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Abstract: High mountain environments have shown substantial geomorphological changes forced 
by rising temperatures in recent decades. As such, paraglacial transition zones in catchments with 
rapidly retreating glaciers and abundant sediments are key elements in high alpine river systems 
and promise to be revealing, yet challenging, areas of investigation for the quantification of current 
and future sediment transport. In this study, we explore the potential of semi-automatic image anal-
ysis to detect the extent of the inundation area and corresponding inundation frequency in a pro-
glacial outwash plain (Jamtal valley, Austria) from terrestrial time-lapse imagery. We cumulated all 
available records of the inundated area from 2018–2020 and analyzed the spatial and temporal pat-
terns of flood flows. The approach presented here allows semi-automated monitoring of fundamen-
tal hydrological/hydraulic processes in an environment of scarce data. Runoff events and their in-
tensity were quantified and attributed to either pronounced ablation, heavy precipitation, or a com-
bination of both. We detected an increasing degree of channel concentration within the observation 
period. The maximum inundation from one event alone took up 35% of the analyzed area. About 
10% of the observed area presented inundation in 60–70% of the analyzed images. In contrast, 60–
70% of the observed area was inundated in less than 10% of the analyzed period. Despite some 
limitations in terms of image classification, prevailing weather conditions and illumination, the de-
rived inundation frequency maps provide novel insights into the evolution of the proglacial channel 
network. 

Keywords: mountain hydrology; inundation; sediment transport; bedload; glacier; outwash plain; 
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1. Introduction 
Glaciers in high mountain areas are undergoing drastic alterations at unprecedented 

and increasing rates as an impact of global climate change [1–3]. The rapid mass loss of 
glaciers severely affects catchment hydrology and runoff dynamics in alpine mountain 
areas. The disintegration of glaciers and the decay at glacier tongues expose unconsoli-
dated sediments in rapidly emerging proglacial areas. While these make up only a small 
areal proportion of alpine catchments, they are a significant source of sediments for 
mountain rivers [4]. The transition from glacial to deglacial conditions causes highly in-
tensified geomorphic processes in the proglacial zones and freshly deglaciated areas [5,6]. 
Typically, most sediment export from glaciated catchment in the Alps occurs in the 
months of July and August [7]. At the same time, the overall glacier area is decreasing, 
where potential ice melt contributes to runoff. Thus, peak runoff in summer caused by 
glacier melt has been observed to decline or is assumed to do so over the next decades. In 
the Alps, a significant part of today’s glaciers may disappear within this century [8,9], 
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leading to a fundamental shift in runoff regimes [10]. Particularly, a general decrease in 
runoff during summer months is predicted [11]. At the same time, an increase in extreme 
(convective) rainfall events is expected [12,13], partly driven by increased evapotranspi-
ration from the surface. In this context, the anticipated progressive system shift from sup-
ply-limited sediment transport (driven by glacier activity) to more transport-limited pro-
cesses (during rainfall-induced events) in high alpine catchment areas has been the subject 
of recent scientific debate [14]. Especially in glacier forefields, sediments are deposited in 
the outwash plains under average runoff conditions, but during high/extreme discharge, 
re-mobilization can occur, resulting in high rates of sediments transported downstream. 
Therefore, outwash plains are key elements in high alpine river systems and promise to 
be revealing, yet challenging, areas of investigation for the quantification of proglacial 
fluvial processes. Contemporary deglaciation offers an unparalleled opportunity to di-
rectly observe current processes and mechanisms of sediment transport and basin-scale 
sediment storage and release [15]. In published examples [16], up to 90% of the proglacial 
area is estimated to be affected by glacial runoff. However, the extent of the inundated 
area in proglacial outwash plains and the frequency of inundation is largely unknown 
because of the typically remote location of outwash plains in the proximity of retreating 
glaciers. These environmental conditions usually complicate more direct measurements, 
especially since the object of investigation is prone to frequent geomorphic processes and 
changes. 

In this article, we demonstrate the applicability of a methodological approach to con-
strain spatial and temporal dynamics of surface runoff in a sample outwash plain (Jamtal 
valley, Austria) to overcome data scarcity on paraglacial processes. The approach utilizes 
a terrestrial time-lapse camera with a high-resolution RGB-sensor. Previous research has 
proven the value of oblique digital imagery to monitor the planform, topography and 
rates of change in braided river channels [17–19], as well as discharge patterns in remote, 
steep and boulder-strewn channels [20,21]. Remote sensing techniques cover large-scale, 
relatively long duration flood events, e.g., [22], while relatively small, confined (urban) 
areas are characterized by high sensor density and data availability, e.g., [23,24]. However, 
remote and therefore often data-poor environments at the sub-catchment level remain in-
sufficiently surveyed due to the lack of available sensors and adequate resolutions, e.g., 
[25,26]. Terrestrial time-lapse imaging platforms are therefore a suitable means to close 
this monitoring gap. 

