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Abstract: Persistence is an important feature of soil moisture, which affects many important processes
such as land–air interaction and ecohydrological processes. Soil moisture datasets from reanalysis,
remote-sensing observations and land surface models have been widely used in various ecohydrolog-
ical studies, however, due to the complexity of hydrological processes, the essential features of soil
moisture such as spatial-temporal characteristics and persistence still need to be further quantified.
This study focused on the Australia region and used in situ observation from fourteen International
Soil Moisture Network sites to evaluate soil moisture from six gridded products, including satel-
lite remote-sensing records (ESA CCI), output of reanalysis (ERA5-Land) and land surface models
(GLDAS and GLEAM). High correlation coefficients between observations and the other soil moisture
datasets were gotten. Regional averaged inter-annual variations of soil moisture were relatively
large with some dry periods (2002–2010, 2013–2016) and wet periods (2011–2012) indicated by these
gridded products. General coherent spatial patterns were found in long-term soil moisture with large
differences in the lateral inflow area of the Great Artesian Basin. The coefficient of variation of these
soil moisture datasets generally decreased from northwest to southeast, but the enhanced vegetation
index coefficient of variation was larger in the southwest corner, northeast (non-coastal areas) and the
lateral inflow area. Persistence calculated from various soil moisture datasets had quite large differ-
ences compared with measurements. Meanwhile, little coherence was gotten among different surface
soil moisture datasets, the persistence of deep soil moisture seemed to be significantly overestimated.
Therefore, models still need to improve the temporal characteristics with the persistence rather than
the correlation coefficient.

Keywords: soil moisture; temporal trends; persistence; precipitation; LSMs

1. Introduction

Soil moisture (SM) is one of the essential variables of the terrestrial water cycle,
ecohydrology and land–air interactions [1]. Compared with precipitation, SM has a typical
characteristic of red noise with memory, also called persistence. SM persistence (SMP)
refers to the anomaly duration which usually lasts from days to months. SMP can be
calculated by autocorrelation coefficient (AC) methods and is quantified by lag (in days)
AC drops below 1/e [2]. SMP plays a vital role [3] in land–air interaction, and the study
of SM dynamics and its persistence is of great significance for improving land surface
models (LSMs).

As SM involves complex water processes, scientists are committed to continuously im-
proving SM datasets from both observation and simulation. SM data from site observation
is sparsely distributed and has poor time continuity, and thus, it is difficult to apply it in
large-scale and long-term analysis. With the rapid development of satellite remote-sensing
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technology and SM retrieval algorithms [4], several remote-sensed SM products [5,6] have
been developed. Corresponding limitations are also obvious because remote-sensing obser-
vation can only catch the surface SM indirectly, therefore, LSMs and reanalysis SM products
are also widely applied [7]. SM modeling methods in LSMs usually rely on biophysical
processes [8,9], the LSMs outputs have good time continuity and reflect the dynamics at
different depths in soil. However, their applicability in different regions remains to be
evaluated due to the negligence of lateral flow [10], especially in areas with complicated
topographical structure. Different LSMs use various model architectures and driving data,
which causes certain differences in different model products; however, they can still verify
each other and draw some common conclusions.

The accuracy of these SM datasets from reanalysis, remote sensing and LSMs have
been extensively verified with in situ observations [5]. Previous studies have focused more
on discussing the response of SM to atmospheric forcing [11] and their causality [12,13]
or coupling state [14–16]. The relationship between the SMP and its driver is still not
well-known. SMP has a profound impact on subsequent weather and climate conditions
through land–air feedback, and it is affected by soil texture, overlying vegetation, and
hydro-climatic forcing [17]. Precipitation pulse is the main source of SM, the redistribution
of precipitation is affected by topography, soil texture and so on. Different soil textures have
different water infiltration rates [18] affecting the vertical flow of soil water, which affects
the SMP, while overlying vegetation cover mainly affects subsurface flow (both vertical and
horizontal flow) through physical existence of root structure and hydraulic redistribution.

