

(2) In this study, LSTM was used to predict water quality; however, there are numerous 

improved versions of the LSTM model, including the Bi-LSTM (bi-directional long 

short-term memory network) and the adaptive neuro-fuzzy inference system 

(ANFIS). These methods can be used to compare with the model proposed in this 

study. 

Based on the powerful parallel data processing capability and non-linear processing 

ability of neural networks, we believe that the model proposed in this study can be 

combined with big data technologies, such as IoT, which can process large-scale data 

quickly and accurately and can meet the requirements of multi-sensor data fusion well. 

5. Conclusions 

To improve the accuracy of water quality prediction data, this study proposed the 

ANN-WT-LSTM model based on an artificial neural network, wavelet transform, and 

long short-term memory network, using the water quality data of the Jinjiang River basin 

in China as the research object for prediction analysis. For missing water quality data 

caused by instrument failure, this study used an artificial neural network to fill in the 

missing values based on the time-series information of water quality data. Then, we used 

wavelet transform to decompose and reconstruct the water quality time series, in order to 

remove the impact of short-term random disturbance noise, improve the prediction 

accuracy of the model on out-of-sample data, and the ability to predict future dynamic 

trends, so that it can more effectively predict the short-term as well as long-term dynamic 

trends in water quality time-series data. Subsequently, compared with the ANN-LSTM 

model and the NAR neural network model, the results show that the ANN-WT-LSTM 

proposed in this study is better than other models in all evaluation indexes, and the model 

effectively improves the accuracy of water quality prediction, which is significant for 

water environment protection. The study not only provides vital data support for water 

quality safety management decisions, but also has important theoretical and practical 

significance for safeguarding the sustainable development of the riverine areas and water 

environmental protection in the reservoir area. 

This study predicts the possible future situation of reservoir water quality through 

the study of time series. However, due to the limitation of monitoring conditions, it can 

only predict the water quality at one point of the reservoir, which cannot reflect the overall 

spatial change of water quality. Therefore, in order to establish a more perfect reservoir 

early warning system, we suggest that water quality monitoring points be set up in many 

places to monitor the water quality in different directions of the reservoir to combine 

water quality prediction with GIS technology. In this way, we not only study the 

development trend of water quality in time, but also study the change of water quality in 

space, so as to combine time and space prediction and lay a good foundation for 

establishing a perfect water quality early warning system. 
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