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Abstract: The increasing frequency of devastating floods from heavy rainfall—associated with cli-

mate change—has made river stage prediction more important. For steep, forest-covered mountain-

ous watersheds, deep-learning models may improve prediction of river stages from rainfall. Here 

we use the framework of multilayer perceptron (MLP) neural networks to develop such a river stage 

model. The MLP is constructed for the Shimanto river, which lies in southwestern Japan under a 

mild, rain-heavy climate. Our input for stage estimation, as well as prediction, is a long-term rainfall 

time series. With a one-year time series of rainfall, the model estimates the stage with RMSE less 

than 67 cm for about 10 m of stage peaks, as well as accurately simulating stage-time fluctuations. 

Furthermore, the forecast model can predict the stage without rainfall forecasts up to three hours 

ahead. To estimate the base flow stages as well as flood peaks with high precision, we found that 

the rainfall time series should be at least one year. This indicates that the use of a long rainfall time 

series enables one to model the contributions of ground water and evaporation. Given that the delay 

between the arrival time of rainfall at a rain-gauge to the outlet change is well-simulated, the phys-

ical concepts of runoff appear to be soundly embedded in the MLP. 

Keywords: flood runoff; deep neural network; river stage; precipitation; visualization;  

data-driven modeling 

 

1. Introduction 

Global warming is expected to increase the water-vapor content in the atmosphere, 

thus fueling more intense tropical cyclones and producing heavier precipitation [1]. In 

Japan, the water vapor at about 1500 m asl is increasing, as is the number of days with 

precipitation exceeding 200 mm [2]. One study argued that the precipitation from Tropical 

Cyclone Hagibis, which fell over the Kanto area in October 2019, was higher by 10.9% due 

to the increase of ocean temperature [3]. Furthermore, record-breaking heavy rainfall 

events occur in Japan more frequently than before due to stagnant squall lines and other 

precipitation systems. For instance, quasi-stationary squall lines stayed over northern 

Kyushu from 5 to 6 July in 2017, setting new 6- and 12-h precipitation records [4]. Also, 

water vapor associated with a tropical cyclone circulation flowed into a stationary front 

from 28 June to 8 July 2018, releasing devastatingly heavy rainfall over western Japan and 

breaking 48- and 72-h precipitation records [5]. 

About 67% of the area on the Japanese main islands are covered by forests [6], with 

most watersheds being composed of steep slopes from mountains to alluvial plains. In 

such a watershed, the concentration time, defined as the time when the rainfall farthest 
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from the drainage basin reaches the river outlet, is estimated to be 400 min for the basin 

area of 1000 km2 (240 min for 100 km2) under an effective rain intensity of 30 mm h−1 [7]. 

For the smallest mountain basins (area of 1–10 km2), heavy rainfalls have concentration 

times less than 100 min [8], which are too short to produce flood forecasts and thus basin 

residents must decide on their own whether or not to evacuate. 

Although the flooding risk has increased under climate change, the willingness of 

residents to evacuate has not increased. For example, heavy rains in 2018 threatened 

flooding of the Monobe river in Kochi, Japan, triggering evacuation advice and orders. 

Yet most of the residents did not evacuate, presumably because flooding had not occurred 

there for over 100 years [9]. One way that might have helped to convince the residents to 

evacuate would have been to provide them with an accurate estimate of when a given 

heavy rainfall would produce a flood downstream. That is, we need a way to obtain ac-

curate concentration times and river stage (or water level) forecasts over mountainous 

regions, and improve early-warning systems to ensure time for evacuation [10]. 

Recent availability of free, full sets of machine-learning libraries and powerful GPUs 

has motivated the use of deep neural networks (DNN) in various fields including hydrol-

ogy [11]. Particularly for watersheds in continents with small gradients, LSTM (long short-

term memory networks) have been successfully applied to predict river stages in hourly 

time scales with uncertainty estimates [12]. Simpler multilayer perceptron (MLP) models 

have produced accurate river-flow forecasts [13–15]. However, the previous studies con-

sidered daily to monthly forecasts, which are not applicable to the steep watersheds in 

Japan that have flood events over hourly time scales. MLP models using DNN for flood 

stage forecasts in Japanese rivers have reduced prediction errors [16]. Their approach has 

the limitation of requiring upstream stage observations as well as precipitation observa-

tions as the input data. Thus, they cannot be applied to the mountainous watersheds or 

rivers with small drainage areas, where stage-gauge observation is not available in the 

upstream of the forecasting location. 

When considering the development of DNN models for steep rivers in a moist and 

humid climate, the required input variables likely differ from those needed for rivers that 

are affected by early-spring melting of the snow that has accumulated over the winter and 

that drains over a large catchment with small gradients. In general, the water stored in 

rivers and underground balances precipitation, evaporation, and runoff such that in any 

long-term analyses the storage term can be neglected. In the Japanese forest watersheds, 

where annual precipitation is more than 1500 mm, the annual evaporation is almost con-

stant [17]. Kochi prefecture, where the target watershed of this study is included, receives 

annual precipitation of about 2500 mm, and thus it is speculated that the annual evapora-

tion is constant, and annual runoff and precipitation are in a linear relationship. In for-

ested catchments, the accumulated interception loss of rainfall is linearly related to accu-

mulated rainfall amount under moderate rainfall events [18]. These suggest that long-

term precipitation and runoff time series can be digested into a DNN to construct a rela-

tionship that includes evaporation. Nakane and Wakatsuki [19] proposed a modeling ap-

proach in which a river stage is estimated solely by inputting upstream long-term precip-

itation time series into DNN; this directly models the characteristics of runoffs and infil-

tration processes in the watersheds from the time series. Their study shows that a DNN 

can learn the river stage (or discharge) at a certain time. Furthermore, the same method 

was applied to three rivers with different influences of dams [20], and it was showed that 

using a longer precipitation time series improved not only the estimated flood peak, but 

also the stage estimate during the dry season. 

The purpose of this study is to discuss the estimation and forecast of river stages 

during flood events in the framework of the DNN model proposed by Nakane et al. [20] 

in detail. When the estimation and forecast errors are not negligible, it is of practical im-

portance to be able to explain the reasons behind them, and the reliability of the modeling 

can be enhanced by showing that fundamental physical relationships are appropriately 

represented in the model. We, therefore, discuss whether any physical concepts of runoffs 
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are represented with the DNN model, and hereby we aim to establish the DNN modeling 

framework with a long-term precipitation time series that enables us to automatically in-

clude runoff processes. 