In this study, Australia was chosen as a typical water-limited ecosystem region with
high remote sensing SM data quality [19], Australia is also a key region with a water-related
global carbon cycle. The objective was to analyze the spatial-temporal characteristics of SM
and SMP at different depths in Australia in the past 20 years (2000–2019) based on multi-
source SM products and to investigate the drivers of surface SMP. Firstly, the performance
of surface SM data from different models was evaluated through the observed data from
the International Soil Moisture Network (ISMN) sites [20,21]. Then, we studied the spatial
pattern of Australian SM through its annual mean, coefficient of variation and amplitude.
Meanwhile, the dry–wet interannual trend of the past 20 years was also discussed. After-
wards, SMP at different depths was calculated by time series autocorrelation. The surface
SMP in Australia and its driving factors, including precipitation, aridity condition and
vegetation cover, was explored.

2. Materials and Methods
2.1. Study Area—Australia

Here, we choose Australia as the study area. Australia is surrounded by oceans, in
the east is the Great Divide, and in the west is the plateau with desert landforms. The
Great Artesian Basin with relatively low altitude (Figure 1a) is the largest aquifer system in
the world that underlies a large area of central east Australia [22]. The north part of the
Great Artesian Basin is a typical lateral inflow area [23] where the lateral subsurface flow
is mainly in soil due to soil properties and underlying surface properties. Here, digital
elevation model data are from SRTM (The NASA Shuttle Radar Topographic Mission).
Australia is a typical water-limited continent. There are about three-quarters drylands area
(Figure 1d) where in long lasting arid and semi-arid conditions [24] with low rainfall and
high water demand, the landscapes of savanna and grassland account for the majority
(Figure 1b). The temporal and spatial distribution of precipitation in drylands of Australia
varies a lot, usually concentrated in the summer, which makes this area highly sensitive to
global changes [25,26] due to the ecological vulnerability. Water is the main limiting factor
for most ecosystems in central and western Australia where in situ observation (Figure 1a)
is lacking.
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Figure 1. Topography from SRTM (a), vegetation cover ((b), derived from NVIS-MVGs, National 
Vegetation Information System—Major Vegetation Groups), aridity condition ((d), calculated by 
P/PE) and distribution of OZNET network (a,c) in the study area. 
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(Table 1) during 2000–2019. We averaged all the SM data to a daily scale for subsequent 
analysis. The observation SM data was from the Ozark Network Communications (OZ-
NET) in the ISMN. The OZNET network is located in New South Wales (Figure 1a,c), and 
its SM data mainly covered 4 layers of 0.00–0.08, 0.00–0.30, 0.30–0.60, 0.60–0.90 m, SM of 
all layers was measured with a CS615 or CS616 sensor. Remotely sensed active and pas-
sive fusion SM data (ESA CCI soil moisture V04.7) was obtained by the European Space 
Agency Climate Change Initiative [27,28], reflecting the SM status of the surface layer less 
than 2 cm thick [19]. Reanalysis data ERA5-Land [29] was acquired from Copernicus Cli-
mate Data Store. Three LSMs SM data, including GLDAS CLSM [30], GLDAS NOAH [31] 
and GLEAM [32,33] were also used in this study. GLDAS CLSM 
(GLDAS_CLSM025_DA1_D V2.2) started from 1 February 2003, so we only used it to cal-
culate the SMP which had nothing to do with the length of the time series. The unit of 
GLDAS SM data is soil weight moisture content (kg m−2), which needed to be converted 
into soil volume moisture content (m3 m−3) in advance by dividing the soil thickness value. 
GLEAM is a semi-empirical process-based model. Combining with remote sensing data, 
it could be treated as a simple LSM that only focuses on terrestrial evapotranspiration (ET) 
and SM. GLEAM v3.5 has two versions (a and b), GLEAM v3.5b data was also only used 
for SMP analysis. GLEAM v3.5b is mainly based on remotely sensed data, and its vegeta-
tion coverage is driven by MOD44B, while GLEAM v3.5a integrates measured, reanalyzed 
and remotely sensed vegetation optical depth data. More information of the six SM prod-
ucts can be found in Table 1. Fourteen sites that have been continuously exceeded for two 
years and whose sequence length was an integral multiple of the season were selected 
during the study period. All the SM datasets were set on a daily scale for subsequent anal-
ysis. 

