é
] water

Article

Development of Deep Learning Models to Improve the
Accuracy of Water Levels Time Series Prediction through
Multivariate Hydrological Data

Kidoo Park !, Younghun Jung 2*, Yeongjeong Seong ? and Sanghyup Lee 2

Citation: Park, K,; Jung, Y.; Seong,
Y.; Lee, S. Development of Deep
Learning Models to Improve the
Accuracy of Water Levels Time
Series Prediction through
Multivariate Hydrological Data.
Water 2022, 14, 469. https://doi.org/
10.3390/w14030469

Academic Editor: Aldo Fiori

Received: 15 December 2021
Accepted: 29 January 2022
Published: 4 February 2022

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional
claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors. Li-
censee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/).

1 Emergency Management Institute, Kyungpook National University, Sangju 37224, Gyeongbuk, Korea;
hydrol88@knu.ac.kr

2 Department of Advanced Science and Technology Convergence, Kyungpook National University,
Sangju 37224, Gyeongbuk, Korea; bnmjkl31@knu.ac.kr (Y.S.); niy1219@knu.ac.kr (S.L.)

* Correspondence: y jung@knu.ac.kr; Tel.: +82-54-530-1253

Abstract: Since predicting rapidly fluctuating water levels is very important in water resource en-
gineering, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) were used to evalu-
ate water-level-prediction accuracy at Hangang Bridge Station in Han River, South Korea, where
seasonal fluctuations were large and rapidly changing water levels were observed. The hydrological
data input to each model were collected from the Water Resources Management Information System
(WAMIS) at the Hangang Bridge Station, and the meteorological data were provided by the Seoul
Observatory of the Meteorological Administration. For high-accuracy high-water-level prediction,
the correlation between water level and collected hydrological and meteorological data was ana-
lyzed and input into the models to determine the priority of the data to be trained. Multivariate
input data were created by combining daily flow rate (DFR), daily vapor pressure (DVP), daily dew-
point temperature (DDPT), and 1-hour-max precipitation (1HP) data, which are highly correlated
with the water level. It was possible to predict improved high water levels through the training of
multivariate input data of LSTM and GRU. In the prediction of water-level data with rapid temporal
fluctuations in the Hangang Bridge Station, the accuracy of GRU’s predicted water-level data was
much better in most multivariate training than that of LSTM. When multivariate training data with
a large correlation with the water level were used by the GRU, the prediction results with higher
accuracy (R2 = 0.7480 — 0.8318; NSE = 0.7524 — 0.7965; MRPE = 0.0807 — 0.0895) were ob-
tained than those of water-level prediction results by univariate training.

Keywords: water level; rapidly fluctuating water level; LSTM; GRU; correlation; multivariate input
data; univariate training

1. Introduction

South Korea is a monsoon climate where 60-70% of annual average precipitation is
concentrated from June to September. Therefore, flood damage in summer is concen-
trated, and drought damage is caused in spring, making it difficult to manage water re-
sources [1]. In the case of urban rivers, the watersheds are covered with impervious layers,
resulting in a series of urban flood damage due to the rapid increase in direct runoff
caused by heavy rain, so accurate flood-prediction technology is needed and is essential
to prevent flood disasters [2]. Therefore, local heavy rains caused by climate change fre-
quently cause extreme flood damage around urban rivers, so techniques for accurately
predicting the high water level or high flow rate of urban rivers are essential [3].

In the past, flow rates and water levels were calculated in the event of a flood, using
the physical numerical model that used the Computational Fluid Dynamics (CFD)
method, but there were limitations in obtaining sufficiently reliable results in terms of
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time, cost, and accuracy of the prediction model [4]. Therefore, in the field of water re-
source engineering, as a way to replace the existing physical models and improve the pre-
diction accuracy of hydrological quantities, researchers have developed data-driven mod-
els that can predict hydrological quantities only through the analysis of input data.

As a traditional data-driven model, the Auto-Regressive Integrated Moving Average
(ARIMA) model was used to analyze linear time-series data, such as prediction of
monthly mean water levels to perform water-level prediction [5]. In the case of the ARIMA
model, the prediction accuracy of the linear hydrological data was calculated with appro-
priate prediction accuracy, whereas, in the case of hydrological time-series data with non-
linear characteristics, the prediction accuracy of the nonlinear hydrological data was de-
teriorated [6]. In addition, the ARIMA model was mainly used to predict time-series
groundwater levels [7]. However, there was a limitation in that the correlation between
hydrological variables, including rainfall and groundwater level, could not be properly
considered [8].

In the case of the Fuzzy and Neural Network (NN) system, it was effectively used for
reservoir operation [9]. In addition, the Adaptive Network-Based Fuzzy Inference System
(ANFIS) was used to predict the water level with the high reliability of the reservoir [10].
However, in the case of Neuro-Fuzzy model, in time-series groundwater prediction with
nonlinear characteristics, the prediction accuracy of the model significantly decreased as
the prediction period increased [8].

Accordingly, studies on data-driven models based on the Fourth Industrial Revolu-
tion technology that can overcome and replace the limitations of existing physical models
are currently being actively studied [4]. A typical data-driven model is a Deep Neural
Network (DNN) model, and in contrast to the calculations of numerical solution accord-
ing to the initial and boundary conditions of the governing equation, accurate prediction
results can be obtained by repeatedly training input value data and calculating parameters
of the data-driven model. Recently, research on the prediction of time-series data, such as
the flow rate, water level, and flow velocity of rivers and reservoirs in the field of water
resource engineering, using the DNN model, is being actively conducted [11-19].