The aim of this study has been to capture the runoff and floodplain dynamics over a 
three-year observation period in this alpine proglacial outwash plain based on terrestrial 
time-lapse imagery. We have focused on the following questions: 
• To what extent can semi-automated image analysis capture the inundation of an ac-

tive floodplain? 
• Which processes generate the most extensive observed inundated area? 
• How strongly does the channel network alter inter-annually and during high-runoff 

events? 
Furthermore, we present the derived and geo-rectified inundation frequency maps, 

depicting the annual cumulation of all available and classified images, plus a detailed 
analysis of the daily maximum inundation area (IAdmax). In this way, we offer a means for 
a better understanding of flood flow and runoff behaviour of the here-investigated type 
of alpine proglacial outwash plains. 

2. Materials and Methods 
Our research was conducted in the proglacial outwash plain of Jamtalferner glacier 

(Video S1) in southwestern Tyrol, Austria. The Jamtal valley, and especially the rapidly 
retreating Jamtalferner glacier [27], have long been subject to environmental investiga-
tions and are part of the Austrian Long-Term Ecosystem Research Network (LTER-Aus-
tria) [28]. Several measuring stations that record various key parameters on a catchment 
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scale (Figure 1a–c) are located on site. A time-lapse camera in the immediate glacier fore-
land as well as an automatic weather station (AWS) and a radar-based discharge gauge a 
few kilometers down the valley were of central importance for the work presented here. 

 
Figure 1. Overview of the study site at the head of the Jamtal valley. The investigated area is (a) 
located in the west of the Austrian state of Tyrol and borders on Switzerland. It is (b) equipped with 
an automatic weather station (2141 m a.s.l.) and a radar-based discharge gauge (~2010 m a.s.l.) at 
the Jambach stream. (c) shows an active outwash plain (solid dark blue line, ca. 2.8 ha at ~2410 m 
a.s.l.) near the progressively disintegrating Jamtalferner glacier. The southwest-facing time-lapse 
camera (indicated with black dotted lines) overlooks the upper half of the investigated outwash 
plain with its two main tributaries that emerge from the partially debris-covered glacier tongue. The 
section analyzed in the time-lapse imagery is highlighted by the dashed red line. Areas of obstructed 
vision induced by topographical obstacles are indicated in dark grey. 

2.1. Time-Lapse Camera 
The time-lapse images were captured with a Nikon D300 digital single-lens reflex 

camera mounted inside a waterproof housing set up on top of a boulder near the glacier 
forefield (Figures 1c and 2). While the camera aperture (f 8.0), white balance (5560 K), 
sensor gain (ISO 200) and focus (infinite) were set manually, changing light conditions 
required a variable integration time that was automatically adjusted by the camera. 

Both the power supply and the shutter release were controlled by an Arduino Uno 
microcontroller connected with a real-time clock (model: DS3231) and powered by a 12 V 
17 Ah battery that was charged with a 100 W solar panel. Based on a simple loop function, 
the camera was switched on by activating a power relay module connected to the 12 V 
battery and a voltage regulator that provided a stable 9 V power supply for the camera. 
Then, a 5 V signal was sent to the external shutter port of the camera and released the 
trigger. The image was saved locally on a SD memory card (32 GB) connected to a CF card 
adapter before the relay interrupted the camera power supply. This loop (i.e., switching 
on the camera, capturing and saving an image, switching off the camera) was active daily 
at an hourly interval during observation periods. Moreover, camera recordings started at 
6 am CET and ended at 8 pm CET to reduce the number of night images. 
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Figure 2. Setup of the time-lapse camera near the Jamtalferner glacier (view to south-west), mounted 
on top of a large boulder overlooking the investigated proglacial outwash plain highlighted in red. 

2.2. AWS—Automatic Weather Station 
The meteorological data were measured with an AWS located in the vicinity of the 

Jamtalhütte mountain hut at 2141 m, about 2 km from the investigated outwash plain. The 
AWS had been operated since 2013, and the data were provided by the Hydrographic 
Service, Regional Government of Tyrol. We calculated hourly values and the daily max-
ima for the measured variables of air temperature, global radiation and precipitation to 
align the meteorological data for analyses and comparison with the hourly time-lapse re-
sults from the outwash plain. 

2.3. Discharge Gauging Station 
Discharge estimates based on water level and surface velocity measurements were 

established at a bridge across the Jambach stream in June 2019. This gauging station was 
located about 3 km from the investigated outwash plain, at an elevation of ~2010 m a.s.l. 
and provided continuous data for the avalanche-free season, which usually lasts from 
June to November. In this time frame, the station covered the runoff pattern from the onset 
of the high mountain snowmelt in spring until the discharge stagnated again at a low level 
in autumn. The runoff gauge was equipped with an RQ-30 device from Sommer Messtech-
nik [29]. The RQ-30 is a non-contact flow velocity and water level sensor with an integrated 
data logger and data transmission bundled in a compact housing. During the three sum-
mer seasons from 2019 to 2021, 20 salt dilution measurements were carried out and used 
to calibrate stage-velocity/discharge relations. 