 

Figure 1. Topography from SRTM (a), vegetation cover ((b), derived from NVIS-MVGs, National
Vegetation Information System—Major Vegetation Groups), aridity condition ((d), calculated by
P/PE) and distribution of OZNET network (a,c) in the study area.

2.2. Soil Moisture Datasets

This study used SM data from site observation, remote sensing, LSMs and reanalysis
(Table 1) during 2000–2019. We averaged all the SM data to a daily scale for subsequent
analysis. The observation SM data was from the Ozark Network Communications (OZNET)
in the ISMN. The OZNET network is located in New South Wales (Figure 1a,c), and its
SM data mainly covered 4 layers of 0.00–0.08, 0.00–0.30, 0.30–0.60, 0.60–0.90 m, SM of all
layers was measured with a CS615 or CS616 sensor. Remotely sensed active and passive
fusion SM data (ESA CCI soil moisture V04.7) was obtained by the European Space Agency
Climate Change Initiative [27,28], reflecting the SM status of the surface layer less than
2 cm thick [19]. Reanalysis data ERA5-Land [29] was acquired from Copernicus Climate
Data Store. Three LSMs SM data, including GLDAS CLSM [30], GLDAS NOAH [31] and
GLEAM [32,33] were also used in this study. GLDAS CLSM (GLDAS_CLSM025_DA1_D
V2.2) started from 1 February 2003, so we only used it to calculate the SMP which had
nothing to do with the length of the time series. The unit of GLDAS SM data is soil weight
moisture content (kg m−2), which needed to be converted into soil volume moisture content
(m3 m−3) in advance by dividing the soil thickness value. GLEAM is a semi-empirical
process-based model. Combining with remote sensing data, it could be treated as a simple
LSM that only focuses on terrestrial evapotranspiration (ET) and SM. GLEAM v3.5 has two
versions (a and b), GLEAM v3.5b data was also only used for SMP analysis. GLEAM v3.5b
is mainly based on remotely sensed data, and its vegetation coverage is driven by MOD44B,
while GLEAM v3.5a integrates measured, reanalyzed and remotely sensed vegetation
optical depth data. More information of the six SM products can be found in Table 1.
Fourteen sites that have been continuously exceeded for two years and whose sequence
length was an integral multiple of the season were selected during the study period. All
the SM datasets were set on a daily scale for subsequent analysis.
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Table 1. Overview of gridded SM datasets used in this study.

Data Data Type Layers Temporal Coverage Spatial
Resolution

Temporal
Resolution

ERA5-Land Reanalysis 0.00–0.07 m, 0.07–0.28 m,
0.28–1.00 m, 1.00–2.89 m 1950–Present 0.1◦ 1 h

GLDAS CLSM Land model 0.00–0.02 m, 0.00–1.00 m February 2003–July 2021 0.25◦ 1 d

GLDAS NOAH Land model 0.00–0.10 m, 0.10–0.40 m,
0.40–1.00 m, 1.00–2.00 m January 2000–July 2021 0.25◦ 3 h

GLEAM v3.5a Land model 0.00–0.10 m, 0.10–1.00 m 1980–2020 0.25◦ 1 d
GLEAM v3.5b Land model 0.00–0.10 m, 0.10–1.00 m January 2003–July 2020 0.25◦ 1 d

ESA CCI Remote sensing <0.02 m 1979–2019 0.25◦ 1 d

2.3. Other Auxiliary Data

The monthly precipitation and potential evapotranspiration (PET) data from the
Climate Research Unit (CRU TS v4.05) of the University of East Anglia [34] with 0.5◦

spatial resolution were used to calculate the Aridity Index (AI = precipitation/PET) of
the study area. In order to analyze the surface SMP difference with different conditions
of aridity, we used AI to define the arid area according to the ratio of the average annual
precipitation and the average annual atmospheric evaporation demand (usually use PET
as the replacement) [35]. The arid area is usually defined as the area with a range of AI less
than 0.65 [36,37], that is, an area where the average annual potential evapotranspiration is
much higher than the annual average precipitation.