In the past five years, DNN models have been used to predict various hydrological
quantities, such as water level, flow rate, and precipitation in water resource engineering.
However, most studies have mainly studied predicting water levels that change smoothly
over the entire time or predicting flow rates in rivers and reservoirs with little temporal
flow changes. Especially, DNN was widely used to predict groundwater levels [20], water
levels in the stream [21-23], wetlands [24,25], and reservoirs [26-28]. However, most of
these studies on water-level predictions correspond to cases where the water-level change
according to temporal changes is mild, and the accuracy of the prediction results could
not be guaranteed if the water-level change changes rapidly [4]. Therefore, the studies on
predicting water levels with high temporal variability in the rivers were recognized as
limitations of the DNN models and were rarely conducted, as compared to other research
areas. It is essential to predict the exact amount of hydrological quantities in the river due
to torrential rains or typhoons caused by climate change and urbanization, but it was dif-
ficult to trust the prediction results of DNN models under high-water-level or high-flow-
rate conditions. Nevertheless, there was a study to predict river flow rates with high ac-
curacy by providing guidelines for input training data [4]. In addition, real-time ground-
water-level prediction [29], extreme water-level prediction by highest tide [30,31], and
real-time urban-river-flood-level prediction, using various DNN models, have been effec-
tively performed recently [32]. However, until recently, there were not many studies to
improve the accuracy of predicting water levels with very high temporal variability. This
study attempted to improve the prediction result of river water levels with high temporal
fluctuations by diversifying the input data by analyzing the correlation of input data, us-
ing DNN models.

The main purpose of this study was to establish the multivariate training models that
can accurately predict daily water-level data under high-water-level conditions among
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rapidly changing hydrological quantities by selecting DNN models that are effective in
predicting time-series hydrological data. Previous DNN studies in the field of water re-
source engineering focused on predicting gentle water level changes, but this study aimed
to predict high-water-level changes in a river that has very severe temporal fluctuations.
In addition, most previous studies used only univariate water-level data as input data to
predict the water level, so there was a limit to predicting the high water levels that rise
dramatically by season.

The purpose of this study is as follows. First, in order to predict the time-series water
levels that change rapidly over time, hydrological data and meteorological data that have
a large correlation with the water levels will be selected. Second, hydrological data or me-
teorological data with a large correlation with the water level will be selected, and DNN
models suitable for predicting hydrological time series data (i.e., water level and flow rate)
will be selected. Third, the accuracy of the water-level prediction will be analyzed by us-
ing hydrological data or meteorological data, which have a large correlation with the wa-
ter level, as input data of the DNN model. Finally, the DNN models will be proposed with
improved accuracy of water-level prediction according to multivariate input data effec-
tive in predicting time-series levels that change rapidly from low to high levels. Therefore,
it is expected that the accuracy of predicting low and high water levels will be improved
through the types and numbers of multivariate training data.

2. Methods
2.1. Applied DNN Models

Among the DNN models that can be effectively used for time-series data analysis, in
this study, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) were se-
lected and used as Recurrent Neural Network (RNN) models that can be appropriately
applied to past hydrological time-series data [4].

2.1.1. Long Short-Term Memory (LSTM)

LSTM is a sequential data model that improves the long-term memory loss problem
of Simple RNN. [4,33]. As shown in Figure 1, LSTM consists of a forget gate, an input gate,
and an output gate. The key to LSTM is to have a cell state. The horizontal line from ¢,_,
to ¢, located at the top of Figure 1 is called the cell state that penetrates the entire time-
series data through a simple linear operation. Because of this structure, time-series infor-
mation continues to be sent to the next time step without memory loss.
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Figure 1. Long Short-Term Memory (LSTM).
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where f,, i, and o, are the forget, input, and output gates at time, ¢, respectively;
W, W;, and W, are weights mapped to hidden layers for forget, input, and output
gates; b, b;, and b, are bias vectors; h is layer; o(-) is an activation function; tanh(-)
is hyperbolic tangent function; ¢, ; and c, are the cell states of the previous time step
and the next time step.

2.1.2. Gated Recurrent Unit (GRU)

GRU plays a similar role as LSTM, but it is computationally efficient because it con-
sists of a simpler structure. This reduced the calculation of cell state used by the LSTM.
GRU is a simplified form of three gates of LSTM. As shown in Figure 2, the input gate and
forget gate are combined and simplified into an update gate [4,34]. There are only two
types of GRU: an update gate, a reset gate, and a removed cell state. GRU has two activa-
tion functions and one tanh function. Therefore, GRU has fewer parameters and faster
training speed than LSTM, but long-term memory, such as LSTM, is possible.
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Figure 2. Gated Recurrent Unit (GRU).
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where r and z are the reset and update gates, respectively. Reset gate aims to reset
past data and outputs a value between 0 and 1, which is the value of how much past data
will be reset through the activation function. The update gate determines the rate of past
and present information updates and the output value, z,, determines the amount of data

to be exported at this point in time; 1-z, is the amount of data to be forgotten.

2.2. Model Performance Indicators

Equations (11)-(17) were used as evaluation criteria for the RNN models to evaluate
the performance and accuracy of the models. The closer the Mean Absolute Error (MAE),
Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Relative Peak Er-
ror (MRPE) are to 0, the better the performance of the model. As the Nash—-Sutcliffe model
Efficiency coefficient (NSE) and the determination coefficient (R?) are close to 1, the per-
formance of the model is improved.

