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Abstract: Al- and La-modified adsorbent materials (PO–Al, PO–La) were prepared by impregnating
Polygonum orientale Linn. straw with Al2(SO4)3 and La(NO3)3·6H2O solutions. The potential of
removing fluoride using these modified adsorbents was examined. In the PO, PO–Al and PO–
La adsorption systems, the fluoride adsorption process followed pseudo-second-order kinetics,
and the kinetic constants for k2 and R2 were 0.0276 and 0.9609; 0.2070 and 0.9994; 0.1266 and
0.9933, respectively. The adsorption equilibrium results showed the best match with Langmuir
isotherms. Moreover, the maximum monolayer adsorption capacity of PO, PO–Al and PO–La
are 0.0923, 3.3190 and 1.2514 mg/g, respectively, in 30 ◦C. The regeneration results show that the
effectively regenerating ability of modified adsorbents. Al-modified adsorbent showed the best
results in terms of cost-effectiveness and adsorption efficiency for fluoride adsorption.

Keywords: fluoride; Polygonum orientale Linn.; modified; adsorption; wastewater

1. Introduction

As stated by the report of the World Health Organization, the intake of fluoride in
drinking water at low concentrations (0.5–1 mg/L) is beneficial, especially in promot-
ing enamel calcification and protecting teeth against teeth decay [1–4]. However, when
long-time exposure exceeds 1.5 mg/L fluoride concentrations, it can lead to fluorosis,
with a range of serious consequences, including impaired kidney function, bone cancer,
reduced immunity, digestive and nervous disorders, endocrine gland lesions, and other
conditions [5–8]. Fluorosis caused by high concentrations of fluorine has been reported
almost everywhere except in East Asia and Australia [5,9]. Accordingly, excessive fluo-
ride contamination in groundwater has been recognized as an extremely serious problem
worldwide.

Various techniques have been developed to remove excess fluoride from drinking water,
such as adsorption, coagulation, ion exchange, microbial-induced precipitation [10,11], elec-
trocoagulation [12], electrostatic unit [13] and electrodialysis [5,14]. Among these techniques,
adsorption is effective, economical, convenient, and environmentally friendly [3,4,15,16].
Biosorption is a new technology for water treatment using a large amount of available
biological materials. The biosorbents for fluoride removal contain chitin, chitosan, etc.
The regenerated bone char media was optimized and applied to the defluoridation of
drinking water in Tanzania, with the highest fluoride removal and adsorption capacity [17].
Therefore, there is a need to research and develop novel technologies for fluoride removal
that use low-cost biomass containing carboxylic acid and amine functional groups that
could be applied to water pollution control [18–20].
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Polygonum orientale Linn., belonging to Polygonum genus, Polygonaceae family, is a
fast-growing annual herbage, commonly found in lake edges, drainage ditches, marshes,
and other wetlands [21]. It could adsorb large quantities of nutrients and could produce
large amounts of biomass at a low cost [22–24]. Therefore, this plant provides a good basis
for the study of modified materials as an adsorbent.

The surface adsorption performance of modified adsorbents could be enhanced by
changing their surface chemistry and pore structure [4,25]. Many modification meth-
ods have been applied to improve affinities towards contaminants in various types of
water [26,27], furnishing satisfactory results, particularly using surface-modified adsor-
bents and/or mineral-based [3].