Rainfall and vegetation transpiration represent the source and consumer of SM
(mostly), respectively. We also used Tropical Rainfall Measuring Mission (TRMM) precip-
itation data [38] and enhanced vegetation index (EVI) data [19] to assist in judging the
state of SM, the relationship between surface SMP and parameters such as precipitation
frequencies, precipitation intensity and vegetation index was discussed. The monthly EVI
data was derived from the MOD13C2 dataset, with a spatial resolution of 0.05◦ × 0.05◦.
Compared with vegetation greenness indexes such as normalized difference vegetation
index, EVI was affected less by the atmosphere and soil, whose definition is

EVI = 2.5 × ρNIR
1 + ρNIR + 6 × ρRed + 7.5 × ρBlue

(1)

where ρNIR, ρRed, ρBlue is the reflectivity of near infrared, red and blue band, respectively.
The vegetation cover data comes from Australia’s National Vegetation Information

System—Main Vegetation Groups (NVIS-MVGs V6.0) [39], with a resolution of 100 m.
The original 26 NVIS-MVGs were reclassified into several major groups including forest,
savanna, shrubland, agriculture and grassland (Figure 1b), which was used to analyze the
difference in the surface SMP under different overlying vegetation types.

2.4. Methods
2.4.1. Pearson Correlation

The Pearson correlation coefficient (r) reflects the degree of correlation between two
variables especially in the scatter plot. This study is based on the Pearson correlation
analysis of factors that affect the SMP. Assuming that there are time series x and y, the
formula of correlation coefficient is:

r =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(2)

2.4.2. Autocorrelation (AC)

The SMP is defined as the time required for an SM anomaly to dissipate [25], and it is
mostly estimated based on the autocorrelation (AC) of the SM time series. AC is used to
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describe the continuity of continuous variables, that is, the correlation between the future
value of a variable and its own past value (lagged correlation). AC analysis captures the
general time dynamics of SM, which reflects the direct response of SM to hydrological
processes. Delworth and Manabe [40] first proposed this indicator, and pointed out that on
a large temporal and spatial scale, the time series of SM can be reasonably represented as a
red noise process, with low-frequency change characteristics. AC e-folding time scale of SM
is used to characterize the SMP, that is, the AC coefficient of SM (rk) decays exponentially
with time, and the SMP is defined as the time it takes for rk to decrease to 1/e (about
0.37). The calculation of rk [2] is based on the Pearson correlation coefficient and can be
calculated by:

rk =
∑n−k

i=1 xi xi+k − (n − k)x2

∑n
i=1 xi

2 − nx2 (3)

where x is the time series of observations, n is the total number of observations in the time
series, i is the current observation to be analyzed and k is the lag time in days.

3. Results
3.1. Evaluation of the Soil Moisture Data

SM data from 0–0.08 m at 10 sites on the Australian OZNET network were applied
to evaluate the LSMs and remotely sensed surface SM. In the selected period (Figure A1),
the time series of the pixel where the station is located was correlated with the in situ
observation based on correlation analysis. We found that the ERA5-Land (0.1 degree) time
series is the closest to the observed data, with correlation coefficient above 0.7 at each
station (Table 2). At a resolution of 0.25 degrees, the simulation of surface SM by GLEAM
v3.5b was closest to the in situ data, and the average correlation coefficient of all sites
reached 0.82, only slightly lower than that of the ERA5-Land. The surface SM of CCI and
the simulation of surface SM by GLDAS CLSM and NOAH models’ average correlation
coefficient was also about 0.75.

Table 2. Correlation coefficients between multi-source surface SM datasets and in situ observational sites.

Sites
ERA5-Land

Layer 1
(0–7 cm)

GLDAS CLSM
Surface
(0–2 cm)

GLDAS
NOAH

(0–10 cm)

GLEAM v3.5a
Surface

(0–10 cm)

GLEAM v3.5b
Surface

(0–10 cm)

ESA CCI
(<2 cm)

Canberra_Airport 0.88 0.76 0.76 0.79 0.82 0.84
Cooma_Airfield 0.88 0.77 0.77 0.83 0.84 0.72

Crawford 0.88 0.84 0.79 0.82 0.86 0.77
Ginninderra_K5 0.89 0.85 0.81 0.89 0.88 0.74

Griffith_Aerodrome 0.72 0.73 0.67 0.80 0.80 0.73
Hay_AWS 0.71 0.68 0.69 0.73 0.73 0.65
Rochedale 0.78 - 0.67 0.71 - 0.70