2.4. Image Analysis Process 
The workflow applied for the image analysis is shown in Figure 3 as a schematic 

flowchart. In a first step, the annual subsets of digital RGB color images were manually 
examined for defects and quality to meet storage space requirements for the ensuing au-
tomated analysis process. This was followed by an automated quality filtering in the im-
age processing program Fiji, a distribution of the open-source software ImageJ (version 
2.0.0-rc-69/1.53c; Java 1.8.0-172) [30]. Therein, user-defined macros enabled image 
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processing and analysis. Consequently, we designed back-to-back macros (Scripts S2) ca-
pable of extracting pixel-based information to identify inundated areas in the camera 
view. 

 
Figure 3. Schematic workflow of the semi-automatic process of image analyses. Boxes with capital-
ized labels refer to customized macros used in ImageJ. 

In a first step, images were filtered by means of the given values for RGB- and grey-
scale-channels using the SORT OUT algorithm in ImageJ. As an initial constraint (P1), 
only images with greyscale values (GV) between 14 and 100 were retained and saved for 
subsequent processing. These thresholds for the median of the GV were determined based 
on single image analyses, which identified images to be excluded that were taken either 
in the presence of a closed snow cover (GV > 100) or in insufficient light (GV < 14). A 
second constraining parameter (P2) was set with a minimum value of –1.00 for the kurtosis 
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in the central area of the RGB images covering the outwash plain to detect and dismiss 
images with partial snow cover or taken under foggy conditions. A third parameter (P3) 
was used to reject images taken under foggy conditions or with a wet lens, assessing the 
standard deviation (SD) of the GV and setting the lower limit to 15. Images falling below 
the threshold value were excluded. 

Comparing the medians of the GV in the right and left half, as well as the upper and 
lower half of the images, provided a fourth parameter (P4) to exclude images with uneven 
lighting and extensive shadow in the outwash plain. The thresholds for a maximal median 
offset for the comparison of the right and left image halves were set to ∆15 and for the 
median comparison of the upper and lower halves to ∆20. All images with a median offset 
exceeding these figures were dismissed under the assumption of unsuitable lighting con-
ditions. 

Secondly, all remaining images were being cropped by a mask that excised the lowest 
quarter depicting a white balance plate mounted on the boulder and fluvially inactive 
areas at the margin of the outwash plain. This eliminated some of the potential sources of 
disturbance during the ensuing image stack stabilization and further reduced the image 
set’s total data size. In the case study presented, the initial imagery consisted of over 2000 
images per year, while the remaining sets were reduced to n = 1168 images in 2018, n = 
180 in 2019 and n = 900 in 2020 (Table 1). The remaining images defined the beginning and 
end of the three observation periods. The set of 2019 yielded the fewest images due to a 
malfunction of the camera over several weeks in the summer season. 

Table 1. Observation periods and annually available images before (total) and after (sorted) apply-
ing the semi-automatically sorting algorithm. The reference image corresponding to the respective 
observation period that was used for stabilization is shown with the date and time. 

 Year 2018 2019 2020 
Total Records 2844 2123 2939 

 Time period 26 May–16 December 1 February–31 De-
cember 

1 January–25 Octo-
ber 

Sorted Records 1168 180 900 

 Time period 12 July–16 October 18 September–1 No-
vember 8 July–24 September 

Reference image 31 July 9:50:10 1 October 6:55:32 21 August 12:52:20 

Image stabilization is an essential step to ensure the comparability of a pixel-based 
analysis. The idea is to link any static object or structure to a specific and static coordinate 
system within the stabilized image set. In the presented work, the stabilization was 
achieved with the ImageJ plug-in REGISTER VIRTUAL STACK SLICES [31]. The set of 
images was regarded as a virtual stack, with the images of the stack called slices. The plug-
in was used to align the virtually stacked image slices by means of translation and rotation 
to a reference image from the same stack, resulting in a constant image size. 

The stabilization for the presented imagery was carried out with annually separated 
image sequences (2018, 2019, 2020), since the image stabilization did not produce a suffi-
ciently stable set of images for all three observation periods combined. The shift in the 
image orientation between different years proved to be too substantial to be corrected and 
stabilized by translation and rotation alone. 

Still, identical stabilization settings were used, processing the three, annually sepa-
rated virtual stacks. The relevant reference image was selected manually from each of the 
corresponding set of images (Table 1), considering the best possible lighting, visibility and 
snow-free conditions for efficient image feature matching. 

The feature extraction model that derived corresponding points from the images was 
set as rigid, the same as the registration model, limiting the types of transformation to 
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translation and rotation. Otherwise, all the default settings of the plug-in were used for 
the image stack stabilization. 