2. Study Watershed and Dataset 

2.1. The Shimanto Watershed 

The drainage basin of this study is the Shimanto river, which is the longest river in 

Shikoku, the smallest of the four main Japanese islands. The official name of the river is 

the Watari river, but the name Shimanto is well-known to the public as “Japan’s last re-

maining limpid stream” [21]. The Shimanto watershed lies in the island’s southwest (Fig-

ure 1). Here, 95% of the land is forest, 4% is farmland, and 1% is residential or urban. The 

drainage area is 2186 km2. The annual precipitation reaches about 2900 mm in the head-

waters, where it is designated as a heavy rain area [22]. The source of the Shimanto has an 

elevation of 1336 m and the length of the main stream is 196 km, giving an average stream 

gradient of 0.68%. The average gradient of the upper basin ranges from 1/100 to 1/650, that 

of the middle basin from 1/380 to 1/1300, and that of the lower basin from 1/1200 to 1/2200. 

It flows into the Pacific after 319 tributaries merge. Although one of the tributaries, the 

Yusuhara, has two reservoirs for power generation purpose, the main stream has an 8-m 

weir only. The weir cannot be operated for managing the river stage, making estimation 

of the stage during a flood event crucial for residents. 

 

Figure 1. The Shimanto river watershed and location of rain gauges and stage observatories. Rain 

gauges are labeled R_01 to R_13. The stage observations are from L_3 (Tsunokawa). 

2.2. Dataset 

The target estimation/forecast was for the Tsunokawa stage observatory, which is 40 

km upstream of the estuary (L_3 in Figure 1). The stage observations were from a hydrol-

ogy and water-quality database [23] and arranged to an hourly dataset. The input precip-

itation observation data came from 13 rain gauges upstream of Tsunokawa (Figure 1) that 

we obtained from the hydrology and water-quality database and from the Japan Meteor-

ological Agency (JMA, [24]). This data covers 2002 to the present with resolution of either 

10 min or 1 h, but due to possible land use changes earlier in that period, we used just the 

hourly data for the 11 years of 2008–2018. Figure 2a shows the changes in the stage at 
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Tsunokawa from 2008 to 2018. The stage is low during winter, then rises from summer to 

fall when the heavy rainfall events tend to occur, usually exceeding the level at which the 

flood prevention team is put on standby (yellow dashed line). During this period, the red-

dashed flood-danger level was exceeded twice. The average precipitation from the 13 rain 

gauges (Figure 2b) shows that an hourly rainfall of 30 mm was often exceeded after 2013 

and that short-term precipitation intensified. 

 

Figure 2. Observational data of (a) river stages at Tsunokawa Observatory, and (b) mean precipita-

tion of the 13 rain gauges. The yellow dashed line indicates the stage at which the flood prevention 

team are put on standby (6.50 m). The orange dashed line is the stage for flood warning (8.50 m), 

the red is the level for evacuation judgement (11.90 m), and the purple is the flood danger level 

(12.70 m). 

3. Method 

3.1. Modeling Concept 

Water in the atmosphere precipitates in a watershed, infiltrates into the ground, 

moistens the soil, and then forms an interflow [25–27]. Some of the infiltrated water fur-

ther percolates into the groundwater. Once the soil is saturated, the rain flows over the 

surface (overland flow) and directly flows into a channel. The interflow may emerge to 

the surface in a valley or saturated area, and then flow into the channel. When a pulse of 

rain falls to a region with a short timescale for its overland runoff, then the river stage may 

form a pulse-like increase [27]. However, depending on the depth of infiltration and geo-

logical characteristics, the interflow and the groundwater flow can possess various time-

scales that affect the river stage [25,28]. In addition, the time series of spatially distributed 

rainfall will influence the river stage [29]; that is, the stage is affected by soil moisture and 

groundwater from previous rainfall. Moreover, the river stage can respond nonlinearly to 

the upstream rainfall as suggested by the data in Figure 2. Therefore, the stage at a certain 

time t at an observatory is a complicated function of the spatial and temporal distribution 
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of rainfall. Such a phenomenon can be inductively modeled with machine learning, in 

which the precipitation time series going back from time t are set as the input data, and 

the downstream stage as the output data (labeled data). This downstream stage is not at 

the estuary to avoid influences from the tide. 

3.2. Precipitation Time Series Data as Input Data 

As input, we used the individual hourly time series of the 13 rain gauges upstream, 

not the time series averaged over these gauges, so that the model could capture the spatial 

relationships of rain gauges to the Tsunokawa stage, which also provided hourly stage 

data. Moreover, the specific slopes and geology of each branch where a rain gauge is lo-

cated can presumably affect the stage. 

Our preliminary investigation of the DNN modeling showed that the use of hourly 

rainfall time series directly as input produced a noisy time series of stage estimates. Also, 

after a pulse-like rainfall, the river stage would rise to a peak and then fall off with a long 

relaxation timescale. The hourly rainfall amount in the previous hours and days can be 

represented as averages over a certain time window, assuming that such past precipita-

tion can impact the current stage through changes in the base flow. Based on these con-

siderations, we changed to a running average method in which the number of samples to 

be averaged increased with the time going back from the current time. The duration of the 

moving, averaging y was determined for a period x hours previous to the time of evalua-

tion to satisfy two conditions: (1) Precipitation reported within the past six hours has a 

one-hour resolution. (2) Precipitation one year back (365 days times 24 h) from the current 

time has a one-month resolution (30 days times 24 h). 

𝑦 = floor(6
−log 719
log 1460 ∙ 𝑥

log 719
log 1460 + 1) (1) 

As shown in Figure 3a, the duration of averaging (or time resolution) of rainfall that 

occurred 1 week back was 21 h, and that of 3 months back was 204 h. We assigned “ele-

ment” numbers to these averages (Figure 3b). This averaging essentially compresses the 

data; for example, a 1-year time series has 8760 samples, but the manipulation reduced 

the sample size to 69 (Figure 3b). Thus, the method reduced the computational burden for 

the DNN modeling. 
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Figure 3. Time resolution (a) and number of sample elements (b) of input precipitation data. The 

abscissa is the time to which the precipitation time series goes back from the current time. “we”, 

“mo”, and “yr” denote weeks, months, and years, respectively.  