(1) Mean Absolute Error (MAE)

MAE measures the average magnitude of the error in the prediction set without con-
sidering the direction. This is the mean for the test sample for absolute differences between
predictions and actual observations where all individual differences have the same weight

[4,35]
N
>l — vl an
i=1

where x; is the observed values of the variables, y; is the predicted values, and N is the
number of data.

(2) Mean Squared Error (MSE)

MAE =

=2~

MSE measures the mean of the squares of the errors, that is, the mean squared differ-
ence between the predictions and the actual observations [4,35].

N
1
MSE =3 (= y)? (12
i=1

(3) Root Mean Squared Error (RMSE)

RMSE is a quadratic scoring rule that also measures the average magnitude of an
error. It is the square root of the average of squared differences between predictions and
actual observations [4,35-37].

_ T — yi)? 13
RMSE—\[iN (13)

(4) Coefficient of determination (R?)

The coefficient of determination, R?, is a measure of the goodness of fit of the statis-
tical model [4,35,38,39].
_ L0 —90)°

(g —x)?

where y; are the predicted values from a statistical model, and ¥ is the mean of observed
values of the variables.
(5) Nash-Sutcliffe model efficiency coefficient (NSE)

NSE is used to quantify how well model simulations can predict the outcome varia-
bles [4,35,36,38,39].

R? = (14)
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As shown in Table 1, it is not appropriate to adopt model results if R?> and NSE are
less than 0.5; model adoption is possible if R? and NSE are greater than 0.5 and less than
0.65; model adoption is good if R? and NSE are greater than 0.65 and less than 0.75; and
if R? and NSE are over 0.75, it is very good to adopt a model. [4,19,35,38,40].

Table 1. Performance ratings for adopted statistics.

Performance Rating R? NSE
Very good 0.75 < R? < 1.00 0.75 < NSE < 1.00
Good 0.65 < R* < 0.75 0.65 < NSE < 0.75
Satisfactory 0.50 < R? < 0.65 0.50 < NSE < 0.65
Unsatisfactory R? < 0.50 NSE < 0.50

(6) Mean Relative Peak Error (MRPE)

The Relative Peak Error (RPE) for each i —th event and MRPE are used to evaluate
the prediction accuracy for peak values:

_ Ypi — Xpi
RPE; = x—pi (16)
N . |RPE;
MRPE = # 17)

where y,; are the predicted peak values for each i —th event, x,,; are the observed peak
values for each i —th event, and M is the number of events. It means that, the closer the
MREPE is to zero, the better the peak values of the model are predicted [41].

2.3. Application of Models

As shown in Figure 3, in this study, a flowchart for predicting time-series water levels
by using LSTM and GRU models was presented. This study attempted to compare the
accuracy of rapidly varying water-level prediction and the performance of models, using
LSTM and GRU models. Data input and output to time-series models basically use water
levels. However, since the water-level data alone have limitations in accurately predicting
the rapidly changing water level, this study attempted to analyze the accuracy of the pre-
dicted water levels by using hydrological data (i.e., flow rate, temperature, vapor pres-
sure, and precipitation) that are close to correlation with the water level as input data.
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Collection of hydrological and meteorological data

Analysis of the correlation between time series water level data and hydrological and meteorological data
Composition of input variables that have a large correlation with water level data
Composition of input variables that have a large correlation with water level data

Selection and configuration of the LSTM and GRU models for time series data analysis
Separation of learning data and prediction data and setting of hyperparameters of LSTM and GRU models
Selection of LSTM and GRU models for time series data analysis
Training of LSTM and GRU models

Prediction of the water levels using the training results of LSTM and GRU models

Figure 3. Flowchart on learning and prediction of water-level data, using LSTM and GRU models.

Considering the number of hydrological input data and the correlation between the
data, it is intended to overcome the limitation of not accurately providing rapidly chang-
ing water levels, as in previous research cases, by using it as a single hydrological time-
series input data. Therefore, the purpose of this study was to accurately predict the water
level by using not only the water level but also time-series hydrological data, which are
multivariate data, as additional input data.

3. Study Area and Data
3.1. Study Area

The Han River in the urbanized Han River basin was selected (Figure 4). The Han
River basin is located in the central part of the Korean Peninsula and spans 36°30" to 38°55
N latitude, 126°24’ to 129°02’ E longitude. As shown in Table 2, the Han River is the largest
river in South Korea, with a basin area of 25,953.60 km?, a total length of 494.44 km, an
average width of 72.35 km, and a shape coefficient of 0.146. The Han River basin is a multi-
form basin mixed with dendritic and facsimile forms. Historically, the Han River was de-
stroyed as the channel was changed due to the urbanization of the Han River basin [4,42].
In 2003, the primary land was 5.4% agricultural land, 25.6% forest, 8.8% river, 39.4% va-
cant land, 2.5% park land, and 18.3% urban land [4,42]. Table 2 summarizes the channel
characteristics. The channelized reach with an average river width of 1300 m has an aver-
age slope of 0.0016% on the downstream distance of the Han River basin [4,43,44].

Table 2. Summary of site characteristics.