The subsequent step utilized the macro GV THRESHOLDS & NOISE FILTER and 
was split into four steps. Using the already sorted and stabilized images, (A) image crop-
ping was followed by (B) image conversion to 8-bit, (C) pixel classification and (D) auto-
matic noise filtering. Step (A) limited the investigated area, since long-lasting snow fields 
were still visible in parts of the images, predominantly occupying the image’s borders. To 
prevent snow fields from disturbing the detection of flooded areas, a mask was defined, 
limiting the detection area. It was set to cover an assumed maximum extent of the poten-
tial inundation area (IA) and to exclude areas with long-lasting snowfields. To create a 
consistent mask for the outwash plain, landmarks in the terrain, such as large boulders, 
were chosen as corner points. After the conversion of each image to 8-bit greyscale (B), a 
classification scheme to distinguish between flooded and non-flooded areas was applied 
(C). Therefore, approximately 50 representative images from the available recordings 
were analyzed. The flooded areas in these images were separated by means of visual in-
spection and built the basis to develop a classification scheme. Since all the selected pic-
tures featured varying lighting conditions, setting simple (fixed) upper/lower limits 
(yGV,U/yGV,L) to identify pixels as flooded/non-flooded areas proved to be unsuitable. Con-
sidering the overall variation of GV in each picture, the median of the greyscale values 
(xGV) was found to be sufficient to define the specific (image-wise) settings of the upper 
and lower threshold (1). 

The dependency is described by a third-order polynomial function: 𝑦 = 𝑎 ∙ 𝑥 + 𝑎 ∙ 𝑥 + 𝑎 ∙ 𝑥 + 𝑎 , (1) 

with individual coefficients set to describe the upper and lower thresholds (yGV,U/yGV,L) of 
GV: y , = 0.00064 ∙ x − 0.074 ∙ x + 3.73 ∙ x + 96.2 (2) 𝑦 , = −0.00022 ∙ 𝑥 + 0.027 ∙ 𝑥 + 0.18 ∙ 𝑥 + 33.6. (3) 

The two Functions (2) and (3) automatically adjusted for each image used, and there-
fore, accounted inherently for varying lighting conditions. Consequently, no white-bal-
ance or any other adjustment of the image exposure was required. All pixels with a GV 
within the thresholds (yGV,U > yGV,i > yGV,L) were considered flooded areas and were con-
verted into white. All remaining, non-flooded parts were set to black. 

In the last step (D), noise filtering was applied. The procedure for outlier removal 
was applied to pixels identified as a flooded area. Still, the algorithm was based on the 8-
bit greyscale image, where a pixel was compared to its vicinity. Outliers were removed in 
case the GV of the respective pixel deviated from the median value of the neighboring 
pixels more than a given threshold. Here, we applied a filtering radius of three pixels and 
a maximum deviation from the median GV of DGV = 50. This way, other reflecting objects, 
e.g., bright or wet cobbles or small patches of thin snow, which might have been misiden-
tified as water surface, could be corrected. The final images, classified and noise-filtered, 
were saved in TIFF-format (8-bit). 

The areal inundation ratios were calculated for further time series and statistical anal-
ysis with the macro EXPORT PIXEL RATIO and exported as .csv-files (Table S3). 

3. Results 
3.1. Images Available for Analysis 

In Figure 4, it is apparent that the hourly recordings of the camera, which were eval-
uated after pre-processing, were distributed almost evenly throughout the day. Due to the 
camera settings, the recordings were available from 6 am to 8 pm CET and were thus 
limited to the daytime with good visibility. The highest number of images was obtained 
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for 2 pm CET in 2018 and for 3 pm CET in 2020. The higher number of recordings at 6 am 
CET compared to the following hours was likely caused by favorable lighting conditions 
without direct insolation and thus without shadows in the images. In contrast, the number 
of records decreased in the final hours to 8 pm CET, which was due to the shift of dusk to 
earlier times in late summer and autumn. A notable feature of the 2019 dataset was the 
lower share of total images used in final analyses, which was due to adverse weather con-
ditions and intermittent camera malfunctions. 

 
Figure 4. The number of days with recordings for a given hour of the day in the final analysis after 
sorting and processing. The red line shows the maximum number of days between the first and last 
recordings of the respective year. 

3.2. Areal Inundation Frequency 
The analyzed time-lapse images were cumulated to a single inundation map for each 

observed year. The cumulative number of wetted surface observations per pixel and year 
can be interpreted as a flooding frequency. 

Finally, these maps were rectified to the topographical model of the outwash plain, 
visualizing the extended and spatially distributed frequency of surface flows captured per 
observed year (Figure 5). Inter-annually, the extent of the analysis mask varied slightly, 
as the lateral snowfields were cropped out to prevent misclassifications by the image anal-
ysis process (e.g., snow surface as a flooded area). However, the strikingly different ap-
pearance of Figure 5b, in contrast to Figure 5a,c, can be explained by the differences in the 
season considered as well as the severely limited image availability for the year 2019 (also 
see Table 1). 