3.3. MLP Model 

We developed a DNN model with two or more hidden layers for the regression task, 

using a simple multilayer perceptron (MLP). A fully-connected MLP structure consists of 

input, hidden, and output layers as sketched in Figure 4. It is a feedforward network in 

which each node weights the inputs from the previous layer and the information moves 

from the input to the output layer. Each connecting line has a weight, and the linear sum 

of node values and the weights are incremented with the biases of the layer. An activation 

function acts on the resulting sum to propagate the information to the next layer. The 

weights and biases were updated to minimize the cost function [30], a step that involves 

evaluating the gradients (partial derivatives). This procedure was repeated N times, 

where N is the number of batches multiplied by the learning epochs. 
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Figure 4. A fully connected multilayer perceptron (MLP) with three hidden layers. Here, the output 

layer is just the river stage at a target station. The input layer nodes are the precipitation long-term 

time series data in the watershed. 

The number of nodes in the input layer of the MLP model is varied from 27 to 69 for 

each rain gauge, depending on the length of time gone back. The output layer has only 

one node. We applied the activation function PReLU [31] to each hidden layer before the 

output layer. As the river stage is regressed on the nodes of the last hidden layer, the mean 

squared error (MSE) was applied as the cost function without activation function on the 

output layer [32]. To avoid overfitting, a penalty term of L1 norm was added to the cost 

function. 

We divided the above data from 2008 January to 2018 December into training, vali-

dation, and test datasets. Most of the period was used for training. The validation set was 

then used to examine the model structures or hyperparameters (e.g., number of hidden 

layers), and the test set was used to evaluate the model performance. The exact data break-

down is 2008–2014: training; 2016: validation; and 2017–2018: test. As a result, the num-

bers of samples for training, validation, and test sets were 61,368, 8784, and 17,520, respec-

tively. 

To optimize the structure of the MLP model, the number of hidden layers, the num-

ber of nodes, and the parameter for L1 regularization were set as hyperparameters, the 

combination of which were examined with the grid search method [33]. The search range 

is listed in Table 1. Concerning the number of nodes, the structures with layers that had 

more nodes than the previous layer were excluded from the search (such a search opera-

tion would increase the number of input dimensions, which seems inappropriate given 

that the input information has to be compressed from the first layer to the last layer). The 

selection of hyperparameters was run for each length of the input time series to determine 

the best combination. In total, 480 combinations of hyperparameters were examined for 

each length of input time series. We set the batch size during the optimization to 100 and 

applied the Nesterov-accelerated Adam (Nadam) optimization method [34]. We found 

that for each combination of hyperparameters the errors started to converge after 25 

epochs of learning, so to save on computational cost we set the number of epochs to 25. 

Then, the root mean squared errors (RMSEs) were calculated over the validation set by 

using MLP models having parameters that were obtained from 16 to 25 epochs. Among 

the above combinations of hyperparameters, we decided that the model with minimum 

average RMSE had the best structure for the length of input time series. 
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Table 1. Set of hyperparameters for the grid search method. 

Hidden Layers Nodes L1-Regularization 

2 64 0 

3 128 10−8 

4 256 10−7 

 512 10−6 

 1024  

3.4. Model Evaluation Criteria 

To examine the model performance, we used the root mean squared error (RMSE), 

skill score (SS), and absolute errors (AE) calculated between observed stages and model 

estimates. RMSE is the measure of accuracy between the observation 𝑥𝑖 and estimate 𝑓𝑖 

[35]: 

RMSE = √
1

𝑁
∑ (𝑓𝑖 − 𝑥𝑖)

2𝑁
𝑖=1  , (2) 

where 𝑁 is the total number of samples. RMSE can be normalized by the variance of the 

observation to give an SS [36]: 

SS = 1 −
RMSE2

𝜎𝑥
2  , (3) 

where 𝜎𝑥
2 is the variance of the observation. SS is equivalent to the Nash–Sutcliffe effi-

ciency (NSE) [37], and is a measure of the skill relative to the reference forecast being the 

mean of the observation, and SS = 1 means a perfect forecast. The forecast with RMSE less 

than the half of 𝜎𝑥 can be considered acceptable [38,39], which corresponds to 0.75 of SS. 

The SS can be further decomposed into three terms: 

SS = 𝜌𝑓𝑥
2 − [𝜌𝑓𝑥 − (

𝜎𝑓

𝜎𝑥
)]

2

− [(𝜇𝑓 − 𝜇𝑥)/𝜎𝑥]
2
.  (4) 

The first term, 𝜌𝑓𝑥
2 , is the correlation coefficient squared and indicates the fraction of the 

total variance explained by a linear regression, and can be considered as a relative meas-

ure of potential performance among cases with various magnitude of peak stages. The 

second term is a measure of conditional bias or reliability (Rel), which disappears for a 

linear regression of a 45-degree line. The third is a measure of unconditional bias scaled 

by the standard deviation 𝜎𝑥 (Bias).  The mean absolute error, MAE, was calculated as: 

MAE =
1

𝑁
∑ |𝑓𝑖 − 𝑥𝑖|

𝑁
𝑖=1 .  (5) 

Furthermore, the absolute error was evaluated for the time of peak level for each case. 

4. Results and Discussion 

4.1. Stage Estimation 

First, we examined the highest four stages in the test set. These high-stage events are 

as follows: case 1 on 7 August 2017, case 2 on 17 September 2017, case 3 on 7 July 2018, 

and case 4 on 30 September 2018. The MLP model we discuss in this section was con-

structed using a precipitation time series that goes back one year from the time of estima-

tion, starting with hourly resolution. This model possesses small errors for the training set 

and performed qualitatively better during low-stage periods, compared with the other 

models with different input time lengths. 