Length of River Basin Area Mean Rainfall Mean Water Level Mean Streamflow
(km) (km?) (mm/Year) (EL.m) (m3/s)
494.44 25,953.60 1313.42 0.91 355.97
EL.: Elevation

3.2. Hydrologic Data

In this study, the hydrological data of Hangang Bridge Station observed by the Min-
istry of Environment, Korea, were used (Figure 4). In order to utilize weather data, the
Korea Meteorological Administration (KMA) observatory closest to Hangang Bridge Sta-
tion used data from the Seoul Observatory (Figure 4). The flow rate and water-level data
at the flow-measuring station were obtained by using data from the Water Resources
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Management Information System (WAMIS) website of the Ministry of Environment [45].
Meteorological data from the Seoul observatory were obtained through the website of the
KMA National Climate Data Center [46]. The average annual precipitation from 2010 to
2019 was 1313.42 mm, and based on the precipitation data provided on the Meteorological
Administration website [46], 60% of the precipitation fell during the monsoon season be-
tween July and September. Therefore, since seasonal rainfall is concentrated in summer,
the runoff also increases rapidly during this period.

Legend

‘ Hangang Bridge
. Seoul Observatory

Seoul, Korea.

Figure 4. Map of the Han River basin in Korea (Google Earth [47]).

(1) Daily water level

In this study, the longer the data of the learning data, the better the prediction results
of the model generally, so the total length of the data used for learning and prediction was
2 years and 7 months, and the relatively short data were used to verify the deep learning
models. As shown in Table 3 and Figure 5, the observed average water levels from the
Hangang Bridge Station were based on real-time observed data from 1 January 2018 to 31
July 2020. In Figure 5, training and prediction data were selected for the purpose of eval-
uating the performance of DNN models that can sufficiently predict rapid water-level
fluctuations occurring between June and July 2020 by learning rapid water-level fluctua-
tions during the rainy season in 2018. In order to analyze the characteristics of water lev-
els, the average, the minimum, and the maximum water levels were statistically analyzed
as shown in Table 3. Prior to the construction of a multipurpose dam on the Han River,
the Coefficient of Flow Fluctuation (CFF) was 390: CFF is defined as the ratio of the annual
maximum flow rate to the annual minimum flow rate [4,48]. Large-scale multipurpose
dams were constructed at upstream: CFF was drastically lowered to 70.32 after construct-
ing a multipurpose dam for flood control and securing water supply.

Table 3. Statistical characteristics of water levels at the Hangang Bridge Station (period: 2018-2020).

Minimum Maximum Wa- Average Water Standard Deviation Coefficient of
Water Level ter Level Level of Water Level Flow Fluctuation
(EL.m) (EL.m) (EL.m) (EL.m) (CFF)
0.504 3.606 0.915 0.336 70.32
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Daily Water Level (EL. m)