 
Figure 5. Inundation frequency maps for the three observation periods of (a) 2018, (b) 2019 and (c) 
2020) in the proglacial outwash plain of the Jamtalferner. The maps show the total number of times 
(analyzed images) that a location (pixel) was identified as a flooded area. The general direction of 
flow is indicated with a black arrow. Note: the maximum values differed among the maps due to 
deviating observation periods and to the final availability of the images after the sorting process. 

For the period in 2018 (Figure 5a), a well-defined channel network was visible, with 
two main streams emerging from the glacier tongue. The northern stream furcated into 
two subsections with approximately the same inundation frequency. The most frequent 
flooding occurred at the convolution of the main streams on the eastern boundary of the 
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analysis mask. Several less frequently flooded tributaries could also be seen and indicated 
the maximum extent of the channel network. During the period in 2019 (Figure 5b), chan-
nel patterns largely similar to the observation period of 2018 were observed, while less-
frequently flooded tributaries remained undetected within the six observed weeks in au-
tumn. The third observational period in 2020 (Figure 5c) revealed a shift in the inundation 
frequency pattern of the outwash plain. The main streams appeared to have remained 
fairly stable over the three analysis periods. However, the most northern subsection 
showed a relatively lower flooding frequency, while the central subsection had a higher 
flooding frequency than in 2018 and 2019. 

In this context, the changes in areal inundation frequency between 2018 and 2020 
could be described as an increased degree of channel concentration, i.e., the detected fre-
quency of flooding applied to a reduced IA as a result of the shift described above. This 
shift in the ratio between the cumulative share of the total area of interest (AoI) and the 
counts (pixels detected as covered by water) relative to the maximum counts became vis-
ible when considering that 5% of the IA accommodated about 35% of the counts in 2018, 
while by 2020, the comparative value had increased to approx. 50% (see also Figure A1). 
The observed concentration of surface runoff patterns reflected the evolution of the chan-
nel network as it altered the spatial and temporal properties of the IA between 2018 and 
2020. 

3.3. Daily Maximum Inundation Area 
In addition to the spatial mapping of inundation frequencies on an annual basis, the 

daily maxima of the detected IA were compared with meteorological and discharge meas-
urements (Figure 6, Table S4). While data on maximum air temperature and global radia-
tion were provided for all three periods, runoff estimates were only available from sum-
mer 2019. 

 
Figure 6. Daily maximum of (a) the detected inundation area relative to the AoI, (b) air temperature, 
(c) global radiation and (d) runoff for the three observation periods between 2018 and 2020 (also see 
S2). 

In 2018, high percentage values for the daily maximum inundation area of up to 30% 
indicated extensive flooding of the outwash plain, caused by snow melt and ice ablation 
due to clear sky conditions and high temperatures in combination with surface runoff 
from precipitation in the afternoon (red highlighted in Figures 7 and 8) in early August. 

In contrast, a cold front at the same time in 2020 led to a drop in air temperature and 
global radiation, which significantly decreased ablation. The highest IAdmax in 2020 was 
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recorded in late August with 27% as a result of a single, prominent flooding event due to 
heavy precipitation over three successive days caused by cold air advection to the Alps. 
These observations are supported by the gauged discharge data further downstream. The 
subsequent low values of IAdmax and runoff could be attributed to the low air temperatures 
and, thus, modest ablation in the wake of the event. 

The comparatively shorter data series of 2019 covered the period of autumn, with 
characteristic minor runoff due to reduced global radiation and therefore less ablation on 
the glacier. The IAdmax values of 2019 exhibited a similar order of magnitude as the figures 
for the same time in 2020. 

The inter-annual evolution of the inundation area is presented in Figure 7. In the 2018 
data set, the highest IAdmax values of about 30% were recorded at the beginning of August. 
This coincided with high levels of meltwater discharge and additional convective precip-
itation, represented in the shape of large circles (high global radiation) and the precipita-
tion-indicating coloring. Towards the end of August and throughout September, the 
IAdmax values fell consistently below 20%, while even days with high global radiation and 
convective precipitation did not result in increased IAdmax values. In addition, no precipi-
tation was recorded from mid-September to the end of the observation period at the end 
of October, and global radiation generally decreased. As a logical consequence, the IAdmax 
values continued to decrease as the season progressed, to below 5% at the end of October. 

 
Figure 7. IAdmax plotted with day/month in the observation period. The colored scheme of the plot 
relates to the total precipitation occurring within 5 h prior to recordings in 2018 (a), 2019 (b) and 
2020 (c). Additionally, the circles are sized according to the daily maximum global radiation. Note 
that the red highlighted circle in the 2018 data is discussed in the text and Appendix A. 

This trend of decreasing IAdmax in the course of autumn was also visible in the 2019 
data set. The IAdmax values were in the range of 5–10% in mid-September, while by the end 
of October, they had fallen to a maximum of 5%. It is noticeable that, in contrast to 2018, 
precipitation causing IAdmax was recorded late in the observation period. However, these 
precipitation events did not cause a significant increase in the detected spatial extent of 
the inundation area, as part of the precipitation was likely to have occurred as snow fall 
in the upper catchment. 