Evaluation measures were calculated within 24 h of the peak stage (Table 2). The time 

series of estimated and observed levels are compared in Figure 5 along with hourly pre-

cipitation. Overall, the estimated stages match well with the observed stages, which is 
indicated by the high potential skill 𝜌𝑓𝑥

2  exceeding 0.97 except for case 3. Both of the Rel 

and Bias values are less than 0.01, and the resulting SS values of all the cases are much 
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higher than the acceptable criterion (>0.75). The RMSE are about 30–67 cm in the time 

window, relatively small compared to the peaks of about 7–11 m and 𝜎𝑥 (see the caption 

of Table 2). The AEs at peak are larger than 50 cm but within 1 m. Considering the indi-

vidual cases, case 1 had relatively low precipitation and river stage, which likely contrib-

uted to the small MAE. Cases 2 and 4, which had heavier rain about 12 h before their 

peaks, both show a delay of the rising limb, with the estimated peak time behind by about 

one hour, and both cases underestimated the peak levels (Figure 5). Later, as the river 

stages ease, they are slightly overestimated. Case 3 has three rainfall peaks exceeding 10 

mm h−1, with each stage peak well-captured by the model. However, the stages between 

the stage peaks are slightly overestimated, which resulted in the lowest potential skill, and 

therefore the lowest SS. 

 

Figure 5. Stage estimation for the four flood events in the test dataset within 48 h of the peak stage; 

case 1 is on 7 August 2017 (a), case 2 on 17 September 2017 (b), case 3 on 7 July 2018 (c), and case 4 

on 30 September 2018 (d). The observed stage data are marked as open circles, the model estimate 

with red circles. Precipitation time series averaged over all gauges are in blue bars at top. Peak hours 

for cases 1–4 were 11 JST (=UTC + 9), 22 JST, 11 JST, 21 JST. 
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Table 2. Evaluation measures of the four flood events in the test dataset. All the measures except 

for AE at peak were calculated within 24 h of the peak level. The standard deviations of observed 

stages during the 48 h are 181, 339, 200, and 323 cm for cases 1, 2, 3, and 4, respectively. 

Case SS 𝝆𝒇𝒙
𝟐  Rel Bias 

AE at 

Peak (cm) 

MAE 

(cm) 

RMSE 

(cm) 

 Estimation 

1 0.972 0.978 0.002 0.004 50 24 30 

2 0.988 0.990 0.000 0.001 55 29 37 

3 0.889 0.892 0.003 0.001 69 60 67 

4 0.968 0.981 0.006 0.008 89 36 57 

 1-h lead time prediction 

1 0.974 0.979 0.005 0.000 32 21 29 

2 0.961 0.970 0.003 0.005 115 33 67 

3 0.909 0.912 0.002 0.001 114 49 60 

4 0.940 0.972 0.019 0.013 140 49 79 

 3-h lead time prediction 

1 0.972 0.983 0.005 0.006 32 24 30 

2 0.983 0.986 0.002 0.001 40 33 45 

3 0.870 0.879 0.003 0.006 48 57 72 

4 0.963 0.983 0.013 0.007 68 42 62 

 5-h lead time prediction 

1 0.971 0.982 0.000 0.010 11 21 31 

2 0.962 0.966 0.005 0.000 55 39 66 

3 0.697 0.714 0.003 0.014 321 80 110 

4 0.944 0.967 0.009 0.014 67 48 77 

In cases where a precipitation time series similar to the test dataset is not available in 

the training and validation sets, the estimation errors can be large. Even though case 2 

shows a similar change of stage over time to case 4, the latter had a larger underestimate 

and a much larger AE at peak (=89 cm) (Table 2). This is not desirable given that the evac-

uation judgment stage is 11.9 m (Figure 2). According to the time series in Figure 6, case 2 

had little rainfall within one month of the stage peak, whereas case 4 had several notable 

rainfall events within the month preceding the flood. The difference in the precipitation 

pattern during that preceding period probably led to a difference in soil moisture in the 

watershed, and hence to the retarded accuracy of case 4. With regard to the soil moisture 

and precipitation occurrences, a condition such as case 2 was probably better learned from 

the training and validation sets, but a condition such as case 4, in which soil moisture 

increased with time, was probably not learned as well. Physically, the model simulated a 

situation where the rainfall over-infiltrated into the soil, leading to an underestimate of 

the overland flow and thus underestimation of the peak. 
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Figure 6. Time series of average precipitation (gray bars) and stage (solid line) in the test dataset. (a) 

For the cases in 2017. (b) For the cases in 2018. 

When there are not enough samples of heavy rainfall events in the training and vali-

dation sets that are spatially similar to those in the test set, the estimation errors can be 

potentially large. To compare the characteristics of precipitation in the training and test 

sets, we investigated the fraction of total precipitation at each rain gauge for each flood 

event. For the statistics, we used the top 12 flood events from 2008–2014 in the training 

set, and the four events for the above test set. As defined below, the precipitation accu-

mulation pin for flood event 𝑛 and for rain gauge i was calculated by the 24-h window 

centered on the stage peak: 

𝑝𝑖
𝑛 = ∑ 𝑟𝑖,𝑡

𝑛

𝑡𝑝
𝑛 + 12

𝑡=𝑡𝑝
𝑛−12

 (6) 

where 𝑡𝑝
𝑛 is the peak time of the stage. Summing over all 13 gauges, the total accumula-

tion 𝑝𝑛 is: 

𝑝𝑛 = ∑ 𝑝𝑖
𝑛13

𝑖=1   (7) 

Thus, the fraction for the gauge 𝑖 is: 

𝑃𝑖
𝑛 =

𝑝𝑖
𝑛

𝑝𝑛 . (8) 

Figure 7 shows the fraction of the 24-h accumulation centered on the time of stage 

peak 𝑃𝑖
𝑛. A larger fraction may indicate a larger contribution to the flood (the area cover-

age of each gauge is not considered for simplicity). The rain gauges are arranged from the 

most upstream at left (R_01) to the most downstream at right (R_13). The generally de-

creasing trend shows that the precipitation at the upstream gauges at higher altitudes 

contributed more than those further downstream. Cases 1, 2, and 4 show a pattern similar 

to the training set, and they are within the 25 to 75 percentiles except for R_01. However, 

case 3 indicates a quite different pattern compared with the training set, with the fraction 

at the upstream gauges relatively small and those downstream relatively large. Further-

more, several gauges have values outside the 25th and 75th percentiles. This difference in 

the spatial distribution of accumulation is most likely the reason why the  
𝜌𝑓𝑥

2  and RMSE of case 3 are the worst. 
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Figure 7. Ratios of 24-h accumulated precipitation at each rain gauge to the total of all 13 gauges 

during the four flood cases in the test dataset. Ratios for 16 flood events in the training set are indi-

cated with the whisker plots where the minimum, 25th, 50th, 75th percentiles and the maximum are 

shown. 