3.5 A

2.5 A

0

~~~~~~~ Observation data for training

——Observation data for prediction

2017-11-15  2018-03-15 2018-07-13  2018-11-10  2019-03-10  2019-07-08  2019-11-05  2020-03-04  2020-07-02

Year/Month/Day
Figure 5. Time-series daily water level at the Hangang Bridge (period: 2018-2020).

As shown in Figure 5, the selected daily average time-series water-level data were
divided into data for learning and prediction of the models. In the case of rapidly chang-
ing hydrological time-series data, using previous research results [4], the best accuracy
could be obtained if the optimal length of learning data and predictive data were selected
as 74.9% and 25.1%, respectively, from the length of all time-series data. Therefore, as
shown in Figure 5, data with black dotted lines were used as learning data for the models,
and solid-red-line data were used as forecast data for the models and used to evaluate the
accuracy of the models.

(2) Hydrological and meteorological data

In order to analyze the characteristics of meteorological and hydrological data, the
average (Ave), maximum (Max), minimum (Min), and standard deviation (SD) values of
the data were divided into training and predictive data and presented as shown in Table
4. In addition, for each dataset, the ratios of predictive data for training data (Train/pre-
dict) were presented. Except for the daily water level (DWL), the shaded prediction data
presented in Table 4 were not actually used as prediction data for deep learning models
in this study. However, they were included in the prediction data for characteristic anal-
ysis between the two datasets divided into prediction data and training data.
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Table 4. Characteristics of hydrological and meteorological data.
Variable Training Data Prediction Data Train/Predict
Ave Max Min SD Ave Max Min SD Ave Max Min SD
Daily Water Level - oy 501 051 043 086 218 050 025 084 060 098 058
(EL.m)
Daily Flow R
a y(m;;’ A 45166 575281 64.65 64031 27533 2923.08 5925 24095 061 051 092 038
Daily VaporPres- 1, -e 5160 070 824 1058 3180 080 7.84 090 101 114 095
sure (hPa)
Daily Dew-Point o 5500 2760 1245 359 2500 2580 1198 069 100 094 09
Temperature (°C)
I-Hour-MaxPre- - oo 1550 000 465 084 2940 000 319 062 068 000 0.69
cipitation (mm)
PrecipitationDu- ) (0 o100 000 485 234 2400 000 470 094 100 000 097
ration (hour)
Daﬂylzig’“atmn 376 9650 000 1242 260 10310 0.00 914 069 107 000 074
Daily Tempera- ) oo 3370 _1480 11.09 12690 3160 -1050 1016 090 094 072 092
ture (°C)
10-Minute-Max: o5 o559 000 211 034 1190 000 124 058 047 000 059

Precipitation (mm)

Ave, average; Max, maximum; Min, minimum; SD, standard deviation; Train/Predict: the ratio of
prediction data to training data.

As shown in Table 4, when calculating the ratio of the maximum predicted data to
learning data through statistical analysis, DWL was 0.60, daily flow rate (DFR) was 0.51,
daily vapor pressure (DVP) was 1.01, daily dew-point temperature (DDPT) was 1.00, and
1-hour-max precipitation (1HP) was 0.68, respectively. In addition, the ratio of standard
deviation representing the distribution of data was 0.58 for DWL, 0.38 for DFR, 0.95 for
DVP, 0.96 for DDPT, and 0.69 for 1HP, respectively. Therefore, it was found that DWL,
DFR, and 1HP were smaller than the maximum values of the prediction data than those
of the training data, and the ratio of maximum values was almost no difference in DVP
and DDPT. The ratio of standard deviation representing the distribution range of data
was 0.38 in DFR, which was the narrowest distribution range of prediction data than train-
ing data, and the prediction data gradually increased to the distribution range of training
data in the order of DWL, 1HP, DVP, and DDPT.

As shown in Table 5, in order to select appropriate input data for DWL prediction,
the correlation between meteorological and hydrological data was analyzed. First, the hy-
drological variables with the greatest correlation with the daily water level were analyzed.
The hydrological variable with the greatest correlation with the daily water level to be
predicted was the DFR, which was 0.7731, which had a very high correlation between the
two data. However, unexpectedly, the correlation coefficient of daily precipitation (DP)
was 0.2993, which was judged to have little direct correlation with the daily water level.
As shown in Figure 4, the data from the Seoul Observatory of the Meteorological Admin-
istration were used for the provided precipitation data. The Seoul Observatory of the Me-
teorological Administration is about 6 km away from the Hangang Bridge Station, the
prediction point of the model, and the Namsan Mountain is located in the middle of the
two points, which may cause heterogeneity in weather phenomena, due to topographical
factors. Among the collected meteorological data, the data that can be used through cor-
relation analysis with water level are DVP and DDPT. The daily vapor pressure had a
correlation coefficient of 0.3622 with the water level, and daily dew-point temperature
had a correlation coefficient of 0.3444 with the water level, respectively. Although both
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data do not have a large correlation with the water level, the predictive performance anal-
ysis of LSTM and GRU models was conducted by using multivariate input data (i.e., daily
vapor pressure and daily dew-point temperature). Second, the correlation between hy-
drological data and meteorological data was analyzed for the correlation between daily
flow rate, which has a large direct correlation with daily water level. In the correlation
analysis with daily flow rate, the correlation coefficient of 1 HP was 0.3563, the next high-
est after the daily water level, and the correlation coefficient of 10-minute-max precipita-
tion (10 MP) was 0.3470, the third highest. However, in this study, 10-minute-max precip-
itations were not used as multivariate data to predict the level, but only 1-hour-max pre-
cipitations were used as input data to predict the daily water level.

Table 5. Correlation between hydrological and meteorological data.

Daily F1
. Daily Water ary riow Daily Vapor Pres- Daily Dew-Point 1-Hour-Max Precipita-
Variable Rate .
Level (EL.m) (m/s) sure (hPa) Temperature (°C) tion (mm)

Daily Water Level 1.0000 0.7731 0.3622 0.3444 0.3305

(EL.m)
Daily Flow Rate 0.7731 1.0000 0.3397 0.3112 0.3563

(m3/s)
Daily Vapor Pressure 0.3622 0.3397 1.0000 0.9465 0.3746