(1) Modification of alumina with Al3+. Over the years, activated alumina has been
proven by researchers to effectively remove fluoride, and a series of explorations have been
carried out on it. For example, in order to explore the effects of different experimental
conditions on the removal ability of fluoride in water during the experiment, Ku and
Chiou [28] studied the conditions of temperature, pH, and initial concentration during the
experiment. At the same time, some studies have also explored the interaction process and
mechanism between F− and amorphous Al(OH)3, Al(OH)3, and Al2O3 [29]. Meanwhile, the
researchers also modified the surface of Al2O3 to improve the adsorption effect of activated
Al2O3, such as adding La3+ and Y3+ to Al2O3 to increase its surface active adsorption
sites [30]; using MnO2 modification is used to prepare Mn–Al2O3 oxide coating (MOCA)
for fluorine removal, and Al2O3-supported La(OH)3 is modified to remove fluoride in
water [31,32]. The results have shown that after modification of Al2O3 impregnated with
La(OH)3, the adsorption capacity for F− is the highest, the maximum fluoride uptake
capacity for MOCA was found to be 2.85 mg/g [31]. This may be because the ion exchange
between fluoride and OH− on the surface of Al2O3 promotes the F− removal process.

(2) Modification of alumina with La3+. The biomass materials are widely used as
adsorbents because of their large reserves, low cost, and good adsorption capacity. So,
some researchers reported that the use of lanthanide compounds to modify the surface of
chitosan can improve the ability to remove F− [33].

In addition, Kamble et al. [32] and Parmar et al. [34] studied the difference in the
adsorption of fluoride with La(OH)3 and AlCl3 modification; the results showed that after
La(OH)3 and AlCl3 modification, the treatment had better adsorption ability of F−. Similar
research also includes the use of agricultural biomass materials such as coconut husk and
rice husk to remove fluoride [35]. Therefore, this study aimed to assess the feasibility and
adsorption capacity of Al2(SO4)3- and La(NO3)3·6H2O-modified biomaterials derived from
P. orientale (PO, PO–Al, PO–La) to remove fluoride in aqueous solutions. Furthermore, the
ability of these adsorbents to perform desorption test was examined for potential industrial
application.

2. Materials and Methods
2.1. Preparation of Modified Adsorbents

Polygonum orientale Linn. was gathered from Fenhe river (Shanxi province, northern
China), after the process of cutting, washing, and drying in an oven (101A–3, Boxun,
Shanghai, China), the samples were ground into powder by a grinder and then sieved
through a standard sieve to obtain 160–200 mesh particles. This precursor (2 g) was added
to Al2(SO4)3 (3%) or La(NO3)3·6H2O (5%) aqueous solutions (200 mL). After soaking for
24 h, the solution was filtered by vacuum filtration and the resultant modified adsorbents
of Al2(SO4)3-modified (PO–Al) and La(NO3)3·6H2O-modified (PO–La) were obtained after
washed with distilled water until the pH was 7.0 and dried at 120 ◦C for 8 h.

2.2. Adsorption Experiments

Fluoride stock solution was prepared by dissolving NaF (2.21 g) in 1000 mL deionized
water. The solution pH was adjusted by adding 0.5 M NaOH or 0.5 M HNO3 solutions.
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Adsorption experiments were performed by shaking prepared modified adsorbent
(2.0 g) with NaF experimental solutions (100 mL) of different concentrations (10, 20, and
30 mg/L). Continuous stirring was performed throughout the experiment at a constant
speed of 120 rpm. In addition, the adsorption isotherm tests were performed at 10, 20,
and 30 ◦C, simultaneously, other things being equal. Then, the supernatant liquids were
filtered by a disposable injector and syringe filter (13 mm × 0.45 µm, Millipore, Billerica,
MA, USA), and the F− concentration was measured by F− concentration meter (PXSJ-216F,
Leici, Shanghai, China), the F− concentration in each flask was determined three times.

In this study, two isotherm models of Langmuir and Freundlich were utilized to
analyze the experimental equilibrium data for fluoride adsorption by PO, PO–Al, and PO–
La. The adsorption isotherm model is a basic model describing the interactions between
adsorbate and adsorbent.