4.2. Stage Forecast 

Here we examine an MLP model that learns the relationships between the one-year 

precipitation time series up to the present and the river stage at t h later. In other words, 

this is the model that forecasts the stage at t h from the current time. Note that the MLP 

models were constructed for each lead time t (t = 1, 2, …, 6 h). The same precipitation time 

series and hyperparameters were used to construct the MLP models as used for that in 

the previous section. 

The time series of the forecast stage with lead times t of 1, 2, …, 6 h are shown for 

case 2 in Figure 8. The evaluation measures are listed for lead times of 1, 3, and 5 h in Table 

2. Forecasts with 1 and 2 h lead times show high 𝜌𝑓𝑥
2  (>0.97). However, due to delays of 

the level peaks, AE at peak reaches about 110 and 92 cm, respectively. The 3-h forecast 

predicts a larger peak than the observation, as do those for the 4–6-h forecasts. As a result, 

the AEs at peak were improved compared to 1 and 2 h lead times. A closer look at the 4-

h forecast indicates that the stage is about half of that observed at −6 h, and the predicted 

flood peak is late. The same issues also occur for the 5- and 6-h forecasts. The errors are 

probably caused by a lack of precipitation information during t h. The accurate prediction 

from the 3-h forecast suggests that the precipitation producing the stage peak arrived via 

surface runoff at Tsunokawa after about three hours. 
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Figure 8. Case 2 observations and model runs. River stage is indicated by the left axis, precipitation 

by the right axis. 

Figure 9 shows the dependence of the RMSE on the lead time for all four cases. For 

cases 2–4 with the large magnitude of stage peak the RMSEs are similar among the fore-

casts when the lead time is three hours or less. However, case 3 shows a rapid increase of 

the RMSE after a 2-h lead time. This case has a larger fraction of precipitation downstream 

(Figure 7). This suggests that when stage forecasts are made without the use of precipita-

tion forecasts, especially cases with large fraction of precipitation occurring in the down-

stream, the errors can dramatically increase with the lead time. 

 

Figure 9. RMSEs for the four flood cases at 0- to 6-h lead times. RMSEs were calculated over ±24 h 

centered at the time of peak. 

Considering the MLP framework above, a MLP model for a t-hour stage forecast may 

be developed with a combined time series of observed and forecast precipitation to learn 

the stage observed at t hours. In this section, we discussed the case where the forecast 

precipitation data is not available up to the time when the stage forecast is made. Given 

that JMA produces precipitation forecasts up to 15 h ahead, then by using their time series, 

a stage forecasting may be produced with a 15-h lead time by using the current MLP 

framework for estimation. In such a case, any decrease in the accuracy of the precipitation 

forecast would likely decrease the accuracy of the river-stage forecast. 
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4.3. Effects of Precipitation Time Series Length on Stage Estimation 

In above sections we discussed the stage estimation and forecast based on MLP mod-

els that use a one-year precipitation time series as the input dataset. Here, we examine 

how changing the precipitation time series length affects the stage estimation. This length 

was set to one day, one week, two weeks, one month, three months, six months, and one 

year. For a given length, an MLP model was developed and its hyperparameters were 

optimized. 

Figure 10 shows the RMSEs between the estimated stage and observation for the 

seven MLP models for both the validation and the test datasets. For both datasets, the 

RMSEs dramatically decrease from one day to one week, reaching about 0.2 m after one 

month. Note that Nakane et al. [20] found that the RMSE continued to decrease monoton-

ically to 0.156 m after 720 days they used a method involving similar MLP models, but 

shorter time-averaging.) Therefore, we cannot assert that the information of precipitation 

that was observed more than one-month ago is not necessary. 

 

Figure 10. RMSEs for various lengths of the precipitation time series. A given length corresponds to 

an MLP model constructed with that length. Open circles are for the validation dataset, open trian-

gles for the test dataset. 

The improvement in modeling fit for longer precipitation time series can also be seen 

in the scatterplots (Figure 11). For the one-year precipitation time series, the points are 

distributed close to the 1:1 line (red, in Figure 11c). The one-week case is similar, but with 

more spread, corresponding to the larger RMSE than the one-year case (Figure 11b). The 

case with a one-day time series shows a large number of points are located below the red 

line over the range of observation of 3 m, indicating that the model tends to underestimate 

the stage. The reason behind the large one-day RMSE compared to one week is examined 

next. 

 

Figure 11. Scatter plots between stage observation and estimate for the test dataset for models using 

three lengths of the precipitation time series. (a) With a one-day time series. (b) With a one-week 
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time series. (c) With a one-year time series. Red solid lines give the 1:1 relation. RMSEs are shown 

in the box. 

Consider the relation of stage estimate to precipitation pattern for the one-day, one-

week, and one-year MLP models for flood cases 2 and 3 in Figure 12. The importance of 

the length of input time series is evident in the one-day series for case 2 (Figure 12a) when 

the stage estimate suddenly dropped just after 12 h and then stayed near 0 m. At 24 h, the 

average precipitation during the past 24 h was 0, which explains the estimate being about 

0 m. Case 3 (Figure 12, right column) had intermittent heavy rainfall observed in the up-

stream. The one-day MLP model poorly estimated the second stage peak and essentially 

missed the third peak (Figure 12b). This model’s estimate is remarkably noisy presumably 

due to the absence of precipitation information before 24-h back. When the length of input 

time series increased to one week, the three peaks in case 3 were reproduced nicely (Figure 

12d), but the match between the estimates and observations was even better with the one-

year input time series (Figure 12f). From these results, we concluded that during flooding 

events the role of soil moisture and ground water is extremely important one day to one 

week before a rainfall event, and the runoff process with larger timescales associated with 

precipitation that occurred one week to one year in the past also cannot be ignored. 