The observational period in 2020 covered the months July to September and pre-
sented a rather different seasonal evolution. Generally, there was a slight increase in IAdmax 
over time, starting with values of mostly 5–10% in July, around 10% in August and finally 
up to 15% in September. Compared to the data series of 2018, in particular, the lower 
IAdmax values in the first half of the data series, with no significant peak in the spatial extent 
of the inundation area, indicate deviating snow conditions and melt for early summer 
2020. Although most data points were between 5% and 15% throughout the 2020 period, 
there were outliers, particularly in July and August, below 5% and above 25%, respec-
tively. It is notable that the outliers above 25% could be associated with low global radia-
tion and high precipitation. A trend towards decreasing IAdmax values in autumn, as seen 
in 2018 and 2019, could not be derived for the 2020 data, since the respective observational 
period ended with September. 

The observed spatial extent of the inundation area and its dependency on meteoro-
logical factors is further explored in Figure 8. The IAdmax value rarely exceeded 15% under 
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clear sky conditions, with high ablation rates on the glacier. The higher values depicted in 
the 2018 data could be primarily related to excessive snow and ice melt in July. In general, 
IAdmax on days with measured precipitation coincided with lower maximum air tempera-
tures, compared to IAdmax on typical ablation days. Moreover, most of the IAdmax values 
exceeding 25% in 2018 occurred on days with heavy ablation, triggered by high global 
radiation in the first half of the day, paired with additional precipitation in the afternoon 
or evening, resulting in distinctive flooding events in the investigated outwash plain. 

 
Figure 8. IAdmax plotted with the daily maximum air temperature; the colored scheme of the plot 
relates to the total precipitation occurring within 5 h prior to recordings in 2018 (a), 2019 (b) and 
2020 (c). The circles are sized according to the daily maximum global radiation. Note that the red 
highlighted circle in the 2018 data is discussed in the text and Appendix A. 

The respective data of 2019 showed a comparably lower IAdmax that remained below 
10%, representing a shorter observational period in late summer and autumn, with re-
duced global radiation and precipitation that started to fall as snow at higher altitudes of 
the upper catchment. The generally lower air temperatures in the observational period of 
2019 also reflected the later season of the recordings. 

In contrast to the two previous years, the two highest IAdmax values of over 25% in the 
data set for 2020 occurred at relatively low air temperatures and equally low global radi-
ation but were triggered by heavy precipitation events. 

For the 2020 data set, we also compared the 2020 IAdmax percentage with the daily 
maximum runoff measured at the gauge with respect to the time of day (Figure 9). A clus-
tering around 4 pm could be seen on days without recorded precipitation prior to IAdmax. 
The wider range and offset towards the measured daily maximum runoff between 5 pm 
and 8 pm may implicate a systematic underestimation of IAdmax in the late afternoon hours 
due to unfavorable lighting conditions. As could be expected, the time of day for the run-
off maxima was delayed compared to the detection time of IAdmax because of the distance 
of ca. 3.5 km between the glacier forefield and the runoff gauge downstream. This may 
also explain the minor but continuous underestimation of IAdmax on days with significant 
precipitation events. 
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Figure 9. Time of the daily maximum inundation area (IAdmax) plotted with the time of maximum 
runoff in 2020 for days (a) without precipitation and (b) with precipitation within 5h prior to the 
recorded IAdmax. The color scheme in (b) relates to the total precipitation 5 h prior to recordings. The 
circles are sized accordingly to the daily maximum values of global radiation. The red box marks 
the time frame of available camera recordings. 

4. Discussion 
The approach presented here of using a time-lapse camera provides insights into pro-

glacial runoff dynamics that could otherwise only be quantified with considerable diffi-
culty, e.g., [10]. The alternative of implementing a conventional gauging station was dis-
missed due to the inherent dynamics of the braided river system with intense lateral chan-
nel shifting and geomorphic processes (e.g., lateral erosion, avalanches, rockfall) at poten-
tial station sites. Furthermore, widely used remote sensing techniques for flood detection 
have their limitations when applied in mountainous sub-catchments. Optical remote sens-
ing data is strongly affected by cloud obscuration, restricting the ability to detect inunda-
tion induced by rainfall [25]. In contrast, the increasingly established application of a syn-
thetic aperture radar (SAR) circumvents the issue of cloud cover. Nevertheless, the spatial 
resolution of 5–10 m and multi-monthly revisit-intervals of current non-commercial SAR 
satellites suggest that delineation of short-lasting floods in headwater catchments is not 
yet available with adequate robustness [26]. The utilization of terrestrial time-lapse im-
agery partly mitigates these limitations for inundation mapping in a 2.8 ha outwash plain. 
In this context, our estimations of the inundated area from image analysis were broadly 
convincing, especially for weather conditions with liquid precipitation. However, the here 
presented method entailed its own limitations that need to be addressed when discussing 
the advantages and weaknesses. In daylight, the approach was not limited to ideal condi-
tions but provided reliable results for a wide range of light and weather conditions. How-
ever, the method’s weak point was undoubtedly (in)sufficient lighting and whether 
patches of snow or fog obstruct the camera’s view  