2.2.1. Langmuir Isotherm

The Langmuir isotherm model formula as shown in the following Equation (1) [36]:

Ce

qe
=

1
Qmb

+
1

Qm
Ce (1)

where Ce (mg/L) represents the equilibrium concentration of the adsorbate, qe (mg/g) is
the maximum adsorption capacity on the equilibrium phase, b (L/mg) is the Langmuir
adsorption constant, and Qm (mg/g) is the maximum amount adsorbed of adsorbent. How-
ever, a dimensionless equilibrium parameter RL could be defined according to Equation (7)
to determine whether adsorption is beneficial [37]:

RL =
1

1 + bC0
(2)

where RL indicates whether the isotherm is favorable (0 < RL < 1), irreversible (RL = 0),
linear (RL = 1), or unfavorable (RL > 1). b (L/mg) is the Langmuir isotherm constant, and
C0 (mg/L) is the initial fluoride concentration.

2.2.2. Freundlich Isotherm

The Freundlich isotherm model could be expressed in Equation (3) [38]:

log qe = log KF +

(
1
n

)
log Ce (3)

where KF ((mg/g) (L/mg)1/n) indicates the adsorption capacity of the adsorbent, with a
larger KF value indicating a larger adsorption capacity. The Freundlich isotherm constant n
indicates the favorable degree of the adsorption process, with 1/n < 1 indicating the normal
Freundlich isotherm and cooperative adsorption process.

2.3. Adsorption Kinetic Models
2.3.1. Pseudo-First-Order Model

The pseudo-first-order kinetic model is shown in Equation (4) [39].

dqt

dt
= k1(qe − qt) (4)

When qt = 0 at t = 0, Equation (4) could be integrated to give Equation (5):

log (qe − qt) = log qe −
k1

2.303
t (5)
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where qe and qt (mg/g) are the adsorption capacity of fluoride at equilibrium and time
t, respectively, t (min) is the adsorption time, and k1 (min−1) is a rate constant for this
equation.

2.3.2. Pseudo-Second-Order Model

The pseudo-second-order kinetic model as shown in Equation (6) [40]:

dqt

dt
= k2(qe − qt)

2 (6)

when Equation (6) is simplified and qt = 0 at t = 0, the new equation could be rearranged
into Equation (7):

t
qt

=
1

k2qe2 +
1
qe

t (7)

h = k2qe
2 (8)

where h (mg/ (g min)) represents the product of the pseudo-second-order kinetic constant
k2 (g/ (mg min)) and the maximum adsorption capacity on the equilibrium phase qe (mg/g),
and it represents the initial adsorption rate.

2.4. Desorption Studies

The modified adsorbents (PO, PO–Al, PO–La) was inputted to a 100 mg/L NaF
solution and kept at a constant temperature in a shaker at 150 rpm until equilibrium was
reached. The concentration Cad of fluoride was defined as the difference between the initial
and equilibrium fluoride concentration (Co − Ce). The spent adsorbent powder was washed
with deionized water, over dried at 40 ◦C, 10 h and mixed with H2O, 0.1 M HCl, NaOH,
and 95% ethanol to desorb the fluoride. The fluoride concentration Cde (mg/L) in the
solution was determined after the desorption process. The desorption capacity of fluoride
was calculated using Equation (9):

Desorption (%) =
Cde
Cad

× 100 (9)

3. Results
3.1. Adsorption Kinetics

By surface modification of the adsorbent, the adsorption capacity and strength of
the adsorbent can be improved without a significant increase in cost. These modified
adsorbents were prepared by impregnating P. orientale with Al2(SO4)3 and La(NO3)3·6H2O
solutions for removing fluoride in aqueous solutions.