 

Figure 12. Stage estimates for three lengths of input precipitation time series, examined within 48 h 

of two flood events. (a, c, e) is for case 2 and (b, d, f) for case 3. (a, b) is for the one-day time series, 

(c, d) for the one-week time series, and (e, f) for the one-year time series. 

4.4. Stage Estimation Sensitivity to the Rain Gauges 

How does a given rain gauge and rainfall event affect the flood stage? The typical 

way to measure an output’s sensitivity to an input is by perturbing the input and noting 

the change in output. However, in this case there are hundreds of input variables for the 

single output variable (the stage). Thus, we used layer-wise relevance propagation (LRP) 
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[40], a visualization technique, to determine the relationship between stage and precipita-

tion time series. The relationship enables us to examine the time of precipitation arrival to 

the stage, as well as the sensitivity of the stage, to a given precipitation event from a given 

rain gauge. 

LRP measures the overall contribution of each input variable by propagating the con-

tribution through the learned neural network for a specific instance of output. Rises in the 

river stage are, in general, formed not by the independent precipitation event at a certain 

moment in the past, but by a distribution of precipitation over a period of time. Therefore, 

for the MLP models here, it is more appropriate to measure the overall relevance of the 

past precipitation time series than to calculate the stage’s sensitivity to the precipitation 

at a certain moment. Also, LRP can be run for estimates and forecasts for real flood events, 

providing an explanation of the model behavior for a given flood event. Therefore, it is an 

appropriate method to characterize the MLP models. 

LRP quantifies the contribution of a given precipitation input to the model output, 

calling it the “relevance” of that input. A higher numerical value for the relevance indi-

cates a higher contribution. Details on its calculation are in the Appendix; here, we focus 

on the results. 

The relevance of the precipitation inputs for the stage estimate at a certain time was 

calculated for case 2 over 24 h of the flood event. In Figure 13, the relevance of precipita-

tion inputs for the stage at a certain time, shown as the black contours, can be examined 

by specifying the time on the abscissa and examining the contours from top down, which 

corresponds to the retrospective time. The top panel has results for the gauge furthest 

upstream, the bottom panel being for the gauge closest to Tsunokawa, L3 (see Figure 1). 

For the precipitation inputs, we analyze just the first 14 (of the total 69). 

In general, precipitation at a certain time shifts toward a larger element number as 

the estimation time progresses, and the time resolution gets worse, combining more pre-

cipitation events as the time goes back from the estimation time. For instance, in Figure 

13a, the precipitation (color fill) of E_01 at −9 h is the same as that of E_02 at −8 h, and at 

−3 h the precipitation is contained in the E_07 element through the two-hour average. The 

sequence of precipitation that started at −10 h lasted up to −4 h, and the number of ele-

ments in the sequence gradually decreases along the vertical axis toward +12 h so as to 

remain as the input information. 
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Figure 13. Relevance map of the stage estimation MLP model for case 2 and three rain gauges along 

the main stream (Figure 1). The abscissa is the time from the stage peak. The left ordinate is the 

precipitation element (Table 3), with its relevance marked as black contours. The right ordinate is 

the stage, with the white dashed curves showing observed (white-filled circles) and estimated (red-

filled circles) stages. Color fill is input precipitation. (a) Gauge R_01. (b) Gauge R_08. (c) Gauge 

R_13. The red arrows indicate the estimation of the arrival time of precipitation. 
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Table 3. Time elements prior to current time t and their time resolutions. 

Element Time (h) Resolution (h) 

E_01 t 1 

E_02 t-1 1 

E_03 t-2 1 

E_04 t-3 1 

E_05 t-4 1 

E_06 t-5 1 

E_07 t-6~ t-7 2 

E_08 t-8~ t-9 2 

E_09 t-10~ t-11 2 

E_10 t-12~ t-13 2 

E_11 t-14~ t-16 3 

E_12 t-17~ t-19 3 

E_13 t-20~ t-22 3 

E_14 t-23~ t-26 4 

Consider first the relevance for R_01 (Figure 13a). The sequence of precipitation 

events that started at −10 h show a rise in relevance (black contours) at −4 h and at E_07. 

At −4 h the most contributed precipitation to the stage estimate (about 5 m) is the one 

observed at −10 h, the time when the stage started to rise. For 0–4 h the relevance shows a 

peak at E_08, indicating that the precipitation that fell 8 or 9 h prior contributed to the 

stage up to four h after the peak. Then, from 4 to 6 h the maximum relevance values occur 

at E_08 and E_09, as marked with the red arrows. Based on this pattern, the time for pre-

cipitation that fell at R_01 to reach the Tsunokawa stage observatory is about 8–11 h. Fur-

thermore, there are large values of relevance associated with the sequence of precipitation 

events up to 7 h, and precipitation peaks follow the relevance peaks closely. Moreover, as 

the relevance value is particularly large after the stage peak, this rain gauge has the geo-

graphical characteristic of being a significant contributor when the stage decreased rather 

than when it increased. 

Now consider the relevance for gauge R_08 (Figure 13b). The relevance starts to in-

crease at −4 h and at E_06, reaching a maximum value at 1 h and E_08. This pattern indi-

cates an arrival time of precipitation of about 8–9 h. In contrast with R_01 further up-

stream, this gauge makes its maximum contribution at the time of the stage peak. Thus, 

for the same arrival time of precipitation, the gauge further downstream has a different 

timing of its largest contribution. In addition, it has a narrower spread of relevance along 

the estimation time, suggesting that the precipitation that contributes to the flood peak 

occurred over a shorter time period. 

Finally, consider R_13, the gauge furthest downstream and closest to the stage. Its 

relevance starts to increase at −6 h and E_02, reaching a maximum at either −5 h and E_03 

or at 0 h and E_07. This pattern indicates an arrival time of precipitation of about 2–7 h. 

The relevance is larger before the peak, so for this gauge the precipitation contributed 

most from the rising limb to the peak. 