Waitara 0.81 0.59 0.74 0.68 0.69 0.71
West_Wyalong_Airfield 0.88 0.75 0.85 0.90 0.91 0.88
Yanco_Research_Station 0.85 0.71 0.74 0.84 0.87 0.84

Average 0.83 0.74 0.75 0.80 0.82 0.76

3.2. Temporal and Spatial Characteristics of Soil Moisture in Australia

From the view of temporal scale, the SM retrieved based on remote sensing in Aus-
tralia had good consistency with the temporal fluctuation of vegetation and precipitation
(Figure A2). The fluctuation of surface SM was much stronger than that of deep SM,
which means that the time series of deep SM was smoother than that of surface SM. The
multi-layer SM maximum values all appeared in 2011. The inter-annual fluctuations of SM
were relatively large, and there were some dry periods (2002–2010, 2013–2016) and wet
periods (2011–2012). Different LSMs of SM had different performances. GLEAM simulated
the surface SM dryer (Figures 2 and A2), and the distinction between surface and roots in
GLEAM was not obvious; while GLDAS simulated deep SM wetter, layers of 10–40 and
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40–100 cm in GLDAS NOAH were too similar; The SM simulation of the 100–289 cm layer
in ERA5-Land was obviously low.
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From top to bottom of Column 1 represents spatial distribution of annual average remotely sensed
precipitation, SM and EVI.

From the perspective of spatial distribution (Figure 3), multi-source SM data all
showed that the surface SM in Australia had an obvious drying trend from 2000 to 2019,
and the drying area was mainly concentrated in the northwest, which was relatively
similar with precipitation. Both ERA5-Land Volumetric soil water layer 4 (100–289 cm) and
GLDAS NOAH SM (100–200 cm) showed that the trend of deep SM had significant spatial
heterogeneity, the average deep SM in the central plain had shown a slight drying trend
over the years, which was opposite to that of the surface.

The spatial patterns of precipitation, SM and vegetation were generally coherent,
however, there were some local structural differences, which may be caused by the redistri-
bution of water flow after precipitation (Figure 2). The annual average surface SM spatial
pattern of dry–wet simulated by GLDAS NOAH had good consistency with remotely
sensed SM from ESA CCI. Due to its finer spatial resolution, ERA5-Land SM data reflected
more spatial details and did not simply directly mask water bodies such as ephemeral lakes.
Compared with other data, this expressed the SM in the seasonal wetlands in Australia
better. The GLEAM model did not show the high SM in lateral inflow area well.

Multiple SM data showed that Australia’s annual average surface SM decreased
from the east coast and southwest corner to inland. The annual average surface SM in
the western desert was lower (below 0.1 m3 m−3), while in northeastern Australia there
were two northwest-southeast direction lateral inflow areas with high surface SM (above
0.3 m3 m−3), and the high SM status in the lateral inflow area was also reflected in the deep
SM (ERA5-Land, GLDAS NOAH). In addition, northeastern and southeastern Australia
also showed a high annual average deep SM.

From the coefficient of variation (CV) of SM (Figure 4), the spatial distribution of
surface and deep SM variation was quite different from that of vegetation and precipitation.
The northwestern part of the surface SM varied greatly (exceeding 50%), SM variation
decreased from northwest to southeast, and the EVI CV was also large in the lateral inflow
area. The large EVI CV in agricultural area such as the Murray River Basin and the
southwest corner of Australia indicated that there were still some defects in the model
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simulation of SM over these areas. The CV of deep SM was relatively small compared
with that of surface SM, mostly less than 20%, and it decreased as the depth of the soil
layer increased.
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3.3. Soil Moisture Persistence in Australia

The SMP calculated from the SM observation at 14 ISMN stations (Figure A3) showed
that the average SMP of the four-layer soil profile at depths of 0–0.08, 0–0.3, 0.3–0.6 and
0.6–0.9 m were 40, 47, 61 and 68 days, respectively (Table 3, Figure A4); the surface SMP
did not exceed 59 days. SMP difference of 0.6–0.9 m was relatively large comparing with
surface SMP. Within the depth of 0–0.9 m, the SMP at most sites increased with the increase
of soil depth, except two sites where the SMP of the 0.6–0.9 m layer was less than that of
the 0.3–0.6 m layer.
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Table 3. SMP (days) of four layers from 14 in situ observational sites.