4.1. Daily Maximum Inundation Area 
To obtain visual information on the extent of the inundation from an RGB camera, a 

sufficiently and uniformly illuminated (see Chapter 2, P4) observation area free of snow 
cover is required. For this reason, only images at daylight and without snow cover in the 
AoI could be analyzed. This entails the inherent problem of the method of being unable 
to capture high runoff events at night, for example, in the case of high meltwater runoff 
in conjunction with a thunderstorm in the late evening. In this context, precipitation-bear-
ing convective clouds in the afternoon (Ch. 2, P1) could limit visibility to the extent that 
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the affected images have to be excluded from further analysis. Furthermore, the strict ex-
clusion of images with snow cover in the AoI (Ch. 2, P2) deprives the method of quanti-
fying typically high runoff conditions due to snowmelt in the glacier forefield. Con-
versely, the AoI was defined to exclude known areas of persistent snow accumulation. 
However, it captured high runoff caused by continuous snow and subsequent ice melt at 
higher elevations of the glacier. 

The inundation frequency maps (Ch. 3.2, Figure 5a–c), as annual cumulations of the 
observed daily inundation extent, could be interpreted as the evolution of the proglacial 
channel network over three years. A similar image availability for Figure 5a,c (represent-
ing 2018 and 2020) allowed a direct comparison of the flooding frequency of individual 
tributaries. In contrast, Figure 5b was based on significantly fewer images in a shorter 
observation period. Nevertheless, the inundation frequency map for the period in 2019 
indicated a widely unchanged channel network compared to the observation period of 
2018. Less-frequently flooded tributaries remained undetected within the six observed 
weeks, which could be attributed to typically decreased meltwater discharge and less fre-
quent convective precipitation in autumn. The evident shift in the inundation frequency 
pattern within the outwash plain between 2018 and 2020 was presumably initiated with 
the onset of snow melt in early summer 2020 and subsequently continued by heavy pre-
cipitation events in the following months. However, the associated increased degree of 
channel concentration could not be attributed to a specific flood event due to the remain-
ing complexity of the braided channel network. 

4.2. Weather Conditions and Illumination 
As discussed above, the presented method is highly dependent on the illumination 

of the pre-selected images. The degree and distribution of the scene luminance, in turn, 
was influenced by the weather conditions. In contrast to optical satellite data, in most 
cases, cloud cover was only an issue if it occurred as fog at the elevation of the camera 
location and the outwash plain. Overall, our estimations of the inundated area from image 
analysis were broadly convincing, although some weather conditions were found to be 
more favorable to the method than others. A clear sky, for instance, caused a distinct 
shadow in early evening recordings and led to a systematic underestimation of the IA and 
thus to earlier IAdmax times. Moreover, uniformly underexposed images could also result 
in an underestimation of the IA, simply by determining an erroneous threshold (Figure 
A2). In contrast, a discrete, intensely illuminated area in an AoI that was otherwise cov-
ered by shadows was detected as inundated, as the example in Figure A3 demonstrates. 
In both cases, a further refinement of the filter constraints in the respective ImageJ macros 
could be beneficial to sort out such cases more efficiently. 

Besides weather-dependent illumination variants, adverse effects from precipitation 
could account for data gaps and image misanalysis. If the solar panel of the time-lapse 
camera was covered by snow for more than two days, it resulted in a temporary battery 
drain. This circumstance created occasional data gaps that exceeded the number of days 
with snow cover due to the slight delay in recharging the camera and resuming the hourly 
recordings. We also observed that raindrops on the window of the camera housing af-
fected the final results (Figure A4). The affected parts of the image were darker and 
blurred; thus, they were not considered in the IA count. This could lead to an underesti-
mation of the IA during (heavy) precipitation events. 

4.3. Spatial Segregation of AoI and AWS 
We compared the IA results with meteorological data from the closest available 

AWS. However, the spatial distance between the AoI and the AWS (see Figure 1 and Ch. 
2) caused some inconsistency in the results and the final interpretation. In particular, the 
maximum IA value of 2018 was observed for an event with no precipitation measured in 
the hours prior to the recording, nor during the recording itself (see Figure 8 in Ch. 3, 
Figure A4a). Nevertheless, precipitation was clearly visible in the images taken during the 
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same time frame as the 2018 IA maximum (Figure A4b,c). Air temperature and global 
radiation showed a strong decrease around 2 pm CET and two peaks each on this day. 
This indicates that an intensive precipitation event occurred in the uppermost catchment, 
while no rain was detectable at the Jamtalhütte and at the AWS. The second IA peak later 
in the same day was again caused by precipitation, but this time, it was measured at the 
AWS. 