(hPa)
Daily Dew-Point 0.3444 03112 0.9465 1.0000 0.3140

Temperature (°C)
1-H0ur.—Max Precipi- 0.3305 0.3563 0.3746 0.3140 1.0000
tation (mm)
Precipitation Dura-
. 0.2271 0.2641 0.2934 0.2800 0.5210
tion (hour)

Daily Precipitation 0.2993 0.3203 0.3118 0.2741 0.8263

(mm)
Daily T?{frcll)oerature 0.3038 0.2656 0.8964 0.9509 0.2198
10-Minute-Max Pre- 0.3226 0.3470 0.3836 0.3160 0.9522

cipitation (mm)

3.3. Composition of Models
(1) Composition of LSTM and GRU models

In this study, Python version 3.7.7 [49], an open-source program language, and Ten-
sorFlow version 2.1.0 [50], a machine learning library, were used. As shown in Table 6,
the DNN models were LSTM and GRU. For each model, the shape of the neuron and the
number of units constituting each layer of the neuron are shown in Table 6 [4]. The con-
figuration of the models consists of 1 input layer, 2 hidden layers, 1 dropout, and 2 dense
layers, and the detailed configuration and hyperparameters of each model are presented
in Table 6 [4].
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Table 6. Configuration and hyperparameters of models.

Activation  Input Hidden Hidden Dense Dense
Model . Dropout
Function Layer Layer 1 Layer2 Layer1l Layer2
LSTM ReLU LSTM LSTM 0.25 LSTM 25units 1 unit
50 units 50 units
GRU ReLU GRU GRI.J 0.25 GRU 25units 1 unit
50 units 50 units

One-time learning of the entire training data input to the models was defined as
epoch, and the model calculation results were sufficiently converged after 600 epochs of
training [4]. In the two deep learning models, Sequence Length (SL) used 14 days to im-
prove the accuracy of prediction, and 74.9% of the total hydrological and meteorological
data were used as training data, and the remaining 25.1% were used as prediction data
[4]. While the models were performing training, convergence results were obtained by
using Adam optimizer, and the cost function was Mean Square Error (MSE).

(2) Composition of training data in LSTM and GRU models

Through correlation analysis with water level, we composed input variables neces-
sary for learning, focusing on data that have a large correlation with DWL among hydro-
logical and meteorological data, as shown in Table 7. DWL, DFR, DVP, DDPT, and 1HP
were selected as variables used for learning as input data. The input variables used in the
learning data ranged from one variable to five variables, and each model (i.e.,, LSTM and
GRU) was trained to predict the DWL and evaluate the accuracy.

Table 7. Composition of input and output data of LSTM and GRU models.

Number of
Input Variables
1 Daily Water Level (DWL)
Daily Water Level (DWL), Daily Flow Rate
(DFR)
Daily Water Level (DWL), Daily Flow Rate
3 (DFR),
Daily Vapor Pressure (DVP)
Daily Water Level (DWL), Daily Flow Rate
(DFR),

Daily Vapor Pressure (DVP),
1-Hour-Max Precipitation (1HP)
Daily Water Level (DWL), Daily Flow Rate
(DER),

Daily Vapor Pressure (DVP),

Daily Dew-Point Temperature (DDPT)
Daily Water Level (DWL), Daily Flow Rate
(DFR),

5 Daily Vapor Pressure (DVP),
Daily Dew-Point Temperature (DDPT),
1-Hour-Max Precipitation (1HP)

Training Data Prediction Data

2

Daily Water Level
(DWL)

4. Results
4.1. Results on Training and Prediction Using Water Levels as Univariate Input Data

The learning and prediction results for the two deep learning models (LSTM and
GRU) that use univariate time-series learning data are shown in Figure 6 and Table 8. The
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red circles in Figure 6(al,bl) represent the learning results of the models, and the green
circles in Figure 6(al,bl) and the red circles in Figure 6(a2,b2) represent the prediction
results of the models. The training and prediction accuracy evaluations of the two models
are shown in R? and are displayed in Figure 6(a3,a4,b3,b4).
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Figure 6. Observed and computed total time series water levels (al) and (b1) as univariate input
data, prediction (a2) and (b2) as univariate input data, R? for training (a3) and (b3), and R? for pre-

diction (a4) and (b4): (al-a4) Long Short-Term Memory (LSTM); and (b1-b4) Gated Recurrent Unit
(GRU).
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Table 8. Comparison of univariate model performance.
MAE MSE RMSE MRPE
1 ional 2 E
Model Computational State (EL.m) (EL.m) (EL.m) R NS (EL. m)
LSTM Training 0.0136 0.0003 0.0179 0.9950 0.9975 0.0126
Prediction 0.0824 0.0181 0.1344 0.7542 0.7345  0.0919
GRU Training 0.0158 0.0004 0.0207 0.9940 0.9966  0.0158
Prediction 0.0796 0.0171 0.1306 0.7591 0.7362  0.0719

Daily Water Level (EL. m)

20171130 2018-03-30 20180728 20181125 20190325 20190723 2019-11-20 20200319  2020-07-17

The training results of the LSTM and GRU models were very well learned, with an
R? of 0.9950 and 0.9940, respectively. As for the prediction results of the two models
(LSTM and GRU), R? was 0.7542 and 0.7591, respectively. The prediction results of the
GRU were evaluated slightly higher in accuracy than those of the LSTM. However, as
shown in Figures 6(a2,b2) and 6(a4,b4), the prediction results at high water levels were
calculated to be much larger than the observed values for both models. As shown in Table
8, the NSE of the LSTM prediction result is 0.7345, and that of the GRU prediction result
is 0.7362. The range of NSE's for the predictions presented in Table 1 was not “very good”
but “good”, and the accuracy was predicted to be lower than that of the model’s training
results. The MRPE presented in Equation (17) was used as an index representing the ac-
curacy of peak values. The learning accuracy at peak water levels was 0.0126 for MRPE in
LSTM and 0.0158 for that of GRU. In addition, the peak-water-level prediction accuracy
was 0.0719 for MRPE of GRU, which was higher than 0.0919 for that of LSTM.

4.2. Results on Training and Prediction Using Water Levels and Flow Rates as Bivariate Input
Data

As shown in Figure 7 and Table 9, these are the training and prediction results of the
two models that use DWL and DFR as bivariate training variables. In both models (LSTM
and GRU), the RZs of the training results (Figure 7(a3,b3)) were 0.9924 and 0.9926, which
corresponded to “very good” (Table 1). As a result of prediction of the LSTM and GRU
models (Figure 7(a4,b4)), R?s were 0.7546 and 0.8318, respectively, and it was confirmed
that the accuracy was significantly improved in the bivariate training results considering