Sites 0–0.08 m 0–0.3 m 0.3–0.6 m 0.6–0.9 m

Alabama - 47 50 55
Canberra_Airport 43 46 54 83
Cooma_Airfield 40 53 56 61

Cox - 47 50 50
Crawford 54 54 64 77

Ginninderra_K5 59 58 56 52
Griffith_Aerodrome 42 35 40 60

Hay_AWS 27 - 129 108
Kyeamba_Mouth - 38 79 115

Rochedale 36 50 60 65
Waitara 26 59 61 65

West_Wyalong_Airfield 27 27 48 36
Wollumbi - 51 51 58

Yanco_Research_Station 45 43 56 -

All sites average 40 47 61 68

At the same time, the surface SMP was compared with remotely sensed and LSMs
(Table A1, Figure A1), the error of CCI surface SMP was only less than three days at three
sites, which indicated that the persistence of CCI was quite accurate. The average error
of GLDAS CLSM was the smallest, only 6.5 days, which indicated balanced simulation.
GLEAM V3.5a had the largest average error in days, and surface SMP had an average error
of 15 days.

The spatial patterns of SMP were further calculated with all gridded SM datasets. The
SMP in Australia had obvious spatial heterogeneity, especially in deep SM. Multiple SM
datasets showed that the surface SMP was within 60 days (about two months, Figure 5),
which was consistent with the site observation results. The places with high surface SMP
were mainly in the agricultural areas in the north, southwest and southeast. The surface
SMP in the western desert area was poor, within 10 days. SMP of ERA5-Land (0–7 cm) was
underestimated. Compared with CLSM and GLEAM, NOAH and ERA5-Land root zone
SMP were more durable, it was exceeding 600 days in most areas, which was obviously
problematic. The spatial difference of SM in the fourth layer of ERA5-land was very large.
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4. Discussion
4.1. The Wet and Dry Condition Indicated by SM

A large body of research demonstrates that the surface SM in the drylands around the
world is continuously decreasing [41–44]. Australia plays an important role in the global
water and carbon cycle and is very sensitive to global changes. Most of the estimates in
the Intergovernmental Panel on Climate Change report [45] indicated that there will be
more frequent and severe droughts in Australia in the future. SM is an important indicator
of dry–wet characteristics. Exploring the dynamic characteristics and persistence of SM
is essential for accurately predicting future droughts. Multiple SM data showed that the
surface SM in Australia showed a significant drying trend from 2000 to 2019 (Figure 3)
overall. The multi-year maximum values of EVI, precipitation and SM all appeared in 2011
(Figure A2). This strong water and carbon anomaly was related to La Niña [44], which
had been the strongest for more than 90 years since 1917–2011. Xie et al. [46,47] used
the GRACE standard surface water storage anomalies product to analyze the changes in
continental surface water storage during the extreme hydrological climate in Australia
from 2002 to 2017 and summarized this period as the “Big Dry” of the 2002–2009 period.
Although these data have certain differences, they can capture the drought and humid
period characteristics of the study area as a whole.

4.2. Possible Factors Affecting Surface SMP

The changes of SM always start from the shallow layer and advance to the deep layer.
Surface SM plays a vital role in the hydrological and ecological processes of the land surface
and determines the changes of deep SM [48]. The surface SMP is affected by many factors
such as soil texture, precipitation and evaporation, and has obvious spatial distribution
characteristics. Here, we discuss the following factors: precipitation frequency (PF, the
percentage of precipitation days (>0.5 mm) to the total number of days), precipitation
intensity (PI, the ratio of total precipitation to the number of precipitation days), the aridity
condition and vegetation status.