4.4. Showcase Example 
With robust runoff measurements available for 2020, the overall plausibility of the 

calculated IA can be compared to the data from the downstream runoff gauge. Figure A5 
depicts the event with the maximum IA of 2020, which started with an IA peak caused by 
an onset of heavy precipitation. The second peak in IA is also plotted, with higher rainfall 
at the AWS and corresponding runoff data. This example demonstrates the capability of 
the method discussed here to capture the IA for extreme events of increased runoff con-
ditions. 

4.5. Future Improvements 
The time-lapse camera setup used for this study was originally established in another 

research project focusing on the glacier surface [32]. However, the rapid glacier retreat 
caused the glacier forefield to come more and more into the camera’s field of vision. With 
this in mind, the camera was repurposed for our specific research objectives, adding value 
to the existing monitoring equipment. Due to the rededication of the camera, we also had 
to accept some limitations in terms of image detail and the capabilities of the overall set-
up. For the specific purposes of this study, it would have been beneficial to also record the 
lower part of the outwash plain in the image frame of the camera system. To address the 
issue of coverage sustainably, the complete time-lapse setup needs to be extended to a 
network of at least two cameras, with intersecting directions of view onto the AoI. This 
would not only help to reduce the effect of shadows on the analysis but also allow the 
results to be geo-rectified into 3D information, e.g., [33–35]. In addition, mounting the 
cameras with a perpendicular axis of view would also ensure that channel structures of 
either direction were in the line of sight and recorded by at least one camera. For extended 
time series, it would also be desirable if the camera’s field of view remained as constant 
as possible. Therefore, a more stable position of the camera systems should be provided, 
considering the sensitivity of maintenance work and external factors like snow pressure. 

With the existing camera, we were nevertheless able to capture the extent of flooding 
events in the glacier forefield under most weather conditions at daytime, which could be 
put in a plausible context with data from a nearby AWS and a runoff gauge. We argue 
that this has additional benefit also for our studies on runoff, even if the previous setting 
was not ideal regarding the points mentioned above. Future application and use of the 
floodplain maps presented here may include coupling with observed topographic 
changes in the outwash plain. Tracking the evolution of the channel system over time and 
linking it to previous floodplain situation is a clear next step. 

The final image analysis of this study has already been integrated into the overarch-
ing research effort, providing quantitative data by geo-rectifying and visualizing the 
stream properties and their evolution together with additional surveys of the outwash 
plain. 

5. Conclusions 
This study explored the potential of semi-automatic image analysis to detect the in-

undation extent and frequency from a terrestrial time-lapse camera. The pixel classifica-
tion based on greyscale values from oblique hourly recordings returned plausible results 
of the spatial and temporal variability of surface runoff in the investigated glacier fore-
field. However, the presented method was strictly limited to inundation detection during 
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daylight hours but provided reliable results for a wide range of light and weather condi-
tions during this time of day. The weak point of the method was therefore undoubtedly 
(in)sufficient lighting and whether patches of snow or fog obstructed the camera’s view. 
The image sets, processed in ImageJ, allowed geo-rectification to produce inundation fre-
quency maps that provided novel insights into the evolution of the proglacial channel 
network over a period of three years. Meteorological and discharge data from down-
stream measuring stations were consulted to interpret our findings. Runoff events and 
their intensity were quantifiable by means frequency and spatial extension and could be 
attributed either to pronounced ablation, heavy precipitation or a combination of the two 
in the uppermost catchment. In addition, a substantial shift in the proglacial channel net-
work over the three years was recorded, indicating persistent sediment redistribution by 
fluvial transport. The findings presented here and experiences with this approach encour-
age us to further develop and expand the camera setup for continued monitoring in data-
scarce environments. Knowledge of proglacial runoff patterns will be important for un-
derstanding discharge properties and potential sediment transport in catchments with 
rapidly retreating glaciers and abundant sediments. 
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daily maxima from 2018–2020. 
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Appendix A 

 
Figure A1. Cumulative share of the total AoI for pixels with a specific count relative to the count of 
the pixels most often detected as covered by water within the recording period of the respective 
year (maximum count). 

 
Figure A2. (a) IA and meteorological measurements for the period of interest. (b) shows the images 
in unaltered scene brightness and the detected IA for 22 August 2018 at 6 pm CET and (c) for 22 
August 2018 at 8 pm CET, both marked by red circles in (a). 
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Figure A3. (a) IA and meteorological measurements for the period of interest. (b) shows the images 
in unaltered scene brightness and the detected IA for 31 July 2020 at 8 am CET and (c) for 31 July 
2020 at 9 am CET, both marked by red circles in (a). 

 
Figure A4. (a) IA and meteorological measurements for the period of interest. (b) shows the images 
in unaltered scene brightness and the detected IA for 22 August 2018 at 2 pm CET and (c) for 22 
August 2018 at 3 pm CET, both marked by red circles in (a). 

 
Figure A5. (a) IA and meteorological measurements for the period of interest. (b) shows the images 
in unaltered scene brightness and the detected IA for 29 August 2020 at 9 am CET and (c) for 29 
August 2020 at 1 pm CET, both marked by red circles in (a). 
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