DEFR, for which the data have a greater correlation with DWL than the univariate predic-
tion results. As shown in Figure 7(a2,b2), the predictions of the low water levels in both
models were relatively very consistent with the observed values. In addition, in high-wa-
ter-level predictions, as shown in Figures 7(a2,b2) and 7(a4,b4), the training results of bi-
variate GRU model including DFR, which correlated with DWL, significantly improved
the performance of the prediction. As shown in Table 9, the improvement effect of the
bivariate learning result was significantly improved in the prediction result of GRU (R? =
0.8318; NSE = 0.7965) compared to that of LSTM (R? = 0.7546; NSE = 0.6694). As shown
in Table 9, MRPE for peak-water-level training and prediction of the bivariate model
showed values similar to those of the univariate models in Table 8.

LSTM
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(al) Simulation by DWL and DFR.

(a2) Prediction by DWL and DFR.
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Figure 7. Observed and computed total time series water levels (al) and (b1) as bivariate input data,
prediction (a2) and (b2) as bivariate input data, R? for training (a3) and (b3), and R? for prediction

(a3) and (b3): (al-ad) LSTM; and (b1-b4) GRU.

Table 9. Comparison of bivariate model performance.

Model Computational State (Eﬁi) (IIEVII..SIE) (I:}:[?HE) R? NSE 3;[[[‘{ I;:E)
LSTM Training 0.0181 0.0006 0.0245 0.9924 0.9951 0.0177
Prediction 0.0787 0.0163 0.1278 0.7546 0.6694 0.0887
CRU Training 0.0200 0.0007 0.0268 0.9926 0.9945 0.0221
Prediction 0.0719 0.0117 0.1081 0.8318 0.7965 0.0895

4.3. Results on Training and Prediction Using Water Levels and Flow Rates as Multivariate

Input Data

Figure 8 and Table 10 showed the training and prediction results of LSTM and GRU
with two or more input variables that are highly correlated with DWL. As shown in Table
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10, the R?s of the two or more multivariate training results of the two models correspond
to “very good” in the range of 0.9857-0.9951. In both models (LSTM and GRU), except for
the case of training of five variables (Figure 8(d1-2),(d2-2)), in two or more multivariate
training models, the prediction results of the low water levels were relatively consistent

with the observed data (Figure 8(al-2)—(c2-2)).

As shown in Figure 8(al-1)-(a2-2), when trivariate training including DFR and DVP,
which are data that are directly correlated with DWL, was performed, the prediction ac-
curacy was high not only in the results of GRU (NSE = 0.7558) but also in those of LSTM
(NSE = 0.7447). In addition, similar to the bivariate training result, the trivariate training
result was well matched with the observed data in the high-water-level-prediction result.

As shown in Table 7, the results of the four-variant training were compared with the
prediction results including 1HP data that are not directly correlated with DWL in the
training data (Figures 8(b1-1)-(b2-2) and the prediction results including DDPT data that
are directly correlated with DWL (Figures 8(c1-1)—(c2-2)). First, the prediction results in
the case of including 1HP data were relatively well matched with the observed values at
the low water level, but were underestimated at the high-water-level prediction (Figures
8(b1-2)—(b2-2)). In both LSTM and GRU prediction results, NSE's were 0.6547 and 0.6688,
respectively, and the prediction performance was significantly reduced. Therefore, it was
determined that the 1HP data were difficult to use as appropriate input data for predicting
DWL. Second, when the DDPT data were included in the four-variable training data, the
prediction accuracy of DWL in both models was greatly improved to NSE = 0.7580. In
high-water-level prediction, selecting DDPT data with a large correlation with DWL could
improve the accuracy of high-water-level prediction more than selecting 1HP data with a

large correlation with DFR (Figures 8(c1-2),(c2-2)).

Finally, as shown in Table 10, when all five input data are used for learning, the ac-
curacy of predicting high water levels of LSTM was rapidly lowered to NSE = 0.6489.
However, that of GRU was significantly improved to NSE = 0.7524. However, as shown
in Figures 8(d1-2) and (d2-2), both models tended to be overestimated compared to the

observed values in the low-water-level prediction.
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Figure 8. Observed and training total time-series water levels as multivariate input data: (al-)-(d1-
) LSTM; and (a2-)—(d2-) GRU.

Table 10. Comparison of multivariate model performance.

. . MAE MSE RMSE 2 MRPE

Model Variables Computational State (ELm) (EL.m) (EL.m) R NSE (EL.m)
Training 0.0181 0.0006 0.0245 09924 0.9951 0.0177

LSTM DWL, DER Prediction 0.0787 0.0163 0.1278 0.7546 0.6694  0.0887
Training 0.0200 0.0007 0.0268 0.9926 0.9945 0.0221

GRU DWL, DFR Prediction 0.0719 0.0117 0.1081 0.8318 0.7965 0.0895

Training 0.0254 0.0012 0.0342 09917 0.9914 0.0239

LSTM DWL, DFR, DVP Prediction 0.0812 0.0153 0.1235 0.7846 0.7447  0.0966
Training 0.0261 0.0012 0.0351 0.9887 0.9898 0.0287

GRU DWL, DFR, DVP Prediction 0.0710 0.0129 0.1137 0.8033 0.7558 0.1019

ISTM DWL, DFR, DVP, 1HP Tral-mr}g 0.0233 0.0011 0.0332 0.9902 0.9919 0.0256
Prediction 0.0802 0.0157 0.1254 0.7625 0.6547 0.0953

Training 0.0294 0.0016 0.0396 0.9853 0.9883 0.0324

GRU  DWL, DFR, DVP, 1HP Prediction 0.0815 0.0166 0.1287 0.7480 0.6688  0.0999

LSTM DWL, DFR, DVP, Training 0.0267 0.0008 0.0283 09895 0.9936 0.0228
DDPT Prediction 0.0766  0.0154 0.1240 0.7686 0.7131 0.1104

GRU DWL, DFR, DVP, Training 0.0267 0.0013 0.0359 09875 0.9892 0.0232

DDPT Prediction 0.0766 0.0123 0.1110 0.8135 0.7580 0.0882

LSTM DWL, DFR, DVP, Training 0.0234 0.0009 0.0303 0.9897 0.9928 0.0217
DDPT, 1HP Prediction 0.0882 0.0169 0.1301 0.7437 0.6489 0.1271

GRU DWL, DFR, DVP, Training 0.0331 0.0019 0.0435 09846 0.9857 0.0305

DDPT, 1HP Prediction 0.0826 0.0129 0.1135 0.8120 0.7524  0.0807

As mentioned in previous research results [4], a more effective model in predicting
hydrological time series was GRU. In the results of this study, as shown in Table 10, the
prediction result of GRU was higher in prediction accuracy than that of LSTM. The pre-
diction results using two or more multivariate input data of GRU corresponded to “very
good”, with NSE ranging from 0.7524 to 0.7965. As shown in Table 10, MRPEs, indexes of
peak-water-level-prediction accuracy, were calculated to be more accurate in the range of