4.2.1. Relationship with Precipitation

As an important hydroclimatic forcing element, precipitation is the main source of
SM [13]. SM–precipitation feedback has different driving mechanisms when the SM value
is high or low. The feedback between precipitation and SM is spatially heterogeneous, has
large uncertainties and is difficult to quantify [49]. In drylands, precipitation fluctuates
greatly, and short-term extreme events account for a large proportion of total precipita-
tion [50]. Usually, precipitation frequency is the main determinant of the sustainability
of SM, and differences in land cover and soil texture have secondary effects [17]. As the
frequency of precipitation increases, the increase in surface SMP is S-shaped (Figure 6),
reflecting the two ways that precipitation affects surface SMP: 1. When the PF is small
(<0.1), the increase in precipitation cannot replenish the soil water shortage due to long-
term drought, so the persistence is not increased; 2. After PF increases to a certain value
(>0.2), precipitation leads the SM in a stable and saturated state; when PF is between 0.1
and 0.2, the influence of precipitation frequency on the surface SMP is random, meaning
that other factors affect the surface SMP mainly at this condition. In addition, the surface
SMP increases with increasing precipitation intensity (Figure A5).
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4.2.2. Relationship with Aridity

The aridity index quantifies the wet and dry climate in a given location. The SMP is
closely related to the degree of aridity, and excessively moist or arid soil is not conducive
to the land–air feedback [51]. The relationship between the SMP and aridity index is close
to logarithmic (Figure 7). As the aridity index decreases, the degree of SMP increases. Our
results demonstrated that vegetation is scarce in drylands, and surface SM is only supple-
mented by a small amount of precipitation and then quickly evaporates. Its persistence
should be the same as precipitation, and the duration of persistence is very short. In humid
areas, precipitation is sufficient, and surface SM is stable, so the persistence is longer. This
conclusion is consistent with the outcome of McColl [52].
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4.2.3. Relationship with Vegetation Status

Vegetation has a water-fixing effect. Vegetation characteristics such as vegetation
coverage, type and root structure affect SM by changing the physical and chemical prop-
erties of soil and microbial communities. Vegetation also affects water evaporation and
storage processes, controlling SM patterns indirectly. In addition, vegetation can affect
redistribution of precipitation, thereby affecting land–air coupling and SMP. Vegetation
changes are closely coupled with the hydrological system, especially in the water-limited
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ecosystem of Australia. Vegetation patterns affect the amount of water stored in the soil,
and the vegetation index reflects the state of SM to a certain extent. Vegetation contin-
uously absorbs water in the soil through the water potential gradient and then releases
it into the atmosphere through transpiration. Vegetation transpiration is the main form
of loss of SM. At the same time, the vegetation canopy has the effect of intercepting and
redistributing precipitation [53], which significantly affects the water cycle. Therefore, veg-
etation is also an important factor affecting SMP. There is a significant positive correlation
between surface SMP and EVI in Australia (Figure 8). Using EVI variation coefficient as
a characterization of vegetation disturbance, the surface SMP increased with the increase
of disturbance (Figure A6). A potential explanation is that large vegetation disturbances
could be caused by agricultural activities such as continuous irrigation and film mulching,
and other measures have resulted in a relatively stable SM—the surface SMP tends to be
long then.
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There are significant differences in surface SMP under different vegetation (Table 4).
Multiple SM showed that surface SMP under agricultural vegetation was the most durable,
followed by that of forests. Surface SMP under grassland was the worst, and surface
SMP under the savanna was slightly higher than that under shrublands. Consistent with
the previous results, the surface SMP of ERA5-Land (0–7 cm) under different vegetation
coverage was all underestimated (Table 4, Column 1). The surface SMP difference of CCI
SM under different vegetation coverage was small. Meanwhile, surface SMP of grassland
was lower than that of other vegetation indicated by all these datasets. In most SM data,
surface SMP under grassland was lower than that of shrublands, while the surface SMP
from GLDAS NOAH under shrublands was less than that of grassland, which indicated that
the surface SMP from GLDAS NOAH under shrublands was underestimated. He et al. [54]
believe that the longer cycle of vegetation-SM oscillation often occurs in woody biological
communities, while the oscillation cycle of herbaceous vegetation land types is shorter.
Although grassland is susceptible to drought, it has the ability to recover quickly [55]. This
is consistent with the results of this study.
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Table 4. Surface SMP under different vegetation cover.