In this section, pseudo-first-order and pseudo-second-order kinetic models are used
to fit the adsorption process of fluoride onto three types of adsorbents. Meanwhile, kinetic
process fitting is very important to elucidate the adsorption kinetic mechanism and dif-
fusion process. The parameters of the pseudo-first-order and pseudo-second models are
shown in Table 1. The comparison of different kinetic models for the adsorption of fluorine
at different concentrations of PO, PO–Al, and PO–La are shown in Figures 1 and 2. The
pseudo-first-order kinetic curves were poorly fitted to the experimental kinetic data. This
disagreement was also confirmed by the low R2. Therefore, it was suggested that fluoride
adsorption onto the biochar activated carbon did not conform to the pseudo-first-order
model. In contrast, the results showed a high degree fitting degree with the pseudo-second-
order model. This great agreement was further supported by the similar calculated and
experimental values of qe.
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Table 1. Pseudo-first-order and pseudo-second-order kinetic parameters.

Pseudo-First-Order Pseudo-Second-Order

Ce
(mg/L)

qe (exp)
(mg/g)

k1 × 10−2

(min−1)
qe (cal)
(mg/g) R2 k2

(g/mg·min)
qe

(cal) (mg/g)
h

(mg/g·min) R2

PO
10 0.2935 0.0104 0.0993 0.9111 0.3970 0.2963 0.0349 0.9962
20 0.6469 0.0131 0.1326 0.9808 0.3615 0.6525 0.1539 0.9993
30 0.4075 0.0099 0.3435 0.8585 0.0276 0.5208 0.0075 0.9609

PO-Al
10 0.4778 0.0136 0.0779 0.9564 0.5947 0.4829 0.1387 0.9994
20 0.9432 0.0956 0.0415 0.9031 1.2770 0.9445 1.1391 0.9996
30 0.0758 0.0329 0.3016 0.9805 0.2070 1.4255 0.4207 0.9994

PO-La
10 0.3980 0.0191 0.2812 0.7620 0.1874 0.3980 0.0297 0.7445
20 0.7967 0.0136 0.2707 0.9672 0.2196 0.7844 0.1351 0.9056
30 0.5647 0.0060 0.4069 0.8810 0.1266 0.4209 0.0224 0.9933
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These results show that the adsorption mechanism may rely not only on the interaction
with fluoride, but also on the role of adsorbent [41], and the rate-limiting step might be
chemisorption, involving valence forces by the exchange or sharing of electrons [26,27].

3.2. Adsorption Isotherms

The adsorption isotherm of fluoride adsorption onto PO, PO–Al, and PO–La at 283,
293 and 303 K, respectively, based on the linear forms of the Langmuir and Freundlich
isotherms are shown in Figures 3 and 4, respectively. The isotherm constants and correlation
coefficients calculated from the linear forms of the two isotherms are summarized in
Table 2. The experimental data of fluoride adsorption onto PO and PO–La were fitted
to the Langmuir isotherm model. The adsorption of F− on PO–Al was fitted well by
both the Langmuir and Freundlich isotherm models, while a better fit with the Langmuir
equation was statistically confirmed by the larger R2 values closer to unity. Furthermore,
the results show that the adsorption process is favorable, because the Langmuir isotherm
value of RL was between 0 and 1. In addition, the maximum adsorption capacity of Qm,
improved with increasing temperature, revealing an endothermic process. Adsorption
capacity showed that PO, PO–Al, and PO–La could be employed as promising adsorbents
to remove fluoride from an aqueous solution. In addition, Table 3 lists the comparison of
the fluoride adsorption capacity in this study and reported in other literature. These values
are based on the Langmuir adsorption capacity of the adsorbent. The results show that in
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the field of low-cost adsorbents, the adsorbents prepared in this study are superior to most
of the adsorbents in removing fluoride.
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Table 2. Langmuir and Freundlich isotherm parameters for fluoride adsorption in PO, PO–Al and
PO–La systems.