Let dR_n be the distance between the Tsunokawa station and R_n. Figure 1 indicates 

that dR_13 < dR_08 < dR_01. The relevance analyzed above suggests the arrival time of precipi-

tation tR_n follows tR_13 (2–7) < tR_08 (8–9) ≤ tR_01 (8–11). The tR_13 and tR_08 are clearly different, 

and at most about 6–7 h traveling time in between. This suggests that the MLP model 

represents the geographical distance in the arrival time of precipitation. On the other 

hand, the nearly equal timescales between gauges 1 and 8 are unclear. Gauge R_01 expe-

rienced about twice the precipitation than that at R_08 during case 2 and lies in a steeper, 

higher region than R_08 (Figure 1). The steeper slope could reduce the arrival time of 
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R_01, but other factors such as vegetation, soil types, and local topography may also in-

fluence the relevance. Future research is required to clarify the physical implication of the 

relevance in detail. 

4.5. Comparison with a Previous Research 

In this section the method proposed in this research is compared against a MLP 

model of Hitokoto et al. [16]. The main difference lies in the type and number of input 

data. The Hitokoto’s model, hereafter H_t model (t being the lead time), uses (1) river 

stages at a target location (L_3 of Figure A1), (2) temporal changes in stages at upstream 

locations, and (3) rainfall forecasts in the upstream (Table 4). In order to construct the 

model for the Shimanto river basin, temporal changes in stages were calculated at the 

three locations (L_1, L_2, and L_3). As in [16], the observed rainfall at 13 gauges was used 

as a “perfect” forecast. Note that the rainfall data is required from t-5 to t-1 h in the future 

for the forecast with t hour lead time. 

Table 4. The input and output variables for the Hitokoto’s MLP model. The time of each piece of 

data is shown relative to the current time, and the lead time t given in hours. 

 Input Output  

Type Number of gauges Time Change in the river 

stage measured at the 

Tsunokawa 

observatory between 0 

and t hour. 

River stage 1 −1, 0 

Hourly change in 

stage 
3 −2, −1, 0 

Hourly rainfall 13 t-5 to t-1 

Since the observed rainfall was used as forecast up to one hour before the forecast in 

the H_t model, we can compare it against the proposed model with one-hour lead time 

discussed in Section 4.2. It is called the PL model. Furthermore, as H_t model predicts 

stage changes, we constructed another MLP model, PCL_t that predicts changes in stage 

instead of the stages themselves and uses rainfall data from up to one hour before the 

forecast. For instance, 6-h lead time forecasts of H_6 and PCL_6 both require one- to five-

hour rainfall forecasts to make a water change between current and 6 h later. PCL_6 basi-

cally replaces the stage observations required for H_6 with year-long rainfall time series 

observations. 

The evaluation measures for H_t and PCL_t are listed in Table 5. The one-hour lead 

time predictions by these models show very high SSs (>0.98) for the four flood cases, and 

the RMSEs are about one third of the PL model (see 1-h lead time prediction in Table 2). 

The AEs at peak are less than 20 cm, and better than the PL model. Those for two-hour 

lead time predictions still maintain higher SSs and slightly lower AEs at peak than the PL 

model. Therefore, use of stage changes as a label of MLPs instead of the level itself may 

lead to more accurate forecasts with one- and two-hour lead times. Since H_t and PCL_t 

show similar high evaluation measures for these short lead times, it is possible to replace 

river stage and stage changes with rainfall time series in the input. 

Actually, H_t predictions show increases in RMSEs and MAEs with lead time alt-

hough the information on stages is included in the model. This is probably because the 

relationship between the stage changes in the future and those in the past become unclear 

with the lead time. PCL_t also shows monotonic increases in RMSEs with lead time, which 

is larger than H_t and indicates that the rainfall in the past has weaker association with 

the stage changes in the future than with the stage changes in the past. 

It turned out that PL outperforms H_t and PCL_t for lead times of three (Table 5) and 

four to six hours (not shown). This indicates that the direct prediction of stages is better 

used as the label of MLPs than that of stage changes in the case of using long-term rainfall 

time series as input and for the longer lead times. As described in Section 3.1, the rainfall 

in the past and the stage downstream are correlated to some extent. On the other hand, 
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the stage changes are more associated with the changes in the storage as further improve-

ment was evidently achieved by introducing the storage information to the input [41]. 

Therefore, when precipitation forecast products with high accuracy are available, use of 

stages as a label, i.e., the PL model, is more desirable than use of of stage changes. Another 

interesting point is that the proposed models with even three- and five-hour lead time 

predictions can produce smaller AEs at peak and RMSEs for some cases than H_t and 

PCL_t (see Table 2), even though the rainfall information is absent three or five hours before 

the forecast stage. Thus, it is worthy of constructing the simple proposed MLP models 

even if the latest rainfall data is not available. 

Table 5. Same as Table 2 except for this is for H_t and PCL_t. The lead time is defined with respect 

to the latest time of stage observation at Tsunokawa. 

Case SS 𝝆𝒇𝒙
𝟐  Rel Bias 

AE at 

Peak [cm] 

MAE 

[cm] 

RMSE 

[cm] 

 H_1     1-h lead time prediction 

1 0.999 0.999 0.000 0.000 0 4 7 

2 0.991 0.992 0.000 0.001 10 13 33 

3 0.982 0.983 0.000 0.001 14 15 26 

4 0.998 0.998 0.000 0.000 5 8 16 

 PCL_1    1-h lead time prediction 

1 0.997 0.998 0.000 0.000 11 6 9 

2 0.994 0.995 0.000 0.000 1 12 25 

3 0.990 0.991 0.000 0.000 20 15 20 

4 0.998 0.998 0.000 0.000 6 8 14 

 H_2     2-h lead time prediction 

1 0.996 0.997 0.001 0.000 7 7 11 

2 0.970 0.974 0.001 0.003 50 25 59 

3 0.929 0.932 0.000 0.003 100 32 53 

4 0.991 0.992 0.001 0.001 15 16 31 

 PCL_2   2-h lead time prediction 

1 0.978 0.982 0.004 0.000 52 20 27 

2 0.974 0.977 0.002 0.000 85 25 54 

3 0.926 0.935 0.008 0.001 139 36 54 

4 0.992 0.994 0.003 0.000 80 19 29 

 H_3   3-h lead time prediction 

1 0.992 0.994 0.001 0.000 19 11 16 

2 0.945 0.953 0.003 0.005 152 37 80 

3 0.862 0.870 0.001 0.007 194 48 74 

4 0.982 0.985 0.002 0.001 68 21 44 

 PCL_3   3-h lead time prediction 

1 0.950 0.960 0.010 0.000 94 30 40 

2 0.942 0.947 0.005 0.000 230 41 82 

3 0.819 0.840 0.021 0.000 240 60 85 

4 0.974 0.981 0.007 0.000 149 33 52 

5. Conclusions 

In this study, we developed multilayer perceptron (MLP) models to estimate and 

forecast a river stage in the Shimanto river watershed. This watershed lies in a mild, rain-

heavy mountain region covered with forests. The models were developed solely based on 

the observed long-term precipitation and stage time series, and then tested. The main 

findings are: 
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 Models that estimated the stage at the latest time of the input precipitation time series 

captured the time fluctuation of stages with RMSEs between 30 and 67 cm for flood 

peaks of about 10 m. 