Type
ERA5-Land

Layer 1
(0–7 cm)

GLDAS CLSM
Surface
(0–2 cm)

GLDAS
NOAH

(0–10 cm)

GLEAM v3.5a
Surface

(0–10 cm)

GLEAM v3.5b
Surface

(0–10 cm)

ESA CCI Soil
Moisture
(<2 cm)

Forest 25.9 43.9 47.5 55.3 45.4 37.6
Savanna 20.9 41.0 39.7 41.9 36.7 31.6

Shrubland 15.8 37.2 27.4 37.5 31.2 32.6
Agriculture 29.2 55.1 48.1 59.8 51.7 38.4
Grassland 12.0 27.5 34.7 34.2 27.3 23.0

5. Conclusions

In this study, we investigated the spatial-temporal characteristics and SMP over Aus-
tralia, a very typical dryland region. For the comprehensiveness of the analysis, sites-based,
remote-sensing and reanalysis-based SM datasets were used. At the same time, despite
heterogeneity in landscape structure, precipitation, vegetation, and aridity conditions all
had relative effects on SMP, and improvement of SM simulations in models still needs to
take these factors into account. Precipitation and vegetation were also involved because
precipitation is the main source of SM, and vegetation is sensitive to changes in surface SM
in drylands.

Site observations and other SM data showed high correlation coefficients, indicating
that these SM datasets were better in terms of average time change characteristics. These
datasets coherently showed that the inter-annual fluctuations of SM were relatively large
with some dry periods (2002–2010, 2013–2016) and wet periods (2011–2012).

The average spatial consistency over the years was very good, but in some lateral flow
areas, different SM products showed hugely different spatial structures. The spatial distri-
bution of change trends was quite different. These coefficients of variation of SM datasets
were all generally decreased from northwest to southeast, however, a large coefficient of
variation of EVI occurred in the southwest corner, the northeast (not coastal area) and the
inflow areas.

SMP from calculated SM datasets had quite large differences compared with measure-
ments. Meanwhile, little coherence was gotten among them, and the persistence of deep
SM seemed to be significantly overestimated.
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Appendix A

Table A1. Surface SMP calculated by multi-source surface SM datasets and in situ observational sites.

ISMN
ERA5-Land

Layer 1
(0–7 cm)

GLDAS
CLSM Surface

(0–2 cm)

GLDAS
NOAH

(0–10 cm)

GLEAM v3.5a
Surface

(0–10 cm)

GLEAM v3.5b
Surface

(0–10 cm)
ESA CCI
(<2 cm)

Canberra_Airport 43 34 (−9) 56 (13) 35 (−8) 56 (13) 53 (10) 34 (−9)
Cooma_Airfield 40 36 (−4) 27 (−13) 48 (8) 56 (16) 54 (14) 12 (−28)

Crawford 54 46 (−8) 54 (0) 42 (−12) 64 (10) 61 (7) 42 (−12)
Ginninderra_K5 59 47 (−12) 55 (−4) 46 (−13) 64 (5) 62 (3) 36 (−23)

Griffith_Aerodrome 42 29 (−13) 51 (9) 34 (−8) 43 (1) 38 (−4) 42 (0)
Hay_AWS 27 38 (11) 50 (23) 36 (9) 56 (29) 44 (17) 47 (20)
Rochedale 36 57 (21) - 63 (27) 62 (26) - 58 (22)

Waitara 37 34 (−3) 33 (−4) 35 (−4) 53 (16) 52 (15) 43 (6)
West_Wyalong_Airfield 47 43 (−4) 45 (−2) 43 (−2) 60 (13) 57 (10) 49 (2)
Yanco_Research_Station 33 9 (−24) 16 (−17) 15 (−18) 36 (3) 36 (3) 36 (3)

Average 41.8 ± 9.6 37.3 ± 12.8
(−4.5 ± 12.6)

43.0 ± 14.3
(0.6 ±12.6)

39.7 ± 12.3
(−2.1 ± 13.4)

55.0 ± 9.1
(13.2 ± 9.2)

50.8 ± 9.4
(8.3 ± 6.8)

39.9 ± 12.1
(−1.9 ± 16.4)

http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system/data-products
http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system/data-products
https://disc.gsfc.nasa.gov/
https://srtm.csi.cgiar.org/
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