0.0807-0.0895 in most cases of GRU than in the case of LSTM.

5. Discussion

The composition of the DNN models input to the model used the calculation condi-
tions of the same model based on the previous results of studying the flow-rate-prediction
method with large temporal fluctuations [4]. Based on the results of previous studies, SL,
the training unit of data optimally applied to the prediction of hydrological time-series
data, used 14 days. In addition, the distribution ratio of learning and prediction data was
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74.9% to 25.1%, which was composed and used. Therefore, the water levels were predicted
by using 74.9% of the total size of the data as training data.

As seen in previous studies [6,8], despite the training of multivariate data in the cases
of multivariate models, it was determined that the rapidly changing water-level-predic-
tion accuracy decreased when predicting the hydrological data without correlation anal-
ysis of input data. In this study, DP, which was expected to show a very close correlation
with the water level, was analyzed to have a very low correlation coefficient of 0.2993. The
reason for this was that the distance between the Seoul Observatory and the Hangang
Bridge Station was considerably great, and it was determined that the hydrological and
meteorological characteristics were somewhat different. Therefore, in order to generate
multivariate training data, it is necessary to first check the homogeneity with the data by
analyzing the correlation with the water-level data, which are a prediction target variable.

Other previous data-driven models [5-10,20-28] significantly degraded predictive
performance for rapidly changing high-water-level fluctuations, whereas, in this study,
high-water-level predictive-performance evaluations of LSTM and GRU were conducted
based on previous study results [4]. The prediction results of the water level using uni-
variate training data in LSTM were more accurate than those using bivariate or trivariate
training. The LSTM prediction result did not significantly affect the accuracy improve-
ment of the training result using multivariate input. The prediction results using the tri-
variants and pentavariants of LSTM deteriorated NSE from 0.6489 to 0.6694. However,
in the GRU model, the accuracy was significantly improved in high-water-level predic-
tions as compared to those using univariate (NSE = 0.7362) in all multivariate predictions
(NSE = 0.7524 — 0.7965), except for one case that used tetravariants (i.e., DWL, DFR,
DVP, and 1HP) (NSE = 0.6688). In contrast to previous studies [4-30], MRPE, a quantita-
tive indicator for evaluating peak-water-level accuracy, was used to grasp the rapidly
changing water-level-prediction accuracy. In the case of the GRU, not only the univariate
model but also the multivariate models with large correlation had high accuracy of peak-
water-level prediction (MRPE = 0.0807 — 0.0895).

The prediction results of the LSTM and GRU were as follows by selecting training
data that were close to the correlation of water-level data. The prediction results of the
LSTM were very effective in predicting by using univariate input data, and the accuracy
was high, but high-water-level predictions tended to be overestimated compared to ob-
servations. The prediction results of the GRU were predicted with high accuracy in both
the univariate and multivariate inputs, but the overestimation of the high water level in
the prediction using only the univariate input data was the same as that of the LSTM.
Therefore, even with the GRU model, in order to increase the accuracy of the high-water-
level predictions, other hydrological and meteorological data that are highly correlated
with the water levels were supplemented with input data to improve the accuracy of time-
series water-level prediction over the entire range.

6. Conclusions

This study looked at the development of flood-prediction technology in response to
the rapid increase in direct runoff to urban rivers that results from both climate change
and urban development projects around rivers. In particular, in the case of rivers with
severe temporal fluctuations, accurate water-level prediction should be possible. There-
fore, using data-driven models (i.e., LSTM and GRU), it was possible to propose an effec-
tive and accurate data model for predicting water levels with severe temporal changes.

In this study, DWL, DER, DVP, DDPT, and 1HP were selected as hydrological and
meteorological input data to the model in the order of data that correlated with the water
level to be predicted. The input dataset of LSTM and GRU was generated by combining
the selected hydrological and meteorological data. The accuracy of water-level prediction
was evaluated by applying LSTM and GRU, which are suitable deep-learning techniques
for predicting time-series hydrological data for accurate high-water-level prediction. In
the case of LSTM, the accuracy of high-water-level prediction by univariate water-level
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input was higher than that of the multivariate model. On the other hand, GRU was able
to select a model suitable for predicting multivariate time-series water levels because the
high-water-level-prediction accuracy of multivariate models was evaluated higher than
prediction accuracy under univariate input conditions.

The results of this study showed that the accuracy of the predicted water level could
be improved in the GRU when multivariate hydrological and meteorological data were
secured in urban rivers with high-water-level fluctuations. Therefore, the multivariate
learning result, which has a greater correlation with the water level than the univariate
learning result using only the water level, could accurately predict the water level as “very
good” (NSE = 0.7524 — 0.7965; MRPE = 0.0807 — 0.0895).

In this study, the selected RNNs (i.e., LSTM and GRU) were data-driven models that
analyzed the numerical variability of data rather than the physical characteristics of data.
In addition, learning only univariate data greatly reduces the prediction accuracy of time-
series data with rapidly temporal fluctuations, so if there is a multivariate model that uses
variables with high correlation with predictive data as input data, it can be expanded to
rapidly changing hydrological-data-prediction studies.
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