 Stage forecasts were made 1 to 6 h after the latest precipitation observation with the 

MLP framework. The performance was highly accurate with up to a 3 h lead time. 

This suggests that the current precipitation information in the watershed contributes 

significantly to the stage 3 h later. 

 Input of precipitation that occurred one day to one week prior to a flood influences 

the river stage estimate during flood events, which is likely related to the infiltration 

to soils and interflow processes. Precipitation further back, up to one year, has non-

negligible impacts on the base flow, which implies that the MLP models learned the 

ground water flow over long timescales. 

 Use of LRP (layer-wise relevance propagation) enabled us to estimate the arrival time 

of precipitation based on the increase of the contribution (called relevance). The arri-

val time correlated to the distance between rain gauge and stage observatory, indi-

cating that the MLP models likely captured the geographical characteristics of the 

watershed. However, more detailed analysis is required to relate the arrival time to 

physical parameters such as gradients and vegetation. 

 Comparison with a previous MLP modeling and the proposed modeling indicates 

that use of stage changes as a label gives more accurate prediction for one- to two-

hour forecasts than the use of stages themselves, and rainfall time series can substi-

tute the stage changes observed upstream in the input. Furthermore, the proposed 

models with the lead time of three and five hours performed better than the previous 

models in some cases. 

The inductive (or empirical) modeling proposed in this study does not include rele-

vant physical processes explicitly. Even so, the models exhibited reasonable physical be-

havior. Visualization techniques such as LRP help users to interpret the model character-

istics, and it can enhance the reliability of the MLP models as a practical hazard-preven-

tion tool. However, due to the inductive nature of the method, accurate predictions re-

quire that the model developers carefully select training sets that are expected to be simi-

lar to any anticipated flood events. 

The advantage of the MLP modeling is in allowing one to construct models for forest-

covered watersheds with complicated topography only from long-term time series of pre-

cipitation and stage. In contrast, physical-based modeling typically requires information 

on topography, gradient, vegetation, and soil type that can be cumbersome to acquire. 

Also, the MLP modeling does not require involved parameter tuning, which can save on 

manpower and cost. Furthermore, if accurate precipitation forecast datasets are available 

as the input, a stage forecast MLP model can be constructed. Future research is warranted 

to examine the ability of the MLP model to remove biases in the precipitation forecast and 

to effectively use the precipitation forecasts. 
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Appendix A 

Appendix A.1. Development Environment 

The computational hardware was a personal desktop computer with Intel Core i7-

7700 CPU and GeForece GTX1080Ti GPU. The OS was Ubuntu 17. The software frame-

work for Deep Learning was Keras that used Google Tensorflow as the backend. The code 

was written with Python (Version 3.6). The MLP model of this study used fully connected 

networks, so sequential programming was possible. We used Keras functional API for 

ease of future development. 

Appendix A.2. LRP 

The basic LRP concept is shown in Figure A1. The subscript gives the node number, 

the superscript gives the layer number. The left diagram shows the feedforward propaga-

tion of information from input to output layers. The product of inputs and weights 𝑧𝑥𝑥 

and the addition of the products and bias terms 𝑧𝑥 are defined by Equations (50) and (51) 

of [30]. The right diagram shows the backward propagation of information from output 

to input layers with relevance 𝑅𝑥
(𝑥)

 shown for the feedforward network. The relevance 

was calculated using Equations 10–14 below, which are based on Equations (57), (58), and 

(62) of [40]. Then, 𝑧𝑥𝑥 and 𝑧𝑥 obtained in the feedforward network were used to calculate 

backpropagating information for the connected nodes in the upstream layer. The ratio of 

𝑧𝑥𝑥 in the upstream layer to the input before activation 𝑧𝑥 was calculated, and then mul-

tiplied by the relevance of the node in the layer. The relevance of a node is the sum of the 

abovementioned ratio over all the connections to the node. Specifically, 

𝑅𝑙
(5)

= 𝑓(𝑥),       𝑙 = 1 (10) 

𝑅𝑘
(4)

= ∑
𝑧𝑘𝑙

𝑧𝑙
𝑅𝑙

(5)
,

1

𝑙=1

 𝑘 ∈ {1, … , 128} (11) 

𝑅𝑗
(3)

= ∑
𝑧𝑗𝑘

𝑧𝑘 + sign(𝜀, 𝑧𝑘)
𝑅𝑘

(4)
,

128

𝑘=1

 𝑗 ∈ {1, … , 128} (12) 

𝑅𝑖
(2)

= ∑
𝑧𝑖𝑗

𝑧𝑗 + sign(𝜀, 𝑧𝑗)
𝑅𝑗

(3)
,

128

𝑗=1

 𝑖 ∈ {1, … , 512} (13) 

𝑅𝑑
(1)

= ∑
𝑧𝑑𝑖

𝑧𝑖 + sign(𝜀, 𝑧𝑖)
𝑅𝑖

(2)
,

512

𝑖=1

 𝑑 ∈ {1, … , 897} (14) 

where sign(𝜀, 𝑧𝑖) gives the sign of 𝑧𝑖 to the absolute value of 𝜀. This constant 𝜀 was in-

troduced to prevent the relevance from vanishing or exploding. For appropriate correc-

tion, 𝜀 was set to 𝜀 = 10−6, which is about 1/100 of absolute value of 𝑧𝑥. These calcula-

tions were repeated layer-by-layer toward the upstream to obtain the relevance of the in-

put layer 𝑅𝑑
(1)

. 
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Figure A1. Feedforward propagation (a) and back propagation (b) for an MLP model with a one-

year precipitation time series. 
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