T (K)
Langmuir Freundlich

Qm (mg/g) b (L/mg) RL R2 KF (mg/g (L/mg)1/n) 1/n R2

PO
283 0.0916 0.2211 0 < RL < 1 0.8641 0.9714 0.6631 0.6577
293 0.4042 0.7331 0 < RL < 1 0.9049 0.3989 0.1063 0.0341
303 0.0923 0.1758 0 < RL < 1 0.8094 1.0214 0.539 0.4606

PO–Al
283 0.7060 5.4251 0 < RL < 1 0.8687 0.9041 1.4115 0.7420
293 0.8403 3.0912 0 < RL < 1 0.9462 0.7702 1.3838 0.9477
303 3.3190 0.4114 0 < RL < 1 0.7108 0.9506 0.7306 0.9028

PO–La
283 0.5735 2.0291 0 < RL < 1 0.9644 0.3398 0.206 0.5367
293 0.6645 1.1717 0 < RL < 1 0.9686 0.5398 0.3086 0.4247
303 1.2514 0.2378 0 < RL < 1 0.9890 0.3016 0.4758 0.9328
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Table 3. Comparison of the fluoride adsorption capacity in this study and reported in the literature.

Adsorbents Adsorption Capacity
(mg/g) References

Chi-Pr 8.20 [42]
Hydrous iron(III)–tin(IV) bimetal 10 [43]

Nano-alumina 14 [44]
o-WM 4.2 [45]

CR 3.72 [46]
CL 3.16 [46]

MOCA 2.85 [31]
MWCNTs 2.83 [47]

a-WM 2.8 [45]
SWCNTs 2.40 [47]

Fe(III)-STI 2.31 [48]
Ceramic 2.16 [49]

AC-CMCSL 2.01 [50]
ZrO2-Ze 0.34 [51]
PO-Al 3.32 This study

3.3. Desorption

A suitable defluorine adsorbent should not only have high defluorine removal capacity
and cost efficiency, but also be easy to desorb F− and be able to be regenerated efficiently
so that the adsorbent can be reused many times. The desorbent should not cause any
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damage to the adsorbent, resulting in a decline in adsorption capacity. For economic and
environmental reasons, the only reusable sorbent can be of practical value in practical
systems.

Desorption of F− is performed by leaching of adsorbed F− by different solvents as
eluants, which could contribute to elucidate the mechanism of adsorption and assess the
stability of the loaded adsorbents. The elution of fluoride from the adsorbent by water,
strong base or acid, and organic substance symbolized the adsorption of fluoride onto
PO by the weak force, ion exchange, and chemical adsorptions, behaviors, respectively.
Figure 5 showed the results of the desorption percentages using 0.1 M NaOH, deionized
water, 0.1 M HCl, and 95% ethanol were measured for PO, PO–Al, PO–La, respectively.
If the strong acid or base could desorb a large amount of adsorbate from the adsorbent,
the adsorbate is attached to the adsorbent by ion exchange. The organic solvent, for
instance, ethanol, could elute F− from PO–Al easily and indicated that chemical adsorption
is the main phenomenon of PO–Al adsorption of F−. Strong chemical bonds between the
adsorbate molecules and the adsorbent surface may not be broken by the eluting agents.
NaOH displayed certain desorption effect on F−. This indicated F− has a strong chemical
attachment to PO–Al, which can be broken by thermal forces.
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Figure 5. Resorption of fluoride on PO, PO–Al, PO–La desorbed by NaOH, HCl, deionized water,
and ethanol.

4. Conclusions

The modified adsorbent showed the most potential as an economic and efficient adsor-
bent for fluoride adsorption from aqueous solutions. Meanwhile, the pseudo-second-order
kinetic and Langmuir model indicated that the adsorption process of fluoride ions was
mainly chemical adsorption. The Langmuir model showing that adsorption was a sponta-
neous and endothermic process. The increasing temperature was beneficial to adsorption.
In the reusability test, ethanol and NaOH were effective materials for regenerating the ad-
sorbent. Furthermore, desorbed PO–Al was highly effective in fluoride resorption. Despite
these, more research is needed to translate the process to an industrial scale. In addition,
regeneration studies need to be carried out to more extent to recover the adsorbent and
improve the economic viability of the process.
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